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Abstract 

The combination of solar thermal components with electrically driven compression heat pumps to domestic 
hot water and space heating systems for smaller single- and multi-family houses is by now already well known 
among manufacturers in the heating market. However, standardized performance test methods for such 
combined systems are not yet available, even though standardized test procedures are crucial for the market 
development by ensuring a high quality level, and also for allowing end customers to compare different system 
types and configurations with regard to their thermal performance in an objective, transparent and easily 
understandable manner. Therefore, research has been undertaken by test laboratories in different European 
countries during the past few years in a common effort within IEA SHC Task 44 / HPP Annex 38 with the aim 
of extending well established laboratory test methods for solar thermal systems and components towards heat 
pumps as new components. One of these extended test methods, based on the so-called component testing – 
system simulation (CTSS) method, is described in detail in this paper and first experiences with a brine to 
water heat pump are shown. For the characterization of the thermal behavior of the heat pump under dynamic 
operating conditions, an artificial neural network model has been developed which is also presented. 

Keywords: Combined solar thermal and heat pump system, SHP systems, laboratory test method, extension of 
CTSS test method, artificial neural network, dynamic heat pump model. 

1. Combined solar thermal and heat pump systems 

Combined solar thermal and heat pump (SHP) systems are bivalent heating systems providing both domestic 
hot water and/or space heating for buildings. Depending on the individual technical configuration, there are 
several possible synergetic effects due to mutual interactions of the two sub-systems, namely the solar thermal 
system and the heat pump system, which may lead to high system performances. Recently, more than 100 
different market available combined SHP systems have been identified in a survey (Ruschenburg and Herkel, 
2012). However, further market deployment has been hindered so far, among others, by the lack of knowledge 
and objective, European-wide accepted performance test procedures such as laboratory test methods or 
common figures of merit. Hence, these have been developed meanwhile by technical experts within the IEA 
SHC Task 44/HPP Annex 38 “Solar and Heat Pump Systems”1 (Task44, 2014). One of the laboratory test 
methods developed within this task at the Research and Testing Centre for Thermal Solar Systems (TZS) at 
ITW, University of Stuttgart, is based on an extension of the so-called CTSS test method towards heat pumps. 

2. Extension of the CTSS laboratory test method towards heat pumps 

The component testing – system simulation (CTSS) method is a component oriented laboratory test method 
originally developed for the determination of the annual thermal performance of solar thermal systems. Today 
this method is standardized in the European standard series EN 12977 dedicated to so-called custom built solar 
domestic hot water systems and to solar combi-systems applicable additionally for space heating purposes. For 

                                                 
1 IEA – International Energy Agency, SHC – Solar Heating and Cooling Programme, HPP – Heat Pump Programme 
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performing tests according to the CTSS method in general, the solar thermal system does not need to be 
installed as a whole because this test method is based on component testing and system simulation. Due to this, 
the application range of the CTSS method is very flexible because of its component-oriented approach. Hence, 
it is possible to apply the CTSS method on nearly every kind of system configuration. Another important 
advantage of the CTSS method is that the thermal performance of the tested systems can be easily determined 
for any arbitrary boundary conditions such as different weather data and heating loads, since this is done by 
numerical system simulations only. To apply the CTSS method, first of all the main components of the solar 
thermal system such as the collector, the store(s) and the controller are being tested separately. The aim of 
these component tests is the determination of all relevant component parameters required for the detailed 
description of the thermal behavior of the individual components. Therefore, numerical models to describe the 
dynamic behavior of the specific components are required. The parameters to be used in combination with 
these models are determined by means of parameter identification using measuring data from several specific 
test sequences (Frey, 2014; Frey, 2011; Drück, 2001). 

This method was predominantly developed at TZS and since then it has been applied at TZS to more than 100 
solar thermal systems. Already in 2007, first solar heat pump systems were investigated at TZS based on the 
CTSS method, where the heat pump was modeled by means of a performance map for steady-state operation 
with a fixed temperature difference between the inlet and outlet temperatures of the heat pump (Bachmann, 
2008). However, since the operating conditions of combined solar thermal and heat pump systems installed in 
the field are often significantly different to steady-state behavior and of rather transient nature, this assumption 
can lead to inaccurate results. 

