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Abstract 

The use of accurate models is a relevant point for simulation, optimization and control purposes. More 
specifically, they represent a cornerstone for the development of different based on model control strategies, 
as Model-based Predictive Control (MPC) or Internal Model Control (IMC). These control strategies help to 
obtain high thermal comfort levels inside buildings in an efficient way by an optimal combination with 
passive strategies. For control purposes, the selection of an appropriate kind of model will depend on its 
complexity, aim and available resources. In this work, a comparison between the complexity and accuracy of 
several models is performed. To do that, three different room-level indoor air temperature models have been 
developed: i) a Linear Time-Invariant (LTI) model estimated by means of a Pseudo-Random Binary 
Sequence (PRBS) signal; ii) a nonlinear model based on Artificial Neural Networks (ANNs); and iii) a 
nonlinear first principles model. These models have been calibrated and validated using real data from a 
characteristic office room of a bioclimatic building. The obtained results show as the three approaches 
provide good results with an NMAE error less than 14% in the worst case (LTI model) and approximately 
equal to 5% in the best one (first principles model), and thus, they could be used to develop appropriate 
control strategies. 
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1. Introduction 

In last decades, it has been an increasingly concern about climate change which is mainly originated by 
human activities. It has occasioned the apparition of different regulations and strategies all around the world. 
Within the European Union the framework the strategy Europe 2020 (Europe2020, 2014) whose main 
objectives from both climate change and energy points of view are: i) to reduce greenhouse emissions by 
20% in comparison to 1990; ii) to increase the market share of renewable energy sources in final energy 
consumption to 20%; and iii) to improve energy efficiency by 20%; appeared. On the one hand, several 
studies establish that energy consumption in buildings represents approximately 40% of total world energy 
consumption, mainly attributed to Heating, Ventilation and Air Conditioning (HVAC) systems (Pérez-
Lombard et al, 2008). On the other hand, since people usually perform their quotidian activities inside 
buildings, it is necessary to obtain a commitment between users‘thermal comfort and energy efficiency. To 
do that, different approaches can be considered, as the construction of bioclimatic buildings which include 
control strategies able to optimize the energy consumption derived from users‘thermal comfort. 

One of the most used techniques that allow us to maintain users’ thermal comfort is Model-based Predictive 
Control (MPC) (Castilla et al, 2014a; Donaisky et al, 2007; Ma et al, 2011; Privara et al, 2011a) since it uses 
dynamic models of the controlled system, noise and disturbances to obtain predictions of behaviour of the 
system as a function of the estimated control signals. Besides, models can provide very useful information 
about the design and reaction of different control systems avoiding the associated costs and risks derived 
from testing these systems in a real plant. Moreover, there are in literature different kinds of models which 
can be classified as a function of their nature, complexity and available resources (Brosilow and Joseph, 
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2002). Within the context of process control area, it is very usual to develop nonlinear models based on first 
principles of the controlled system. However, and mainly due to the complexity and necessities of it, it is 
possible to obtain linear and nonlinear models by means of classical identification techniques (Rivera, 2007). 

In general, the most part of the models available in literature are devoted to evaluate energy performance in 
buildings (Olofsson and Mahlia, 2012; Saelens et al., 2011), to design energy efficient buildings (Jiang and 
Rahimi-Eichi, 2009), or even to develop adequate control strategies at building level (Hazyuk et al. 2012; 
Kummer et al., 1996; Sagerschnig et al., 2011). Moreover, it is possible to found in literature several 
techniques that allow obtaining black-box models such as Artificial Neural Networks (ANNs) (Mustfaraj et 
al., 2011) and identification techniques (Privara et al., 2011b). Therefore, there are different kinds of models 
which are developed with different perspectives and with several final objectives. 

This work presents an analysis, from both performance and efficiency points of view, between the 
complexity and accuracy provided by three different room-level indoor air temperature models, specifically a 
Linear Time-Invariant (LTI) model, an ANN model and a nonlinear one based on first principles. The 
calibration and validation results showed in this work have been obtained in a real bioclimatic building, the 
CDdI-CIESOL-AFRISOL building (http://www.ciesol.es/en). In addition, and as a conclusion of this work, 
some advices about the main factors that should be taken into account to select an appropriate model for 
control purposes are provided. 

