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Abstract 

The paper discusses the results of a comparative analysis of the performance of different control strategies 
applied to a reference solar DHW system. Three classes of control strategies have been considered: so-called 
naïve control strategies based on the on-off control of the solar collectors pump using temperatures difference, 
solar irradiation or both; fuzzy-based control strategies; and a reinforced learning-based strategy coupling a Q-
learning algorithm to a fuzzy controller. The performance figures used in the analysis are the seasonal 
performance factor at the primary side of the circuit (SPFcoll), the seasonal performance factor of the whole 
DHW preparation process (SPFDHW) and the number of times the circulation pump is switched on and off (NON-

OFF). The analysis, carried out numerically, has been performed using the TRNSYS simulation software 
coupled to a LabVIEW implementation of the controllers. The analysis suggests that controllers able to find a 
nearly optimal policy without requiring prior modelling of the system can be implemented using a reinforced 
learning algorithm and supports the fact that well designed control strategies can increase significantly the 
performance of such systems. 

Key Words: Reinforced Learning, Fuzzy Control, Solar Thermal, Solar Domestic Hot Water, TRNSYS, 
LabVIEW 

1. Introduction 

Despite its potential for growth, the market of solar thermal system in Europe is nowadays seeing a stagnation 
period. Industries in the field are trying to improve their products by either reducing the production cost of 
their components or selling advanced products granting better performance. Moreover, most of the small scale 
domestic solar system are still installed without any particular attention to their efficient control. Then it comes 
not as a surprise that much attention is paid to the opportunities offered by control optimization and to the tools 
that allows it. Currently, the optimization of the solar thermal system control is based on computationally 
intensive and time-consuming simulations carried out with specialized software tools. Following the recent 
application of soft computing techniques in the field of building automation (Dalamagkidis, 2007) we started 
a research line to investigate the applicability of these techniques to solar thermal system, with the long term 
aim of developing self-optimizing controllers able to increase their overall performance and reduce the 
simulation efforts spent for their development. In this paper we show the results of a simulations campaign 
carried out to compare the performance of a reference solar domestic hot water system (SDHW) controlled by 
naïve control strategies, a fuzzy logic based control strategy and a coupled reinforced learning-fuzzy logic 
based control strategy. 

Fuzzy logic (FL) is a rule-based decision making method used for expert system and process control. FL is 
based on the fuzzy sets theory, a set theory where membership is a matter of degree, and deals with variables 
assuming linguistic values (such as “COLD”, “MILD”, “HOT”) instead of numbers. It has been successfully 
applied to several areas of science and technology, in particular to system control (Zadeh, 1965, 1968; Klir, 
1995). The key elements of a Fuzzy Controller (FC) are a set of “if-then” rules (knowledge-base), an internal 
logic processor (inference mechanism), and two other components called fuzzifier and de-fuzzifier (among the 
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vast literature describing fuzzy control see, for example, Zilouchian and Jamshidi, 2001; Passino and 
Yurkovich, 1998). In our implementation of the FC we considered the so called Mamdami fuzzy inference 
system, characterized by a linguistic variable in the “then” clause of the rules base. The cooperation of fuzzifier, 
knowledge base, inference mechanism and defuzzifier results in a non-linear static map between the input and 
output of the controller. Fuzzy controllers show the advantage of being much more easily set up and tuned by 
people without a controls theory background than the classical controllers. 

Reinforcement Learning (RL) is a machine learning (ML) methodology developed in the 1979 (Sutton and 
Barto, 1998) inspired by the research in the neurobiology field. It is based on the interaction between an agent 
and its surrounding environment (Fig. 1). The interesting discussion about what is concretely meant by “agent” 
would lead us too far from the scope of this paper and is avoided. Here it suffices to think at the agent as a 
component that can: a) choose what action to perform next on the environment; b) perform that action; c) sense 
the modifications caused by that action, including an evaluative feedback signal, called reinforcement. The 
reinforcement signal can be seen as a reward (positive) or a punishment (negative) received from the 
environment as a consequence of its actions. The learning process of the agent is influenced by the environment 
through the rewards. We note that, in general, this agent-environment configuration is identical to that of 
feedback-controlled systems where the dualism consist of components controller-process. The difference 
between the two paradigms is that in the former, the agent is expected to self-learn how to behave at best in 
the environment while in the latter, the controller is expected to drive the process as prescribed by the controller 
designer, a very different perspective. In the context of the RL theory, a policy is the set of rules followed by 
the agent to determine what action to perform at each time step. The objective of the whole learning process is 
to find the optimal policy to perform whatever task the agent is supposed to carry out. Optimality is defined 
with respect to the maximization of the cumulative reward. 

