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Summary 

Nowadays there is no global approach to model and characterize solar thermal systems for building 
application from experimental data. Results of the existing approaches are valid only for specific conditions 
(type of climate and thermal building properties). The aim of this study is to create a generic methodology to 
model such systems. Neural networks (NN) proved to be suitable to tackle similar problems particularly 
when the system to be modeled is compact and cannot be divided up during the testing stage. Reliable “black 
box” NN modeling is able to identify global models of the system without any advanced knowledge about its 
internal operating principle. The knowledge of the system global inputs and outputs is sufficient. Results 
concerning the solar combisystem modeling show that a dynamic NN model is efficient to learn the dynamic 
of the solar system especially due to the heat storage component. NN model developed is able to predict, 
with a good precision degree, the annual energy performance of the system based on a learning sequence of 
only 12 days. Because of the NN generalization ability, it is possible to predict the solar combisystem 
behavior when operating under environments different from the one used during learning stage and so to 
characterize its performances. 
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1. Introduction 

Nowadays, thermal systems for building application mix more and more energy sources. Some of them are 
available intermittently. Moreover, more and more systems are multi-functional. They can be used for 
domestic hot water preparation, space heating and space cooling too. The evaluation of their energy 
performances is difficult especially because a growing number of equipment are prefabricated and assembled 
at the factory. Therefore it is difficult to extract a sub-system of the global one in order to test it without any 
degradation of the whole system. Moreover, the test of each potential sub-system of the global one does not 
allow considering real interactions between them in a reliable way. It can distort the evaluation of the system 
performance. In front of this growing difficulty, system test methods based on a steady state in one hand, and 
methods based on components tests in a separate way in the other hand, show their limitations (Leconte, et 
al. 2012). 
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To be up-to-date with the current system evolution, it becomes obligatory to consider the whole system 
during the modeling and test stages. So, it is crucial to take into account during this phase the system 
dynamic behavior and system controls, which are more and more complex. 

In this paper are presented the first development results of a generic methodology modeling any solar 
thermal system. This new methodology can be used then to characterize any system based only on a short 
cycle test in a semi-virtual test bench. Following (D. Schicktanz, et al. 2014) the method can be rated as 
Whole system - Indoor laboratory - Controlled dynamic conditions - Behavioral model parameters - 
Direct extrapolation. In fine, by means of this technique, it will be possible to evaluate the performance that 
the tested system will have when installed in any working environment. 

2. Scientific approach implemented 

a. Modelling methodology to be developed 

In order to be relevant and fulfill the solar thermal market requirements, the modelling methodology to be 
developed must respect five conditions: 

1. To be generic so it can be used for several solar thermal systems for building applications: combisystem 
with heat pump or boiler auxiliary, absorption chiller etc. 

2. To be non-intrusive so it is possible to use this method to model a system using only its inputs and 
outputs. No need to dismantle the system in order to test it and thus do not damaging it. 

3. The method must take into account the whole system so all interactions between subsystems are 
modeled. The real behavior of the system will be modelled then. 

4. The system procedure test must be short so the cost of the qualification test is low. 
5. The method must be able to predict the system performance for several environments different from the 

conditions of the test. This will able the characterization of the system with the fitted method. 

 
Fig. 1: Process stages of the proposed methodology 

To fulfill the 1st, 2nd and 3rd conditions the most appropriate solution consists in using a black box model. In 
contrast with a physical detailed model, to design a black box model there is no need to know the system 
internal parameters such as efficiency of its sub-systems, thermal conductivities and the mechanisms of the 
control and regulation systems. Therefore, it is possible to identify a global model of the system without 
being intrusive. 

Researchers at CEA-INES have developed an efficient method, called Short Cycle System Performance Test 
(SCSPT), to test solar thermal systems in controlled dynamic conditions with a view to evaluate their 
performances (M.Y. Haller, et al. 2013). The test method consists in testing the real system as a whole on a 
semi-virtual test bench: the system is plugged to thermo-hydraulic modules which “emulate” the behavior of 
thermal loads (DHW draw offs, space heating needs etc.) or sources (solar collectors). Those modules act 
according to a parallel TRNSYS simulation running in a “real-time” mode. The system to be tested is then 
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physically linked to a virtual environment. The SCSPT procedure consists then in applying a 12 days 
weather test sequence. This sequence is made in order to make the system consume proportionately the same 
auxiliary energy during the test. The input-output data that can be harvested during the test are very 
representative of the system behavior. This test method is relevant to fulfil the 3rd and 4th conditions. 