The paper is organized as follows: Section 2 provides a brief description of the building and the selected 
room which is used to validate the indoor air temperature models which are shown in Section 3. More 
specifically, Section 3.1 is devoted to an LTI model. Section 3.2 shows an ANN room-level indoor air 
temperature model. The main formulation of the first principles model and a brief description of the 
methodology followed to calibrate and validate this model are presented in Section 3.3. The obtained results 
are shown and widely commented in Section 4. Finally, in Section 5 the main conclusions and future works 
are described. 

2. Scope of the research 

The bioclimatic building used in this work to calibrate and validate the proposed models is a research centre 
on solar energy, the CDdI-CIESOL-ARFRISOL building, see Fig. 1 (a). It was built following several 
bioclimatic architecture criteria. Hence, it includes several passive strategies which take advantage of the 
environmental characteristics of the place where the building is located, and active ones which make use of 
renewable energies, such as a HVAC system based on solar cooling composed by a solar collector field, a 
hot water storage system, a boiler and an absorption machine with its refrigeration tower. Furthermore, this 
building has its more representative rooms monitored through a wide network of sensors whose data are 
stored in a database by means of an acquisition system. The historical data saved during the daily use of 
these rooms have been used for calibration and validation model purposes. A detailed description of this 
building can be found in Castilla et al. (2014b). 

Furthermore, the selected room with a total surface of 76.8 m3 and north orientation, see Fig. 1 (b), counts 
with a huge variety of sensors, see Tab. 1 and also a set of actuators, such as a window opening/closing 
system and a shading system, that provides more degrees of freedom to control users’ comfort. 

Tab. 1: Sensors network into the selected room (Castilla et al. 2014b) 

Type of sensor Unit Number of sensors 
Air temperature ºC 6 

Air velocity m/s 3 
Air CO2 concentration ppm 2 

Fan coil water flow l/m 1 
Fan coil water temperature ºC 2 

Globe temperature ºC 1 
Plane radiant temperature ºC 6 

Air relative humidity % 3 
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                (a) Outside of the building                                                              (b) Representative room of the building 

Fig.1: The CDdI-CIESOL-ARFRISOL building 

3. Indoor air temperature models 

Generally, the obtaining of an appropriate model which precisely represents the dynamic behaviour of the 
indoor air temperature requires both effort and time. A room can be defined as a complex system where 
interferes several kind of elements and the surrounding environmental conditions about it. At the same time, 
these elements are characterized by their thermal and optical properties. However, although there is a priori 
knowledge of the modelled system it is difficult to obtain a first principles model mainly due to their 
complexity. In these cases, it is very common to use identification techniques which will allow us to obtain 
black-box models. 

In this section, different approaches for the modelling of indoor air temperature are shown. Therefore, in all 
the cases, the system output will be the indoor air temperature. Besides, as the main aim of the proposed 
models is the development of future controllers, a distinction in input signals between control inputs 
(variables which can be manipulated) and disturbances (variables which cannot be manipulated) has been 
performed. On the one hand, the control inputs are the natural ventilation by means of the window opening, 
the forced ventilation through the HVAC system and the blind. On the other hand, the disturbance inputs are 
the outdoor environmental conditions, such as the outside air temperature, wind speed and its direction, 
direct, diffuse and reflected irradiance, and the indoor conditions, i.e. the plane radiant temperatures of all the 
surfaces and the number of people inside the room. 

3.1. Linear Time-Invariant model 
First of all, and with the main objective of obtaining a simplified model for control purposes an LTI model 
for indoor air temperature has been obtained following the methodology for system identification proposed 
by Ljung, (1999). To do that, the following assumptions have been taken into account: 

� It has been considered that there was only one available actuator, the HVAC system, which allows 
the users to control indoor air temperature through its fan velocity (on/off). 

� As disturbances inputs it has been taken into account the outdoor air temperature and the number of 
persons inside the room. 

� It is supposed that the indoor air temperature is homogeneously distributed around the whole room. 

