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Abstract

Nucleation processes such as condensation or icing are of considerable impor-
tance in the field of collector physics, because water droplets inside a collector
can cause attenuated solar yield and severe deteriorations of absorber coatings.
Since nucleation is an extremely local phenomenon, general physical considera-
tions will not suffice to predict whether condensation occurs under certain, given
conditions. Therefore a detailed spatial simulation is necessary to be able to cope
with this issue, i.e., a simulation based on computational fluid dynamics (CFD).
This contribution describes how to incorporate the physics of classical nucleation
theory (CNT), which is also briefly explained, into the open source code Open-
FOAM to combine CNT with CFD. Furthermore, the results of a simple test case
are included for demonstration.

1 Introduction

Condensation and ice accretion are common and important issues, also for solar thermal
collectors. Humid air inside of collectors tends to condensate or sometimes even freeze on
the collector glazing. Not only lead droplets or ice crystals to an attenuated solar yield
through reflection and scattering of sunlight, but they can also cause severe damages when
impinging on the collector coatings. This is especially inconvenient if the involved surface
treatments are highly sophisticated and hence expensive. Therefore there exists the need to
fully understand the conditions in the collector that lead to condensation. Ultimately, this
will lead to optimized concepts of ventilation and sealing to prevent condensation while
minimizing energy losses.
The path to an understanding of condensation and icing starts at practical knowledge from
field studies, which stimulate experimental investigations of condensation and ice accretion
(see e.g. [1–6]). The development of suitable models, in this paper through nucleation
theory (see section 2), subsequently leads to investigations of the models via simulations,
presented in section 3. Although there exist studies of the nucleation at surfaces on a
molecular level [7], the current work does not aim at this nano-scale level, since it would be



computationally impossible to simulate and describe macroscopic devices like the interior of
solar thermal collectors then.
The most detailed and still applicable method of simulation in this case is the finite volume
method of computational fluid dynamics (CFD), for which there exist various commercial
and free tools. Since the processes of nucleation, droplet and crystal growth and humidity
transport are to be modelled, the open source code OpenFOAM [8] is used. It is open, not
only in terms of source code, but also in its structure and hierarchical design, so that its
solvers, utilities and libraries are fully extensible. Using these possibilities it is feasible to
simulate not only the growth of films or frost layers [9], but really the physical behaviour at
the onset of condensation or icing, i.e., the corresponding nucleation process, as will be
shown in section 3.

2 Nucleation Theory

Nucleation is a molecular phenomenon which can (directly) only be captured by molecular
dynamics simulation (c.f. [7]). To be able to perform investigations on a larger scale a
suitable and widely used method is classical nucleation theory (CNT, [10]). One of its
features is, that the nucleating matter is considered continuous, usually in the form of an
ideal gas. Also, via the definition of the so called surface of tension (where thermodynamic
and mechanical surface tension coincide), an agglomeration of water molecules is simply
describable as a spherical droplet of radius r.
Even in equilibrium such a droplet is not unchanged, water molecules continuously accrete
and evaporate to form a quasi–static condition. Also during nucleation processes, where the
vapour pressure Pv is larger than the saturation vapour pressure Pv,sat, both these events
occur, and even then it may happen that very small droplets vanish again completely.
However there exists a critical size to such droplets, which depends on the surrounding
conditions (see below), above which the droplets will no longer vanish but only grow
further, as long as the conditions are unchanged. A droplet of this critical size is called
critical embryo, quantities referring to it are subsequently labelled with a star superscript.
The formation of such a critical embryo out of vapour costs (Gibbs free) energy ΔG� which
is, according to CNT, proportional to the surface tension∗ and to the critical embryo
volume V � divided by its radius r�,

ΔG� =
σV �

r�
. (1)

This formation energy represents a barrier to the nucleation process which reduces the rate
J at which critical embryos occur per second per cubic meter:

J = J0 e
−ΔG

�

kBT , (2)

where J0 is the so called kinetic constant of nucleation, which also depends on material
properties and surrounding conditions, kB = 1.3806504 · 10−23 J/K is Boltzmann’s constant,
and T is the temperature of the embryo. The typical dependence of J on supersaturation
S − 1 is visualized in Fig. 1(a). The supersaturation is derived from the saturation ratio
S = Pv/Pv,sat with the actual vapour pressure Pv and the saturation vapour pressure Pv,sat;
S is also termed relative humidity. Clearly, the nucleation rate is extremely sensitive to
supersaturation.
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Fig. 1: Typical dependence of nucleation rate (according to the classical Becker–Döring
nucleation theory) on supersaturation in panel (a) on a double logarithmic scale for
T = 300K. The dependence of the critical radius r� on the supersaturation S on a
single logarithmic scale for the same temperature is given in panel (b).

CNT also provides the expression for the critical embryo radius:

r� =
2σμ

H2O

ρ
H2O

RT lnS
, (3)

where μ
H2O

= 18.0153 g/mol is the molar mass of water, ρ
H2O

= (1049.572− 0.1763T
K

) kg/m3

is the density of (liquid) water, R = 8.314472 J/(K mol) is the gas constant, and S is again
the saturation ratio, which of course has to be larger than 1. For the saturation vapour
pressure of water the relation Pv,sat(T ) = exp(77.34− 7235.42/T − 8.2 log T + 0.00571 T ) is
used (see e.g. [10]). The dependence of r� on the supersaturation is plotted in Fig. 1(b).
For heterogeneous nucleation at a flat surface the curvature (i.e., the radius) of the critical
embryo is unchanged, but the volume is lowered. Since an ideal droplet at a flat surface
resembles a spherical cap, the reduced volume hence only depends on the contact angle θ.
After basic geometrical considerations one obtains