Therefore, one of the aims of the research project WPSol (Performance Testing and Ecological Assessment of 
Combined Solar Thermal and Heat Pump Systems) was an extension of the already standardized CTSS test 
method towards combined solar thermal and heat pump systems (Loose, 2011). For this purpose a dynamic 
laboratory test method for the heat pump as one key component of a SHP system has been developed and 
already successfully applied to a brine to water heat pump. In this process, the heat pump is tested in a 
laboratory under dynamic operation conditions and based on the hereby acquired test data an artificial neural 
network (ANN) model is trained in order to characterize the thermal behavior of the heat pump. Figure 1 
depicts the extended CTSS method with the heat pump as an additional component schematically and shows 
a picture of the laboratory test facility. 

              
Fig. 1: Schematic procedure of the CTSS method extended to heat pump systems and picture of the laboratory test facility 

With the trained ANN model for the heat pump and numerical models for all other key components of a SHP 
system, which are tested conventionally according to EN 12975-2:2006 or ISO 9806 (solar collector) and EN 
12977-3:2012 (hot water store), -4:2012 (combistore) and -5:2012 (controller), the annual thermal performance 
of the overall system can be calculated for defined reference conditions such as meteorological data and load 
profiles by using a component based simulation program such as TRNSYS.  

3. Laboratory testing 

The extension of the CTSS method to heat pumps proceeds in three phases. At first, there is the necessity of a 
dynamic heat pump test for the determination of the thermal performance of the heat pump under dynamic 
laboratory operating conditions, followed by the development of a dynamic simulation model for heat pumps 
and third the implementation into an overall system simulation deck. For the development of the dynamic heat 
pump test procedure a test facility for electrically driven compression heat pumps has been built at TZS.  
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The test facility contains two separated circuits: The heat source circuit is driven by a thermostat-controlled 
heating unit, which provides brine in the temperature range from -20 to 40 °C with a heating power up to 
20 kW and cooling power up to 3 kW. It is connected to the primary side of the heat pump. The heat sink 
circuit is driven by a cooling unit, which provides water in the temperature range from 10 to 80 °C with a 
cooling power up to 20 kW and a heating power of 2 kW. The heat sink circuit is connected to the secondary 
side of the heat pump. Both circuits use 3-way-valves to control the mass flow rate of the fluids flowing through 
the heat pump. To improve the temperature stability and to save energy, heat recovery is applied: A part of the 
heat generated by the heat pump is returned from the heat sink circuit to the heat source circuit by using a heat 
exchanger. Figure 2 shows the hydraulic scheme of the heat pump test facility used for the determination of 
the thermal performance of heat pumps under dynamic operating conditions. 

 
Fig. 2: Hydraulic scheme of the heat pump test facility used for determination of the thermal performance of heat pumps 

under dynamic operating conditions in the context of the CTSS method 

For the determination of the thermal performance of a heat pump, the temperatures are measured at the inlets 
and outlets of the heat pump in time steps of 90 seconds. Additionally the mass flow rate is measured with 
Coriolis flow meters integrated in both hydraulic circuits. Furthermore, the electrical power consumption of 
the heat pump is measured and recorded. Based on these measured values all further quantities required for the 
evaluation can be calculated. 

 
Fig. 3: Temperatures and mass flow rates during test sequences applied to the tested heat pump 
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Using the previously presented test facility, multiple test sequences have been applied to a brine to water heat 
pump. During all test sequences the inlet temperature of the heat source circuit ( heat source,in), the inlet 
temperature of the heat sink circuit ( heat sink,in) and the mass flow rates in both circuits ( heat source, heat sink) 
have been given as fixed values to the controller of the test facility. The outlet temperatures ( heat source,out and 

heat sink,out) and the electrical power (Pel) consumed by the heat pump are results of the test sequences performed. 
Figure 3 shows as an example the inlet and outlet temperatures and mass flow rates of the heat source and sink 
circuits during the multiple test sequences applied to the tested heat pump. 
The first test sequence applied to the tested heat pump is a quasi-stationary test sequence. It is shown in Figure 3 
at the time interval between 0 and 38 h. During this sequence, the heat source and sink inlet temperatures are 
varied stepwise and the mass flow rates are fixed at values typical for the operation of this heat pump. 
Additionally different test sequences with varying inlet temperatures and mass flow rates have been applied to 
the tested heat pump. The test sequences are applied dynamically since there are no requirements regarding 
stationary conditions to be reached by the heat pump during operation. All data gathered during the test is used 
for training and validating of an artificial neural network model for the heat pump as described in chapter 7. 

4. Simulation models for heat pumps 

In order to extend the CTSS method towards combined solar thermal and heat pump (SHP) systems, numerical 
models describing the thermal behavior of heat pumps under dynamic operating conditions are required. 
Unfortunately, the number of available simulation models for heat pumps is relatively small and some existing 
models are due to copyright aspects not adaptable to the specific needs of the CTSS method.  