 
Fig.2: Inputs/output scheme of the LTI model 
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Therefore, from the previous assumptions, a Multiple Input Single Output (MISO) model, see Fig. 2, has 
been used where the chosen structure has been Auto-Regressive with eXogeneus inputs (ARX) since it 
considers disturbances as white noise. To do that, appropriate Pseudo-Random Binary Sequence (PRBS) 
signals were designed using the tuning methodology proposed by Rivera (2007) to obtain a signal with 
enough power over the frequency range of interest for the indoor air temperature model. Afterwards, the 
identification process has been carried out using the System Identification Toolbox of Matlab® (Ljung, 1999, 
2007). This tool allows obtaining a linear model based on certain established premises and a selected model 
structure. In this case, an ARX model whose general structure which can be expressed as a simple linear 
difference equation can be observed in eq.1. This difference equation relates the current output of the 
system, , with a finite number of past outputs, , and inputs,  and a white noise, . 

 

   (eq. 1) 

where  is the number of poles of the model,  is the number of zeros, and  is the delay of the 
system, if it exists.  

The model was estimated by means of PRBS signal with a total duration of 4 days, that is, 96 hours. This test 
was performed during working days with specific requirements to smooth the disturbance effects, that is, the 
door was closed with several disturbances due to the people going in/out, the window was closed, and the 
room had its typical occupation along work hours during the whole test. The lineal different equation which 
represents the identified ARX model can be observed in eq.2. 

 

 

 

 

   (eq. 2) 

In the previous equation,  represents the outdoor air temperature,  is the fan velocity of the HVAC 
system, and finally  is the number of persons inside the room.  

3.2. Nonlinear model based on Artificial Neural Networks 

The indoor air temperature inside a certain environment usually presents a nonlinear nature. For that reason, 
in this section, an ANN nonlinear model estimated through input – output data is presented. ANNs are 
universal approximators (Cybenko, 1989) and they can be considered as a black-box model where its inputs 
represent the number of neurons in the input layer, the model parameters are symbolized by the number of 
neurons and their interconnection weights in the hidden layers, and finally, the outputs are represented by the 
number on neurons in the output layer. The main difference with the LTI model developed in the previous 
section is that ANN can model nonlinear behaviours. 

As there is a previous knowledge of the processes involve in the dynamic behaviour of the air temperature 
inside a room, the selection of inputs for the ANN has been performed as a function of this knowledge. More 
specifically, the selected variables have been the following ones: 

� The surface temperature of the walls, ceil and floor since they are involved within the convection 

process . 

� The ones related with forced ventilation that is with the HVAC system: the impulse and return 

temperatures  and velocities , and the water flow through the HVAC 

system . 
� Variables which make reference to both natural ventilation and infiltration processes, that is, the 

aperture of the window , the wind velocity  and direction . 
� The number of persons inside the room  
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� The outside climatic conditions are taken into account by means of the outdoor air 
temperature  and the diffuse irradiance . 

� Finally, the modelled variable, the indoor air temperature  is also considered since the output 
of it is feedback as an input. 

Furthermore, the ANN estimated for the indoor air temperature model presented in this section is a 
multilayer perceptron with a Feed-Forward (FF) configuration composed of a hidden layer with 11 neurons 
with sigmoidal activation function, 19 neurons in the input layer and one neuron in the output layer, the 
indoor air temperature, see Fig. 3. Besides, the obtained ANN has been also combined with Tapped Delay 
Lines (TLD) blocks which have been used to provide an appropriate number of past values for the inputs 
(Arahal et al., 1998). The methodology used to determine the optimal number of past values was the False 
Neighbours Method (kennel et al., 1992). 

 
Fig.3: Inputs/output scheme of the ANN model 

The proposed ANN has been trained using appropriate data sets. In this case, real data sets acquired during 
the normal operation of the CDdI-CIESOL-ARFRISOL building have been used. The selected data sets 
cover the most characteristic profiles of the warmer periods of the year, that is, spring and summer. More 
specifically, they comprise three different intervals: from 15th April 2013 to 5th May 2013, from 22nd May 
2013 to 16th June 2013 and from 7th July 2013 to 31st July 2013 with a sample time of 1 minute. In addition, 
the training process has been performed using the MATLAB’s implementation of the Levenberg-Marquardt 
algorithm (More 1978) and the goodness of fit has been calculated by means of the Root-Mean-Square 
(RMS) error, see eq.3. 

