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Abstract 

A proper design of a large solar heating system is important to maximize the benefit of the system. The 
system hydraulics, control parameters and dimensions of single components are usually tried to be 
optimized towards achieving better system performance at lower costs. The complexity of the target 
functions, a large number of optimization parameters and boundary conditions imposed on the system 
require application of advanced numerical optimization techniques and tools as well as additional 
software. 

In this paper, a hybrid genetic algorithm is proposed and applied to optimization of a solar 
combisystem. The hybrid algorithm couples the CHC genetic algorithm with the binary (n-ary) search 
method. The results of the optimizations show that the proposed algorithm is almost two times faster 
than the pure CHC genetic algorithm and, in separate cases, more reliable in finding the global 
optimum.  

The parallel version of the algorithm was implemented in GenOpt (generic optimization software) 
and applied to optimization of a solar combisystem modelled and simulated with the simulation 
software TRNSYS. Results of the optimization are presented in this paper. 

1. Introduction. 

As it was shown before [1], the genetic algorithms or evolution strategies should be used for 
optimization of solar heating systems since they are more likely to find the global optimum. However, 
as these optimization techniques widely explore the optimization space, they are computationally very 
expensive. Thousands of simulations are usually needed to approach the global optimum. As a one-
year simulation of a typical solar heating system takes around 10 minutes on a modern computer, 
around one week is needed for the simulation-based optimization of such a system.  

In this paper an attempt is made to construct a more efficient optimization algorithm by coupling the 
CHC genetic algorithm [2], a highly efficient modification of the genetic algorithm, with a local 
optimization algorithm, the so-called binary (n-ary) search method. The resulting hybrid algorithm 
should take benefits of both algorithms. It should efficiently explore the space as the genetic algorithm 
does but as soon as it finds the valley of the suspected global optimum it should not waste more time 
by exploring the surroundings, but localize the optimum with the speed of the binary (n-ary) search.  



2. Description of the optimization algorithm 

Genetic algorithms are inspired by evolution. They are widely used as a tool for optimization. An 
implementation of a classic genetic algorithm begins with an initial generation of randomly chosen 
individuals (chromosomes) each of which is a combination of the properly encoded optimization 
parameters (genes) and is actually a point in the search space. The individuals are being evaluated and 
those who represent better solutions to the target problem are given more chances to be selected for 
reproduction than those who are the poorer ones. The selected individuals then undergo the 
recombination (crossover) and mutation process in order to create the next generation of points in the 
search space. Application of selection, recombination and mutation operators is repeated until either 
the algorithm converges or a defined stopping condition is satisfied. 

2.1. The CHC algorithm 
The CHC genetic algorithm was developed by L. Eshelman [2]. The CHC abbreviation stands for 
Cross generational elitist selection, Heterogeneous recombination by incest prevention and 
Cataclysmic mutation.  

This algorithm monotonically collects the best strings found so far. It starts with a random parent 
population. After recombination, the N best individuals are drawn from the parent and offspring 
populations to create the next parent generation. The recombination is done by the uniform crossover 
called HUX, which swaps exactly half of the bits between the two individuals chosen randomly from 
the parent population. Selection of the parent individuals for recombination is random but with the 
restriction, that their binary encodings must be a certain Hamming distance (number of the bits in 
which the binary encodings differ one from another) away from one another. Such “incest prevention” 
is designed to promote diversity in the offspring population. Nevertheless, when the population 
converges to the point that it begins to reproduce more or less the same individuals, the cataclysmic 
mutation is performed which mutates heavily all the individuals except for the best one. The CHC 
algorithm typically uses small population sizes.  

2.2. The binary (n-ary) search 
The binary (n-ary) search is a one-dimensional search. It runs along one parameter at a time, while the 
other parameters remain fixed. Variation range of the parameter is first divided by n points at which 
the target function is calculated. The points neighbouring to the best point are then chosen as the 
boundaries of the new range. The n-ary divisions are repeated until the value of target function does 
not improve any longer or a given precision is reached. After that, the n-ary search fixes the 
investigated parameter to the obtained optimal value and moves to the next parameter. This outer 
parameter cycle repeats until the target function cannot be improved any more. 