Quasi steady-state performance map models (i.e. black box models) are the most widespread heat pump models 
in dynamic simulation programs like e.g. TRNSYS. Therein, a restricted number of sampling points from 
performance map measurements is used either to interpolate in-between those points or to fit a two-dimensional 
polynomial plane. These models use the inlet-temperature of the heat source and the desired outlet-temperature 
on the heat sink side of the heat pump to calculate its thermal output and its electricity demand (Dott, 2013). 
Typical implementations of quasi steady-state performance map models for heat pumps in simulation software 
packages are for example the TRNSYS Types 504, 505, 665 and 668 from the TESS library 2011. Usually 
only the standard measurements according to EN 14511:2011 are available as input for this kind of simulation 
models. The extension of black box steady-state models for the inclusion of dynamic effects such as for icing 
and defrosting or for the thermal inertia in the condenser or evaporator has been described e.g. by Afjei (1989). 
In contrast to heat pump models based on performance maps, a component-based model has been developed 
by Hornberger (1994), which models the thermodynamic cycle of the heat pump. A modification of the 
Hornberger model implementing dynamic features of the Afjei model has been undertaken by Marx (2011). 
This combined TRNSYS Type was again modified for the refrigerant R410A for the project WPSol. Several 
parameter identification procedures have been applied to this model in combination with measured data. 
However, a characterization of the thermal behavior of the heat pump with acceptable accuracy was not 
possible so far. Therefore, within the project WPSol a methodology for modelling heat pumps based on 
experimental system identification with Artificial Neural Networks (ANNs) has been developed. There are 
several reasons why ANNs are such a powerful tool for modelling dynamic systems (Yang, 2008) based on 
experimental data: 

(1) ANNs have a powerful ability to recognize accurately the inherent relationship between any set of input 
and output data without a physical model or even without information about the internal behavior of the system 
itself. The ANN results can account for all physical effects relating the output to the input. This ability is 
essentially independent of the complexity of the underlying relation such as nonlinearity, multiple variables 
and parameters. This essential ability is known as pattern recognition as the result of a learning process. 

(2) The ANN methodology is in principle inherently fault tolerant, due to the large number of processing units 
in the network undergoing massive parallel data processing. 

(3) The learning ability of ANNs gives the methodology the power to adapt to changes in the parameters. This 
capability enables the ANN to deal also with time-dependent dynamic modelling. 

At the Research and Testing Centre for Thermal Solar Systems (TZS) at ITW very good experiences with 
regard to ANNs have already been gained in the past, e.g. with the simulation of other thermo-technical 
components such as solar collectors and thermally driven chillers (Frey, 2011; Fischer, 2012). 
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5. Artificial neural networks (ANN) 

The human brain is a highly complex, nonlinear and parallel information-processing system with the capability 
to organize its structural constituents, known as neurons, so as to perform certain computations like for example 
pattern recognition and perception many times faster than any digital computer. The basic principles believed 
to be used in the human brain are so-called biological neural networks. 

Haykin (1999) defines a neural network as a massively parallel distributed processor made up of simple 
processing units (so called neurons), which have a natural propensity for storing experimental knowledge and 
making it available for use. Artificial neural networks (ANN) resemble the brain with regard to two aspects: 
(a) the knowledge is acquired by the neural network from its environment through a learning process, and  
(b) interneuron connection strengths, known as (synaptic) weights, are used to store the acquired knowledge.  

According to Haykin (1999) the massively parallel distributed structure and its ability to learn are the two 
information-processing capabilities that make it possible for neural networks to solve complex problems. 
Artificial neural networks are computational models, which are inspired by biological neural networks and 
attempt to mimic the information processing system of the human brain.  

The following description is taken from Yu (2002). The basic building block and the fundamental processing 
element of an artificial neural network is a neuron (also called basic node or unit). According to the 
fundamental work of McCulloch and Pitts (1943) Figure 4 illustrates how information (input) is processed 
through a single neuron. Basically, the neuron receives signal inputs from other sources. The inputs can either 
be outputs of other neurons or they can be external inputs. The inputs {xi: 1  i  n} are weighted by parameters 
{wki: 1  i  n} which are called (synaptic) weights or inter-neuron connection strengths. The parameter bk is 
called the bias (also called threshold value) and it is used to model the threshold. The weighted inputs are 
combined and summed up in a special way depending on the used network input combination method (net 
function). The output of the neuron is related to the input via linear or non-linear transformation, which is 
called the activation function of the neuron. 