   (eq. 3) 

where  symbolizes the real value of the modelled variable and  is the approximation estimated by 
means of the ANN model. 

The selection of the optimal ANN has been performed taken into account that an ANN with an insufficient 
number of neurons may be unable to capture the dynamic behaviour of the indoor air temperature, and that 
an ANN with too many neurons can occasion overtraining, and thus, degrade the generalization capabilities. 

3.3. Nonlinear first principles model 

In this approach, the existing relationships among the different components of the room and between them 
and the environment are determined by means of mass and heat transfer laws, see Fig. 4. More specifically, 
this model has been obtained using the “Heat Balance Method” described in Ashrae (2009) and subjected to 
the following assumptions:  

� It has been considered that the room is composed of seven elements: indoor air, walls, windows, 
shading system, HVAC system, people and electrical appliances. 
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� The physical characteristics of the different elements except from indoor air, such as specific heat, 
have been supposed constant. Besides, the physical characteristics associated with the indoor air are 
calculated as a function of indoor air temperature. 

� The air inside the room has been considered as a perfect mix, i.e. the indoor air temperature is 
uniform in the whole room (Fisher and Pedersen, 1997). 

� The surfaces of the room are supposed to have a uniform surface temperature, similar wave 
irradiance and one-dimensional heat conduction process. 

 
Therefore, the indoor air temperature has been modelled by means of a dynamic equation based on heat and 
mass transfer principles as it is shown in eqs. 4-10.  

    (eq. 4) 

   (eq. 5) 

        (eq. 6) 

        (eq. 7) 

       (eq. 8) 

        (eq. 9) 

       (eq. 10) 

In the previous equation  and  are, respectively, the mass in  and the specific heat in  
at constant pressure of the indoor air.  is the indoor air temperature in . Furthermore, the terms located 
on the right hand of the equation, that is  represent respectively, the heat 
gain due to natural convection through walls, floor and ceil, the heat gain through forced ventilation, the heat 
gain by means of infiltrations, the heat gain caused by internal gains related to people, electrical appliances 
and lighting, the heat gain occasioned by natural ventilation, and the heat gain owed to the glass of the 
window, all of them in . A more detailed description of the methodology followed to estimate each one 
of the terms can be found in Castilla et al. (2014b). 

 
Fig.4: Inputs/output scheme of the first principles model 
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The indoor air temperature model presented in eqs.4-10 has a set of 9 unknown parameters which have been 
calculated by a specific calibration methodology. Furthermore, it consists in a cascade calibration process 
consisting of, first, a brute force sequential search to determine an initial approximation for the unknown 
parameters, and afterwards the use of evolutive algorithms to obtain the final value. A complete explanation 
of this calibration technique can be found Castilla et al. (2014b). 

4. Results and discussion 

As it was mentioned previously, the models presented in Section 3 have been calibrated and validated for the 
particular conditions of a typical office room inside the CDdI-CIESOL-ARFRISOL building. In this section, 
the validation results obtained for summer conditions are shown and widely commented. More specifically, 
the selected validation set with a total size of 4320 data points comprises from 10th to 12th May 2013 with a 
sample time equal to 1 min and it includes different conditions. The main objective of this validation data set 
was to obtain the most common situations inside this room along a warmer half-time period. Therefore, this 
test contains some periods where the room was empty, and others with the presence of its usual occupants, 
see Fig. 5 (a). In addition, while the room was occupied some controlled experiments were performed using 
the window and the HVAC system, see Fig. 5 (b) and (c) respectively. Finally, these controlled experiments 
provide a validation set with an absolute variation equal to 2.49ºC from 24.71ºC to 27.21ºC. The results 
obtained under the conditions described previously, see Fig. 5, can be observed in Fig. 6. Specifically, in this 
figure, it is shown the real indoor air temperature measured inside the characteristic room of the CDdI-
CIESOL-ARFRISOL building (in blue) and the results provided by each model (LTI model in yellow, ANN 
model in green and first principles model in red). 