AGENT
ENVIRONMENT

Action

Reward, State

- function evaluation
- new action selection

 
Fig. 1: Reinforcement learning scheme. 

We applied a variant of a particular RL algorithm called Q-Learning (Watkins, 1989). This algorithm belongs 
to class of unsupervised, model-free RL methods. Here the agent does not have any prior knowledge or model 
of the system characteristics from which it could estimate the next possible state. Essentially, the agent does 
not know what are the effects on the environment of a certain action and chooses the next action on the basis 
of the cumulative effect of the actions performed in the past. 

A sound and self-consistent recall the fuzzy control and Q-learning theories and the description of the FC and 
Q-learning method implementations, which in the Q-learning case required some adaptations with respect to 
the implementation found in the textbooks to give satisfying results, are topics outside the scope of this paper, 
which will focus on the simulation results obtained simulating a mathematical model of the reference system. 
Apart of this brief introduction, the paper is organised in 3 sections. In section 2 are described the reference 
system and the simulation set-up as long as the assessed control strategies and the performance figures used to 
evaluate them. In section number 3 the results of the simulations are shown and discussed. Finally, in section 
number 4, the conclusions of this work are drawn. 

2. Reference system, performance figures and control strategies 

The background material of this paper is divided further in three sub-sections. The first one is dedicated to the 
description of the solar system used as a test-bed for the new controllers. The second one describes what 
performance figures have been chosen to assess the quality of the control. The third one describes the 
controllers in the arena. 

2.1 Reference system 
The solar system considered for the assessment is a medium-size solar system for domestic hot water (DHW) 
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with 12.15 m2 collector field, 1 m3 storage and a 40 kW electrical backup. The system has been designed to 
match a DHW demand of about 50 l/day/person for 12 persons and its layout is presented in Fig. 2. The thermal 
storage consists of a container of water with two internal heat exchangers, one for the solar primary circuit and 
one for the domestic water circuit. A storage model including a stratification device has been selected, because 
this type of storages promote the stratification of the internal temperature with the result of increasing the heat 
exchange process between the stored water and the heat exchanger for DHW. The configuration with two heat 
exchangers is also commonly used to avoid the problem of legionella. In the primary circuit a mixture of water 
and propylene glycol (30% in volume) has been used as it is customary, in the central and northern regions of 
Europe, to make use of glycolised water in order to avoid freezing during winter seasons. A collectors area has 
been selected using standard design rules of thumbs of solar thermal systems for DHW. The collectors are 
faced to the south direction and have a slope of 30° on horizontal. The DHW request profile has been computed 
using DHWcalc (Jordan and Vajen, 2000, 2001) considering a four-family house with the afore mentioned 
consumption rate. The electrical backup systems has been included in order to satisfy the energy demand in 
case not enough solar energy is harvested and stored in the tank. The backup system allows to reach a DHW 
set temperature of 40°C.  

 
Fig. 2: Diagram of the SDHW system used as a test-bed for the control strategies assessment. 

The TRNSYS program (Klein et al., 2006) has been chosen as simulation platform and the model of the system 
has been developed using its component library. In particular the model of the thermal storage (Drück, H., 
2006) had already been validated previously using monitoring data from a SolarCombi+ installation (D’Antoni 
et al., 2011) and following the procedure reported in (D’Antoni M. et al., 2012). Finally, the source of the 
climatic data used to perform the simulations is the Meteonorm database. The choice of employing such a 
simple solar system has been made for two reasons: the wide application potential of such a system and the 
fact that working with a well-studied system, whose behaviour and optimal control strategies are well known, 
makes the assessment of the new controllers more intuitive. 

In order to ease future implementations on industrial control hardware, the development of the advanced 
control strategies based on fuzzy logic and reinforcement learning has been made using the LabVIEW 
programming language. The controllers have been interfaced to TRNSYS as custom-made types. Interfacing 
the two programs is straightforward, although on some machines we experienced negative interactions between 
the LabVIEW Runtime Engine and the TRNSYS executable, preventing the communication between the two 
programs. The cause of this problem has been fully understood and a workaround has been developed for the 
machine set-ups showing the problem. The development of a more elegant solution requires tinkering with the 
TRNSYS or LabVIEW Runtime Engine source code, something that certainly falls well beyond the 
possibilities of the average user of the two programs. 