In a neural network multiple units (neurons) are interconnected in a particular arrangement or configuration. 
The network usually consists of an input layer, one or more hidden layers and an output layer. Figure 5 presents 
an example of typical neural network architecture.  
 

 

Figure 4: Basic neural network unit (neuron, node) 
(McCulloch and Pitts, 1943) 

Figure 5: Typical neural network architecture 

As already mentioned, one main characteristic of ANNs is their ability to learn and store information. Therefore 
a so-called learning or training process is necessary. In the learning mode the input is presented to the network 
along with the desired output. Through certain training algorithms the values of weight coefficients between 
processing neurons are adjusted in such a way that the network attempts to produce the desired output. When 
the training reaches a satisfactory level the network holds the weights constant. Now the weights contain 
meaningful and important information, whereas before the training they have random values and no meaning 
(Kalogirou and Sencan, 2010). After the successful training step, the trained ANN model can be used to 
calculate the output parameters as a function of the input parameters. 
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6. Development of numerical models for heat pumps based on ANN 

The main requirement for the numerical model is the ability to describe the dynamic thermal behavior of the 
heat pump in an accurate way. I.e. the model has to be able to calculate the outlet temperatures of the two 
circuits (heat source and heat sink) and the electrical power consumption of the heat pump with adequate 
precision. Another requirement is that for the modelling process no information about the internal 
configuration of the heat pump is required. 

All ANNs used for the work described in the present paper were performed under the MATLAB (Mathworks, 
2010a) environment using the Neural Network Toolbox (Mathworks, 2010b). 

6.1 Modelling heat pumps with ANNs 
The selected input and output quantities of the ANNs used in this study to model the outlet temperatures and 
the electrical power consumption of a heat pump are schematically illustrated in Figure 6. The so-called feed-
forward ANN consists of an input layer representing the input variables, an output layer corresponding to the 
output variables and one hidden layer. The inputs to the ANN are the heat pump fluid inlet temperatures and 
volume flow rates of the heat source circuit ( heat source, in ; heat sourcem ) and the heat sink circuit ( heat sink, in ; 

heat sinkm ). The outputs from the ANN are the two fluid outlet temperatures ( heat source, out ; heat sink, out ) and 

the electrical power consumption of the heat pump ( elP ) under the assumption that the outlet volume flow 
rates are identical to the inlet volume flow rates. 

 
Figure 6: Input and output quantities of the ANN for modeling heat pumps 

6.2 Assessment criteria of the model performance 
In general, the performance of the model itself can be assessed by means of regression analysis between the 
model output (calculated values) and measured values. The criteria used here for assessing the performance of 
the ANN model are the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE) and the Index of 
Agreement (IA). The MAE and the RMSE, that is more sensitive to extreme values than the MAE, are defined 
in Eq. 1 and Eq. 2. 
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Here xi,calculated is the value determined by the ANN and xi,measured is the corresponding measured value, i is the 
considered time step and N is the number of time steps in the considered period. 
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The dimensionless Index of Agreement (0  IA  1), proposed by Willmott (1981), is intended to characterise 
the ability of a model to calculate reality accurately. There is no deviation between calculated and measured 
values if IA = 1; the larger the deviation, the lower the value of IA. The Index of Agreement is defined as:  
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Here ,i measuredx is the mean of the measured values in the considered period. 
The values of the presented evaluation criteria are determined for all output quantities (i.e. outlet temperatures 
and electrical power consumption) of the ANN model of the heat pump.  
 

7. Results and discussion 

A feed-forward ANN with a so-called sigmoid transfer function in the hidden layer and a linear transfer 
function in the output layer was selected. By trial and error the number of neurons in the hidden layer was 
determined to 8 in order to obtain the best fit between calculation and measurement. This results in a so-called 
4-8-3 architecture. In the training procedure, the weighting coefficients were adjusted using the Levenberg-
Marquardt algorithm.  
Measured data were acquired under dynamic operating conditions. The prepared database consists of 4,622 
input-output data patterns. 122 data patterns were selected arbitrarily and assigned as the training database. 
The remaining 4,500 data patterns are used for validating the ANN model. 
Figures 7 and 8 show for the validation database a comparison of the measured and the calculated fluid outlet 
temperatures for the heat sink circuit and the electrical power consumption of the heat pump. Apart from a few 
exceptions the ANN heat pump model calculates the temperatures with an accuracy of ± 1 K and the electrical 
power consumption with an accuracy of ± 100 W.  
 