V �
het = r�3 π(1− cos θ)2(2 + cos θ)

3
, (4)

which reduces to the homogeneous value for the completely hydrophobic surface with
θ = π. When inserting the heterogeneous critical embryo volume into Eq. (1) the same
θ–dependence [see Fig. 2(a)] again occurs in the formation energy. Also, the kinetic
constant of heterogeneous nucleation depends on the contact angle (a typical value would be
J0 = 1026 m−2s−1 [3]). Using the direct vapour deposition model [10, 11] the heterogeneous
nucleation rate follows a similar trend like the homogeneous one, as can be seen in Fig. 2(b).
If one makes the common choice for a critical nucleation rate (where a considerable amount
of vapour condensates) of Jcrit = 1 cm−2s−1, one can calculate, for given temperature and
contact angle, the respective necessary saturation ratio. Fig. 2(c) illustrates how this
critical saturation ratio varies with contact angle. The value of Scrit = 1 at θ = 0 describes
direct or film–like deposition of water molecules.
Of course, these considerations can easily be repeated with the surface tension of ice, but
will not be included here.
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Fig. 2: The geometric factor g(θ) = (1−cos θ)2(2+cos θ)/4, relevant for the contact angle
dependence of critical volume and formation energy, is plotted versus contact angle in (a).
The dependence of the heterogeneous nucleation rate at T = 300K and a contact angle
of θ = π/2 on supersaturation is visualized in (b). (c) displays the critical saturation
ratio in dependence of contact angle for two different temperatures, as indicated in the
legend.

3 Simulations

As mentioned in section 1 it is intended to perform CFD simulations for the nucleation
phenomenon of condensation. For this purpose a region similar to the test section of the
experiments (see [1, 2]) is set up, i.e., a rectangular duct of cross section 300 mm × 100 mm
and length 600 mm. Air at Tair = 300 K and a velocity of v = 2 m/s flows into the duct at
one end and is exhausted against ambient pressure at the outlet. Initially it carries vapour
at a mass concentration of cm,v = 0.020 kg/m3, which is equivalent to a saturation ratio of
S = 0.8.
As a first approach to humidity transport in air a simple scalar transport with diffusion is
used for the mass concentration:

∂cm,v

∂t
= −div j = div (Dv grad cm,v − cm,vu) , (5)

with a convective (cm,vu) and a diffusive (−Dv grad cm,v) part for the vapour flux j. The
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Fig. 3: Temperature profile (a) and vapour concentration profile (b) in a plane parallel
to the flow and perpendicular to the cooled surface.

used diffusion constant of vapour in air† is given by Dv � 2.12 · 10−7 m2/s. In OpenFOAM‡

this differential equation is simply introduced via two lines

fvScalarMatrix cmvEqn(fvm::ddt(cmv)+fvm::div(phi,cmv)-fvm::laplacian(Dv,cmv));

cmvEqn.solve();

and one additional variable, cmv, for the vapour mass concentration.
If now one of the side surfaces of the rectangular duct is cooled, i.e., held at a constant
temperature Tsurf = 273 K < Tair, the conditions for measurable nucleation at this surface
are met. For an initial laminar simulation of the flow one quickly obtains a stable condition
for flow and temperature, where the temperature profile in a plane parallel to the flow
direction and perpendicular to the cooled surface has the form given in Fig. 3(a). One can
clearly see the gradual cooling of the air as it flows over the cooled surface. If one also takes
into account the loss of humidity due to the formation of critical embryos at the surface,
there appears also a gradient in the water vapour concentration, although this change in
humidity does not spread as fast as the one in temperature due to the considerably smaller
(2 orders of magnitude) diffusion constant for humidity [see Fig. 3(b)].
Since the Reynolds number of the described flow condition is of the order of 104, a
turbulent simulation is clearly necessary for a more realistic modelling of the situation. As
a first step towards turbulence a standard k − ε model has been applied. While the profiles
of temperature and vapour mass concentration are very similar in a plane like in Fig. 3,
there appears, in contrast to the laminar case, a spacial peculiarity. In the region very close
to the cooled surface (i.e., the first calculation layer of the flow near the surface) the
humidity loss becomes much more pronounced in the corners and at the end of the
rectangular duct [see Fig. 4(a)]. Fig. 4(b) gives a possible explanation for this effect: The
turbulent kinetic energy k shows regions of low turbulence in the corners. The higher
turbulence in the middle region may cause a better mixing of the humid air and hence a
less pronounced humidity gradient.

4 Conclusion and Outlook

First steps towards a CFD simulation of nucleation phenomena have been taken and show
promising results. The framework of classical nucleation theory has been extended to a
model which can be incorporated into the open source CFD code OpenFOAM, which

†http://physics.holsoft.nl/physics/ocmain.htm
‡http://www.openfoam.com/
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Fig. 4: Vapour mass concentration (a) and turbulent kinetic energy (b) close to the
cooled surface.

allows arbitrarily detailed further development. This will include the following points (in
anticipated chronological order):

• Considering the influence of humidity on density and hence on the flow.

• Including gravity and hence buoyancy forces.

• Using generalized gas equations instead of the ideal gas one, for air and vapour.

• Incorporating improved nucleation rates, respecting e.g. experimental corrections like
for homogeneous rates [12] or surface diffusion effects.

• Modelling the influence of turbulence on the (vapour) diffusion coefficient.

• Extending the simulations to transient conditions.

• Considering the postnucleation droplet growth [13].

• Creation of films.

• Freezing of droplets/films and growth of ice.

These investigations will finally lead to a detailed understanding of the phenomena
concerning the nucleation of water vapour. But also the understanding of nucleation in
general will benefit from the developed models and tools.
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