2.2. Performance metrics 
The assessment of the control strategies is performed considering three different performance figures 
calculated from a set of basic quantities readily available within the simulation environment. The basic 
instantaneous values include: the collectors heat extracted from the panels ( ), the solar global irradiance 
incident on the collectors plane ( ), the electrical power used by the primary pump ( ), the electrical 
power consumed by the backup ( ) and the total DHW demand ( ). The selected performance 
figures are the seasonal performance factor calculated at the primary side of the circuit (SPFcoll), the seasonal 
performance factor of the whole DHW preparation process (SPFDHW) and the total number of on-off cycles 
performed by the circulation pump (NON-OFF). All these performance figures must be calculated over a reference 
period of time. In this paper we show results from the yearly- and monthly-based analyses. Additional figures, 
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like the collector efficiency ( ), the gross solar yield (GSY) and the thermal energy lost at the primary 
circuit ( ) have been calculated to improve the understanding of the results of the comparison by giving to 
the reader the widest possible perspective on the problem. The exact definition of these quantities is given in 
the following. 

The seasonal performance factor “SPFcoll” of the primary circuit is defined as the ratio between the thermal 
energy collected by the system over a reference period of time and the electrical energy consumed by the 
circulation pump of the solar circuit in the same period of time (eq. 1). As an index it is a measurement of the 
effectiveness of the solar system from the point of view of the energy generation. 

�

�
�

year month,
pumpel,

year month,
coll

coll
dtW

dtQ

SPF

�

    (eq. 1) 

Aside to the seasonal performance factor of the collector, the seasonal performance factor of whole system 
“SPFDHW” is computed. This is defined as the ratio between the total DHW energy demand and the total 
electrical energy employed for satisfy this demand over the same period of time (eq. 2). The total electrical 
demand is composed by the consumption of the auxiliary electrical heater and the electrical energy consumed 
by the circulation pump of solar circuit ( ). 

�

�
�

year month,
DHWel,

year month,
DHW

DHW
dtW

dtQ

SPF

�

    (eq. 2) 

The collectors efficiency is the ratio between the yearly energy collected by the solar system and the energy 
that hit the collectors, estimated using the global irradiance on the collectors plane and the gross panels surface 
area ( ). 

�

�
�

�

year month,
collG

year month,
coll

coll
dtAI

dtQ

η

�

    (eq. 3) 

Gross solar Yield “GSY”: gives the energy captured from solar field per unit of collectors area. This parameter 
represents how much energy the collectors are able to extract over the time period. 

coll

year month,
coll

A

dtQ

GSY
�

�

�

    (eq. 4) 

The global radiation on the collectors plane is simply given by: 

���
year month,
GdtIGR30     (eq. 5) 

where IG is the global irradiance on the collectors plane. Finally,  is the heat lost at the primary circuit 
when  is negative. 

��
year month,

collcollloss dtQ-Q
2
1Q ��     (eq. 6) 

This inconvenient situation may happen during the initial phases of the system start-up or in the evenings when 
the difference between the inlet and outlet temperature of the internal heat exchanger is negative. 

2.3. Control strategies 

2.3.1 Traditional control 
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As introduced in section 1, the traditional method to control SDHW systems is based on the temperature 
difference between collectors outlet and thermal storage. More evolved systems make use of the solar 
irradiance to switch on the pump of the primary circuit (primary pump), as reported in (Furbo and Shah, 1996). 
In this case the control signal of the pump can also be function of the radiation. The new control strategies 
assessed in this work, are compared against the four naïve control strategies listed below. 

A) Control of the temperature difference between the collectors outlet and the thermal storage (TD) using an 
hysteresis between 2-7 °C (the pump, running at constant speed, is switched on and off accordingly to the 
hysteresis output); 

B) Control of the primary pump using an hysteresis on the irradiance between 100 and 150 W/m2 (the pump, 
running at constant speed, is switched on and off accordingly to the hysteresis output); 

C) A combination of A and B where the above TD control is activated via the hysteresis on the solar irradiation; 

D) A variant of the C strategy where a mass flow modulation proportional to the global irradiation (linear 
modulation with maximum at 600 W/m2) is applied whenever required by both the irradiance and TD 
hystereses. 

Moreover, in order to make the simulation as realistic as possible, in all cases presented above the detection of 
storage overheating and collector stagnation was added to the model along with the controls managing them. 