Classical black box models rely a lot to the data used during the design procedure. Artificial Intelligence 
methods are able to learn from data, so it is possible to create an efficient model with a good ability to 
generalize results to new data. Artificial neural networks (see section 2.2) fulfill the 5th condition. Therefore, 
the proposed methodology first consists in testing the system to be characterized in a semi-virtual test bench 
during a short sequence of time, typically 12 days and in a dynamic way. Then, harvested data will serve to 
design a Nonlinear Auto-Regressive with Exogenous inputs (NARX) neural network model of the system. 
The five steps to model and then to evaluate the performance of a system following the proposed approach 
are represented in (fig. 1). Basically the Neural Network learns the internal behavior of the tested system. 
The NN model will then be used to predict the system behavior when unseen data are presented to it and so 
evaluate the system performance. 

b. Modelling using ANN and solar thermal energy systems application 

Using Neural Networks seems to be the most powerful mathematic tool to solve this modelling problem. In 
fact, it was shown that neural networks are universal function approximators (Cybenko, 1989), so they can 
be used to approximate the system function. NN were applied successfully to solve complex, non-linear, 
dynamic and multivariable problems. They tolerate errors, imprecisions and missing data too (Kalogirou, 
2001). Neural networks were extensively used during the last decade. Several modelling problems involving 
NN are nearly similar to the present research subject. In addition NN have been especially used to solve 
prediction modelling problems in solar energy (Mohanraja et al, 2012) (Ben Ammar et al, 2013). 

The theory of ANN is well presented in (Dreyfus et al, 2004) and (Nørgaard et al, 2000). Artificial neural 
networks are parametric analytical functions whose concept is inspired from the human’s central nervous 
system. A neuron, element basis of a NN, can compute values  from a weighted summation of its inputs . 
The summation coefficients  are called synaptic weights. The subscript  denotes the neuron number. The 
neural operation is presented in (eq. 1). The function  is called the neural activation function (AF). 

 
(eq. 1) 

Inter-connected neurons constitute what is commonly called a neural network. There are several NN 
architectures and each one is more suitable for a specific problem than others. The most famous architecture 
for prediction problems is the class of multi-layer perceptron (MLP). An MLP is a feed-forward network 
built up of neurons, arranged in layers. An MLP has an input layer, one or more hidden layers and an output 
layer. In (fig. 2) a MLP, with  inputs,  neurons in the hidden layer and  outputs, is presented. The th 
output of the network can be obtained using (eq. 2). 

 (eq. 2) 
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(b) (a) 

Fig. 2: neuron formal representation (a), example of a neural network MLP with one hidden layer representation   

Neural network learning or training is the process of determination of an ensemble of weights so that the 
underlying function approximates the real system function. In fact, the objective of the training process is to 
minimize a cost function, with respect to weights, knowing a set of data. The short time of the system test, 
which is of 12 days, restricts the amount of available data for training. Therefore it is necessary to use a 
learning algorithm that can use a restricted data set without compromising the generalization ability of the 
model. For this reason it is relevant to use regularization method for the learning process. Typically, training 
aims to reduce the sum of squared errors see (eq. 3) with  the target data at the sequence time  and  the 
NN output at the same time. Regularization modifies the objective function by adding an additional term: the 
sum of squares of the network weights (eq. 4), q is the number of the neural network weights. By 
constraining the size of weights the training process produce a NN with good generalization ability (Mackay, 
1992). In fact, by keeping the weights small the NN response will be smooth and so the over-fitting is 
supposed to be prevented. In this study the objective function optimization is done using the Levenberg-
Marquardt algorithm. 

 (eq. 3) 

    
(eq. 4) 

Determination of the modelling input-output configuration is crucial to develop a generic methodology. 
Generally, solar thermal systems physical inputs and outputs differ from one to another. They depend on the 
energy sources used by the system and how this latter was designed by the manufacturer. However, energy 
systems can be represented in terms of power transformation between the renewable energy source, the load 
and auxiliary system. This is why a compact configuration with three inputs: , ,  and one 
output  was selected. This open configuration, not particular to a specific system is relevant to develop a 
global method. In (Lazrak, et al. 2014) results concerning a solar combisystem modeling show that a 
dynamic NN model (NARX model) is more efficient than a static one. The latter does not learn the dynamic 
of the solar system especially due to the heat storage component, for this reason dynamic neural network (see 
fig. 3) was used. 
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Fig. 3: NARX modelling configuration with delays for only the output 

Usually, regularization does not necessary guarantee the production of efficient networks. This is why it is 
essential to make some data preprocessing before training. By normalizing the input and target data vectors, 
the neural network training will be easier, faster and all vectors will be equally taken into account during the 
learning process. Equation (eq. 5) will be used to pretreat the training data in order to fall between  and ,  
represent a vector of data through time. It was noted that the on-off cycles of the auxiliary system generate 
some discontinuities in data. In order to smooth the data collected, a moving average (MA) will be applied to 
them. 