Furthermore, in order to analyze the goodness of the proposed models and be able to establish a comparison 
among them, a statistical analysis is also included, see Tab. 2. Concretely, this statistical analysis includes 
the number of samples ( ), the absolute variation ( ) of the measured indoor air temperature, its Mean 
Absolute Error ( ) and Mean Relative Error ( ), the maximum absolute error ( ), the standard 
deviation ( ) and the variation Normalized Mean Absolute Error ( ), see eqs. 11-16. 

       (eq. 11) 

       (eq. 12) 

          (eq. 13) 

       (eq. 14) 

       (eq. 15) 

     (eq. 16) 

In the previous equations, eqs. 11-16,  are the real values measured inside the modelled room,  and  
represents the results obtained from the model and the mean value of these results respectively, and finally, 
AE is the absolute error. 

As can be observed in Fig. 6. the developed models are able to capture the dynamics of the indoor air 
temperature under different conditions. On the one hand, the worst model is the LTI with an NMAE index 
close to 14% and an MAE equal to 0.34ºC. However, these results are the expected ones, since the LTI 
model considers as inputs less variables than the others approaches. Hence, after a detailed analysis of the 
conditions along the periods where it provides worst results it has been concluded that it is not able to react 
properly to the disturbances occasioned by the window. On the other hand, the other two models provide 
similar results with an NMAE index between 5% and 6%.  Therefore, it can be concluded that the three 
approaches are valid to develop control strategies for users’ thermal comfort.  

However, one of the most important factors in order to develop appropriate control techniques is the 
available resources that allow us to obtain both more or less accurate models of the indoor air temperature. 
More specifically, the accuracy of these models depends on the size of the sensors network available, the 
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number of actuators and their characteristics, and the previous knowledge of the modelled system. 
Concretely, if there is not any limitation due to the network of sensors it should be recommendable to 
develop first principles models since they take into account different disturbances and their influence on the 
modelled system, and thus, they will allow to the controller react more precisely than with other kind of 
models. However, to develop first principles models it is necessary to have a priori knowledge of the system. 
Hence, if there is not any knowledge of it, the best option will be to develop black-box models (LTI or 
ANN).  

 
(a) Room occupation 

 

(b) Window aperture 

 
(c) HVAC system 

Fig.5: Conditions of the validation set 

 
Fig.6: Results of validation set for the indoor air temperature models 
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Tab. 2: Results from the validation of the indoor air temperature models 

Parameter LTI model ANN model First principles model 
MAE 0.34 ºC 0.15 ºC 0.13 ºC 

MaxAE 0.85 ºC 0.73 ºC 0.88 ºC 
MRE 0.01 ºC 0.005 ºC 0.004 ºC 

SN 0.37 ºC 0.35 ºC 0.48 ºC 
NMAE 13.81% 6.07% 5.04% 

 

5. Conclusions and future works 

Models are necessary to develop appropriate control strategies for users’ thermal comfort since they can 
precisely represent the dynamic behaviour of the temperature where the people is. In this work, three 
different modelling approaches have been presented. Concretely, in a first approach, an LTI model obtained 
through identification techniques was developed. Afterwards, a nonlinear model based on ANN has been 
presented. Finally, an indoor air temperature model based on first principles was done. In addition, a 
comparison among them has been performed based on statistical analyses and the necessary goodness from 
control techniques point of view. The obtained results show as the three approaches provides good results 
with an NMAE error less than 14% in the worst case and approximately equal to 5% in the best one, and 
thus, they could be used to develop appropriate control strategies. Hence, the selection of one approach will 
depend on the available resources as it was discussed in Section 4. 

As future works, the obtained models will be integrated within an MPC controller which allows the users to 
maintain thermal comfort in an efficient way. The main objective will be to demonstrate the hypothesis 
established in this work. Moreover, the results will be analyzed from both performance and necessaries 
resources points of view. 
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