2.3.2 Fuzzy control 
Following the idea of increasing the control performance of the system, as from the on/off cycles of the pump 
and as from the performance point of view, a further analysis on the control strategy “B” (only on the 
irradiation) has been made designing a single-input single-output (SISO) fuzzy logic controller (F). The global 
irradiation on the panels plane is the controller input, while the pump command is its output. The three 
membership functions shown in Fig. 3 have been used to capture the linguistic terms of “LOW”, “MEDIUM” 
and “HIGH” irradiance. The output membership functions have been defined in the similar way, with three 
triangular membership functions, equally distributed on the interval between 0 and 1, representing the 
normalized pump command. The defuzzification step is performed using the centre-of-area method. Three 
rules are defined as knowledge base, relating each one of the three input membership functions to a 
corresponding output membership function (low radiation with low speed, medium radiation with medium 
speed and high radiation with high speed). Two different families of FL controllers have been implemented 
and tested. The first family is obtained by varying the value of the Xmax parameter (corresponding to the 
maximum of the “HIGH” membership functions) as shown in Fig. 3. The second family is obtained by varying 
the “MEDIUM” membership functions. For the sake of brevity we will consider only the first case in the 
following. The trans-characteristics of the 7 members of the controllers family resulting from the variation of 
the “HIGH” membership function are shown in Fig. 3, where X=1 corresponds to an irradiance of 1200 W/m2. 

 
Fig. 3: Definition of the input membership functions of the FC. 

2.3.1 Q-learning 
The third and more advanced control strategy involves the coupling of the above fuzzy controller to the Q-
learning algorithm (Q). Q-learning agents have the ability to learn an optimal policy without requiring a model 
of the plant they control, which is why we have considered them in the first place. In our case the environment 
consists of a discretisation of the continuous domains used to represent the solar irradiation and the storage 
temperature. The so-called reward function is computed as a linear combination of the collectors efficiency 
and the ratio between the heat supplied by the backup system over the integral of global irradiation on the 
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collectors plane. More precisely, the reward function used in the learning process is the following: 

�

� �
�

���

�

Δt
collG

Δt Δt
pumpel,2coll1

dtAI

dtWwdtQw

r

�

    (eq. 7) 

With this reward structure the controller is rewarded proportionally to the efficient use of the collectors and 
punished proportionally to the inefficient use of the primary pump. The choice of using this reward form has 
been made with the aim of learning energy efficiency using an as simple and intuitive method as possible to 
calculate it. With this regard, the instantaneous SPFcoll would be even more intuitive but early simulations 
showed that its use leads to worse performance (in terms of SPFcoll) than those obtainable with the above choice 
with the weights w1 and w2 reported in Tab. 1. The application of the Q-learning method requires to identify 
the environment states relevant to the application. This identification is critical because the designer has to find 
a compromise between two opposite needs: the one of describing the environment at best, calling for more 
variables, finer discretisation and therefore a high number of states, and the one of maintaining the problem 
tractable, calling for a reduced number of states. No reference was found in literature regarding the more 
convenient definition of states for thermal systems nor regarding how to perform optimal discretisation. We 
opted for considering two state variables: the global irradiance on the collectors plane and temperature of the 
water in the storage. The resulting state space has been discretised by subdividing the irradiance admissible 
interval (from 0 to 1000 W/m2) in 11 levels and the temperature admissible interval from 10 to 90 °C in 9 
levels. Regarding the actions performed by the agent, as the Q-learning algorithm is applied on top of the FC, 
they consist in the selection of one of the FC shown in Fig. 3 for the next iteration. Our implementation of the 
Q-learning algorithm makes use of an iteration, or observation, period ( ) longer than the control period, 
which was set to 1 minute. A subset of the parameters influencing the Q-learning algorithm are summarized 
in Tab. 1. 

Tab. 1: A selection of the parameters describing the Q-learning algorithm. 