The n-ary search is the local optimization method as it optimizes only one parameter in a turn. 
However, on the contrary to the path-oriented methods which start from the initial point and move in 
the direction where the target function is improved, it is more robust and can avoid local optima.  

2.3. The hybrid CHC-binary (n-ary) search algorithm 
Genetic algorithms are sometimes coupled with the computationally less expensive local optimization 
algorithms in order to accelerate convergence to the global optimum. All such combinations, however, 
increase risk that the optimization ends somewhere at a local optimum far from the thought global one. 



The application range of such hybrid algorithms should be first carefully investigated. When the 
surface of the target function has no sharp and deep global optimum but rather a broad one (many 
ripple-like local optima are not a problem), then the proposed algorithm might be applied with more 
chances on success 

In the investigations for this paper, the CHC genetic algorithm is coupled with the n-ary search 
method. Switching from the CHC algorithm to the n-ary search occurs when the best individual of the 
CHC is not improved for a given number of generations. If the target function is supposed to have not 
a very complex surface and the CHC algorithm hits the basin of the global optimum relatively fast, 
then it could be beneficial to switch to the n-ary search before the cataclysmic mutation of the CHC 
algorithm takes place. Otherwise it is better to sacrifice more computational time to the CHC algorithm 
and switch to the n-ary search after mutation.  

It is believed that the pure CHC algorithm should be more reliable in finding the global optimum as it 
widely explores the searching space. However, it might stuck in the local optimum especially if the 
population size is chosen too small or restriction on the Hamming distance between two mating 
individuals is too weak. It is possible in these cases that the n-ary search hits out of the local optimum 
and reaches if not the global optimum then at least a better local one. The results below show exactly 
such a case. 

The proposed hybrid algorithm should be carefully tuned with a closer look onto the complexity of the 
target function. To be on the safe side, it is recommended to run the same optimization several times. If 
the optimization results are (nearly) the same in all runs, then it is more likely that the global optimum 
has been found.  

3. Description of the solar combisystem 

The proposed hybrid genetic algorithm was applied to optimization of the reference solar combisystem 
of IEA SHC Task 32 [2] (Fig. 1). Besides the collector and storage tank, the system has an auxiliary 
heating loop with a heated volume inside the tank. The system is used for tap water preparation as well 
as for space heating. The demand profile of the tap water was stochastically generated (around 
200 l/day) as a typical profile for a one-family house. The weather data for Zurich (Switzerland) were 
taken for simulation and time resolution of the calculations was 6 minutes. The system was simulated 
for a whole year. 

The solar combisystem is optimized for minimum cost per kWh of saved auxiliary energy. The target 
function targetF  is constructed as  

 cost
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The first term describes the costs per kWh of saved auxiliary energy. The cost function costF  covers 
costs of the investment in solar components (collector, store, pumps, heat exchangers, etc.), installation 
costs (10% of the component costs), interest rate (6% for a twenty-year credit for all investment and 
installation costs) as well as the operational (electricity demand) and maintain costs of the system (1% 



of the investment costs per year). The second term penaltyF  in (1) is the penalty added to the target 

function if the fractional thermal savings save,thermf of the system, defined as 
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are less than a given value c . 

All in all, sixteen parameters were chosen as optimization parameters that could have influence on the 
target function. They comprise the design parameters as collector area, store volume, insulation 
thickness, UA values of the heat exchangers, pipe diameter, inlet/outlet positions, etc. and such 
operational parameters as mass flow rate, set temperature of the auxiliary heater, dead bands of the 
control of collector and auxiliary heater. The operational parameters were set constant for the 
simulation period.  