 
Figure 7: Comparison of measured and calculated fluid outlet temperature of the heat sink circuit of the heat pump 
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Figure 8: Comparison of measured and calculated electrical power consumption of the heat pump 

 
The ANN calculations for the outlet fluid temperature of the heat sink circuit and the heat source circuit result 
in a Root Mean Square Error of 0.72 K and 0.53 K respectively. The RMSE for the electrical power 
consumption of the heat pump is 0.09 kW. Further results are presented in Tables 1 and 2. 
 

Tab. 1: Results of the validation  

Term MAE RMSE IA 

 heat sink circuit 0.26 K 0.72 K 0.9985 
 heat source circuit 0.22 K 0.53 K 0.9986 

 el. power consumption 0.05 kW 0.09 kW 0.9897 
 

Tab. 2: Energy balance and seasonal performance factor SPF for the considered sequence  

Term
Measurement

Energy
Calculation 

Energy
Error

(absolute) 
Error

(relative) 

 heat sink circuit -1,893 kWh -1,906 kWh -13 kWh 0.67 % 
 heat source circuit 1,391 kWh 1,396 kWh 5 kWh 0.42 % 

 el. power consumption 496 kWh 495 kWh -1 kWh -0.21 % 
SPF 3.817 3.851 0.034 0.89 % 

 
Table 2 summarizes the transferred energies of the two circuits and the electrical power consumption of the 
heat pump and the related error, which is 0.67 % at the most. The SPF (seasonal performance factor) for the 
considered time sequence of 3.849 determined by means of numerical calculations corresponds within 0.89 % 
with the result of 3.815 determined on the basis of the measurements. 

8. Validation of the specific numerical model based on in-situ measurement data 

In addition to validation data acquired from laboratory test facility measurements the same type of heat pump 
has been installed and monitored in a real application. A detailed description of the monitored solar thermal 
and heat pump system can be found e.g. in Loose and Drück (2013). The data gathered during this in-situ 
measurement has been used to validate the specific numerical ANN model. For this purpose, the inlet 
temperatures and flow rates from the in-situ measurement have been used as input data for the simulation 
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program. The control signal for switching the heat pump on and off required by the specific numerical model 
has been generated from the measured electrical power based on the in-situ measurement data. The results to 
be compared are the delivered heat and the heat pump’s consumption of electrical energy. The comparison 
between measured (meas) and calculated (calc) results of the daily generated heat (Qheat sink) and electrical 
energy (Eel) consumed by the heat pump is plotted as an example for one month in Figure 9. 

 
Fig. 9: Comparison between measured and calculated results of the daily generated heat (Qheat sink) and electrical energy (Eel)

consumed by the heat pump  

 
The calculated daily values for heat generated by the heat pump and the energy consumed by the heat pump 
show good compliance with the measured daily values. Over the whole month, the electrical energy is 
underestimated by about 4 % and the generated heat is underestimated by about 2.5 %. Determined on the 
basis of the measurement data the monthly SPFHP,meas is 4.40. Compared to the SPFHP,calc of 4.49 the monthly 
SPFHP,calc is overestimated by about 2 %. 

9. Conclusion and outlook 

The CTSS laboratory test method standardized in the EN 12977:2012 series for solar thermal systems has been 
extended towards combined solar thermal and heat pump systems including the development of a dynamic 
heat pump test procedure. In this context also an Artificial Neural Network model for the characterization of 
the thermal behavior of heat pumps under dynamic operating conditions has been developed. A representative 
laboratory test applying the newly developed extended CTSS method including test sequences, calculation and 
validation, has been shown exemplary for a brine to water heat pump. The method described in this paper can 
in principle also be applied to air to water heat pumps if a climate chamber is available for the operation of the 
heat pump with defined ambient temperature and humidity. Due to the successful development of the extended 
CTSS test method, the long-term goal is the implementation of this test procedure into appropriate European 
standards such as the EN 12977 series. 

The ANN modelling approach for heat pumps can be considered as very powerful tool for the calculation of 
the dynamic thermal behavior of the heat pump in this type of component oriented laboratory test procedure. 
However, the method is still limited by its underlying “black-box” approach, which does not allow insight in 
the inner processes and thus no physical interpretations. As outlook, the project WPSol will therefore be 
extended with the aim of developing a so-called “model-based ANN”, i.e. a grey-box model, which combines 
the advantages of the black-box approach with the ones of theoretical physical models. By doing so, also 
parameter variations and optimizations would be possible to calculate the performance of modified configu-
rations without the need for a new laboratory test each time. 
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