Parameter Units Value 

Number of states Ns [-] 99 

Number of actions Na [-] 7 

Observation period Δt [min] 5 

w1 [-] 1 

w2 [-] 370 

3. Results 

3.1. Naïve control strategies 
The comparison of different control strategies has been made using the performance figures introduced in 
section 2.3. Starting from the, Tab. 1 shows the results of the yearly analysis of the four control strategies 
explained before while monthly data are shown in Fig. 4 (SPFcoll) and Fig. 5 (NON-OFF). The low value of the 
SPFcoll in case B is mainly due to the need of keeping the activation threshold rather low (to avoid stagnation) 
which result in higher energetic costs and also higher heat losses. The best performance of SPFcoll is related to 
the case D where the temperature difference control, activation threshold and pump speed modulation is 
adopted. From the system performance point of view, the best performance SPFDHW are achieved when the 
losses are decreased (control on DT) with higher levels of temperature in the storage and less usage of electrical 
backup (case C). In this case, however, the number of on-off cycles is higher, according with the monthly 
profile reported in Fig. 5. An increase of the temperature hysteresis (from 2-7°C to 2-14°C) used in the 
controllers (A), (C) and (D) results in a decreased number of on/off cycles but reduces, at the same time, the 
performance. The number of on-off cycles, however, remains high, not less than 5200 for all the examined 
cases. 

Tab. 2: Comparison between the four naïve control strategies - yearly data 
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Fig. 4: Monthly SPFcoll profile of the analysed control strategies. 

 
Fig. 5: Monthly on/off cycles profile of the analysed control strategies. 

3.2. Fuzzy logic control 
In Tab. 3, the yearly results of the family of FCs obtained by varying the meaning of “HIGH” irradiation are 
reported and compared. The first column shows the action names corresponding to the use of each FC while 
the second column recalls the irradiance corresponding to the maximum controller output. This analysis has 
been conducted in order to understand the effect of different fuzzy controllers and to have an idea of what to 
expect from the Q-learning controller. 

Increased values of the collectors SPF (from 150 to 415) correspond to increased values of the maximum 
irradiance. The SPF of the whole system however shows much little variation and tops when the “HIGH” 
membership function has it maximum at 600 W/m2. After this point, highest SPFcoll values are obtained at the 
expense of lower SPFDHW. This happens because the pump is driven at a lower speed, the total amount of 
collected energy is lower and the need to resort to the backup is more frequent. A similar analysis has been 
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conducted by varying the “MEDIUM” membership function. Also in this case the data (not reported here for 
the sake of brevity) confirm this trend, although an even more extreme increase of the collector SPF, reaching 
a value of 691, is obtained when the “MEDIUM” membership function is shifted to higher values of irradiance. 
Also this performance peak in terms of SPFcoll correspond to the poorest performance from the point of view 
of SPFDHW, dropping to 4.2. 

Tab. 3: Comparison of performance using different meanings of “HIGH” radiation - yearly data 
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a3 400 0.40 188 414 584 37.8 5.1 1450 387 
a4 600 0.40 231 406 585 30.8 5.1 1460 326 
a5 800 0.40 287 420 584 24.7 5.1 1480 271 
a6 1000 0.40 352 428 583 20.1 5.0 1510 243 
a7 1200 0.40 415 413 580 17.0 4.9 1540 212 

 

Again this situation happens because the primary pump is run at minimum speed most of the time, thermal 
energy is collected very efficiently but not enough energy is absorbed (GSY drops from about 580 to 558). 
Comparing with data reported in Tab. 2, the effect of the fuzzy controller is clear. A performance increase 
ranging from 30% to nearly 4-fold in terms of SPFcoll with respect of the naïve control cases are obtained. The 
fuzzy controller greatly reduces the primary pump on-off cycles to nearly 1 a day while increasing the 
collectors SPF. The other side of the medal is represented by the system SPF, which decreases about 7% with 
respect of what we consider the best overall naïve control, case D. 

3.3 Q-learning method coupled to FC 
The results of the simulation of the Q-learning algorithm spanning a period of 5 years are reported in Tab. 4. 
Over the time, the control algorithm learns what is the best FC in the family obtained by varying the meaning 
of “HIGH” irradiation. As a result of this process, the annual SPFcoll value increases, reaching a value similar 
to that obtained with the FC number 7. In fact, the same or even a better performance with respect of the best 
FC case reported in Tab. 3 was expected, because in principle the Q-learning method has the freedom to choose 
different FC in different states. Apparently, this is not the case (or if it is the method is not able to find it) and 
the reinforcement drives the learning process towards a uniform policy (the one that prescribes to use FC 7 in 
every occasion). Apart from its performance figures, one aspect that in the Authors’ opinion nicely capture 
how the algorithm converges to the solution is the SPFcoll time evolution. In particular, the relative error of the 
monthly SPF at the beginning of the learning compared with the SPF at the end of the learning, which is 
reported in Fig. 7 for the first 15 months. 