4. Optimization results and discussion 

First, the solar combisystem was optimized without any requirement to the fractional energy savings 

save,thermf  and then with save,thermf  not less than 35 and 45%, respectively. The cost per kWh of saved 

auxiliary energy, corresponding save,thermf  as well as the optimal values of the five most important 

optimization parameters are given in Table 1 for the base case and three optimization cases. It is seen 
that either the fractional savings can be improved by around 10% at the same cost or the cost per kWh 
of saved auxiliary energy can be reduced by around 10% at the same save,thermf . 

 

Fig. 1. Scheme of reference solar combisystem with auxiliary heating loop 



Table 1. Results of optimizations of the solar combisystem. The base case stands for the standard 
configuration of the IEA SHC Task 32 system. The solar heat costs include interest of 10 to 12 
€ct/kWh for a credit for all investment and installation costs. 

Optimization case targetF , 

€ct/kWh 
save,thermf , 

% 

Collector 
area,       
m2 

Store 
volume, 
m3 

Insulation 
thickness, 
m 

Solar HX 
UA, 
W/m²col K  

0. base case 30.7 34 20 1.0 0.15 105 

1. no constraints on save,thermf  25.5 26 11 0.7 0.4 118 

2. save,thermf   35% 27.1 35 17 1.1 0.3 147 

3. save,thermf   45% 30.2 45 26 1.9 0.3 130 

In Fig. 2, the best value of the target function obtained so far by the proposed hybrid CHC-binary(n-
ary) search (dashed lines) and by the pure CHC genetic algorithm (solid lines) versus the number of 
simulations are given for the third optimization case ( save,thermf  45%). Two typical independent 

optimization runs are shown for both algorithms. The results are the same up to the point when the n-
ary search is launched. In the first run, it is seen that the n-ary search can noticeably accelerate the 
convergence and ended up at the optimum almost twice as fast as the pure CHC algorithm does. In the 
second run, the CHC algorithm stuck in a local minimum, whereas the n-ary search improved the 
solution up to the (likely) global minimum. Although the hybrid algorithm needed in the second run 
almost as many calculations as the pure CHC algorithm in the first run, it is more reliable. In this 
example, the n-ary search ran with 5n , the population size of the CHC algorithm was taken as 

30N . Switching from the CHC algorithm to the n-ary search was done before the cataclysmic 
mutation of the CHC algorithm, because the study of the target function surface showed that it is quite 
shallow and relatively smooth in the basin of expected optimum.  

Fig.2. Optimization results (best value of the target function) of two independent optimization runs (left and 
right) for the solar combisystem with the fractional energy savings  45%. Solid lines correspond to the 
standard CHC algorithm and dashed lines to the hybrid CHC – n-ary search algorithm. 



The proposed hybrid algorithm decreases the computation time from around one week (3000 
simulations on the dual core computer, each 7 minutes) to 3 days and up to around 24 hours 
(on 12 CPUs), when using the parallelized version of the algorithm. 

5. Conclusion 

The optimization potential for the investigated solar combisystem is either 10% higher fractional 
savings of the system at the same costs per kWh of saved auxiliary energy, or 10% cheaper energy 
costs at the same fractional savings. The optimization potential is expected to be even higher if the 
operational parameters are dynamically optimized and not assumed to be constant over the simulation 
period as in the present results. 

Applied to the optimization of the solar combisystem, the proposed hybrid genetic algorithm shows 
higher reliability and better efficiency than the pure genetic CHC algorithm, furthermore it is almost 
two times faster. Therefore, the hybrid algorithm is attractive for resolving computationally expensive 
and complicated problems as optimizations of the solar heating systems. 

Nomenclature 

targetF  €ct/kWh  target function, cost per kWh of saved auxiliary energy 

costF  €ct  costs of the solar combisystem 

auxE  kWh  auxiliary final energy consumption of the solar combisystem 

refE  kWh  final energy consumption of the reference system 

save, thermf  -  fractional thermal energy savings 

penaltyF   €ct/kWh  penalty function 

c  -  constrain on the fractional thermal energy savings 
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