The first-learning curve shows that the algorithm converges relatively easy if the environmental conditions 
stays more or less the same (in February the error drops to 25% from nearly 40% of January). From the second 
half of winter and spring the system reaches continuously new states and the algorithm needs to explore them 
before exploitation can occur. By the summer time the controller is ready to take benefit from what it has learnt 
so far and the performance in these months is almost at top. Finally, at the end of the autumn when the winter 
time approaches, other unexplored conditions arise that did not happen at the beginning of the learning and the 
relative error of SPFcoll rises again, albeit reaching only about 13% of what recorded at the beginning of the 
learning. In order to increase the learning speed of the controller we introduced the possibility of embedding 
per-calculated values in the algorithm. The idea is to provide an easily computable estimation of the 
information the Q-learning algorithm would store internally at the end of the learning period and use it to 
provide controllers with such information already pre-programmed. This is straightforward and boils down to 
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initialising a matrix with the right numbers. 

Tab. 4: Q-learning applied to the FLC on the high radiation and medium radiation levels 
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Fig. 7 shows what happens if the Q-learning algorithm is started with a fraction (β) of the knowledge 
accumulated over a five year period. Four different values of β are used in this example: 0, 0.2, 0.5, 0.8. This 
parameter represents the fraction of the final converged matrix that is used to initialize the algorithm, β = 0 
corresponding to learning from scratch starting from a null matrix. As expected, the higher the β parameter the 
better the learning performance. 

 
Fig. 7: Monthly SPFcoll relative error (convergence values after five years) comparing the first learning and the second learning 

phase with different β 0 (blue), 0.2 (red), 0.5 (green), 0.8 (purple). 

Different analyses have been conducted changing internal parameters of the Q-learning algorithm. Many of 
them showed to have little influence on the overall performance of the control. Instead, using an higher number 
of states, reducing the influence of explorative actions or changing the observation period Δt has a strong 
impact on the learning speed, the time required by the algorithm to achieve the best results. As the algorithm 
need to perform a minimum of explorative actions per state in order to understand what are the best actions to 
perform, the bigger this minimum, the longer the observation time or the bigger the state space, the longer 
becomes the learning. The results presented in this paper have been produced with an observation period of 5 
minutes, 5 times the simulation time step. 

4. Conclusions 

This analysis of the fuzzy and Q-learning base controllers applied to a simple SDHW system suggest that the 
use modern soft-computing techniques in the field of solar thermal system can bring important practical 
advantages. The first one is increased efficiency in the energy collection, in our case SPFcoll goes from 315 of 
case A to 370 of case Q after the first year and 409 after the second year. The second one is increased lifetime 
of the primary pump. Certainly, the higher the number on-off cycles underwent by an electrical device the 
higher the probability of breakage. With this regard, avoiding DT control greatly reduce NON-OFF from about 
130 times a day to about 1.3 times a day and controllers (F) and (Q) obtain this result while increasing the 
performance on SPFcoll and paying a limited penalty on SPFDHW. Finally, self-learning controllers are attractive 
because they can be easily modified to adapt to the plant “aging”. When the aging modifies substantially the 
behaviour of the system this characteristic is valuable, although this was not the case of the SDHW considered 
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in this study. 

The performance shown by the fuzzy controller and the Q-learning algorithm with regard to the SPFDHW figure 
deserves a special comment. In both cases, the figure turns out to be about 11% less than with the best naïve 
controller (C). This happens because the chosen reward function does not punish the controller for the backup 
use, making the controller somewhat blind to that aspect. Moreover, in our case study the maximization of the 
collection efficiency does not imply the maximization of the overall system efficiency, because SPFDHW is 
totally dominated by the total heat supplied by the solar system and scarcely influenced by the efficiency of 
how it is collected (the energy spent for running the primary pump is in the worst case less than 5% of the 
energy consumed by the back-up system). 

However, a careful analysis of the power flows, reveals that most of the degradation is due to the fact that heat 
is lost during heat transfers when DT is negative. Now, the (B) and (F) controls can’t help with this regard 
because they are totally independent from DT. The (Q) control cannot help either: although operations with 
negative DT are inefficient and punished, it is based on a family of controllers which cannot perform the right 
action to overcome the problem (avoid switching on the pump if DT is negative). This strongly suggests to 
include DT in the Q-learning by augmenting its state. These facts are not regarded as limitations of the result 
of this work, which aimed at assessing the applicability of the Q-learning method on solar thermal systems and 
showing its potential, not at developing an optimal control for a system for which this was already known. 
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