 
(eq. 5) 

c. The solar combisystem characterization FSC method 

After developing a good neural network model of the tested systems, it can be used to elaborate different 
simulations in several environments. Results of numerous annual simulations of the tested systems can be 
smartly used to characterize its performances with a simple curve, thanks to the FSC procedure (Letz, et al. 
2009). The FSC method considers that annual fractional energy savings  defined in (eq. 6) of a solar 
combisystem can be expressed as a quadratic function of the fractional solar consumption FSC, a 
dimensionless quantity which only depends on the environment of the system. It almost represents the 
maximum  that a solar combisystem can reach for a given location. Each system is then characterized by 
its own simple parabola. In this way, for two different systems, the one of which parabola is above the other 
is the more efficient. 

 
(eq. 6) 

d. Systems tested on the experimental test bench 

A numerical validation of the methodology using data from a simulated SCSPT test was done in (Lazrak, et 
al. 2014). In the current study a real standard solar combisystem is considered to validate the methodology 
using real experimental data. A drawing of the system is represented in (fig. 4). The distinguishing features 
of this system can be briefly described by the following: 

1. The energy transfer to the storage tank or for DHW is done by intern heat exchangers. 
2. The condensing boiler could heat up directly the water returning from the space heating emitter. 
3. The condensing boiler can heat up simultaneously the storage tank and the space heating emitter. 

Solar 
thermal 
system

Delay
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4. The volume of the storage tank is about 735.9 litres.

Fig. 4: Solar combisystem modelled in the present work 

A second system was derived from the standard one. There is no physical difference between the two 
systems but they control algorithm of the second one was optimized so that the performance of the system 
get improved. The second system will be denoted as “optimized system”. 

Each system has been tested according to the SCSPT procedure under the following environment: Zurich 
climate, an SFH60 building type and with 16.1 m² of solar collector area. Those boundary conditions were 
emulated, only the system was real. As mentioned in section 2.1. the test is applied to the whole system 
exactly like it can be found in the market. In this way all interactions between sub-systems will be taken into 
account. Measurements of input-output temperatures and flow rates in the different system loops (DHW, 
solar collector and HE) will be used to form the input-output model configurations. 

3. Results and discussion 

a. System modelling 

Input-output data harvested during the two tests have been used to design two dynamic artificial neural 
networks modelling each system. An example of untreated data used for training is represented in (fig. 7). 
The 12 days of the test sequence were applied successively without interruption. 

The two models were created according to the indications mentioned in section 2.2. Using the 
MATLAB2012b Neural Network Tool Box, various network architectures, number of neurons in the only 
hidden layer, weight initialisations, activation functions and learning strategies etc. have been investigated to 
find the optimal combination that can provide the best results. Features of the two ANN, among those tested, 
that gave best results are presented in Tab.1 and their modelling configurations in (fig. 5) and (fig.6). Those 
two models were adopted for the present work. 
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Fig. 5: Input-Output NARX modelling configuration for the optimized system used during training 

 
Fig. 6: Input-Output NARX modelling configuration for the standard system used during training 

Tab. 1: Features of the two neural network used in the present work 
Model Normalization 

range 
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neurons 

MA 
window 

Input and Output 
layer AF 

Feed-back delays Input delays 
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system 

±0.5 

8 
Five Time 
Steps (TS)  

One TS none 

Of 
optimized 
system 

3 Five TS Two TS 

 
Fig. 7: Inputs and output evolution in function of time used for training, case of the optimized system 

 

In order to validate the methodology, the two models have to be tested, in closed-loop, using unseen data 
from different environements. To do so, the two neural networks have been used to do 36 annual simulations 
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in different environements, each environement is made up of a climate site, a building type and a solar 
collector area. In Tab. 2 elements of each environement are described. To test physically the two systems in 
36 conditions is clearly impossible, this is why two physical detailled TRNSYS models were built and 
validated so that they are very close to the real systems. Prediction results of the NN models will be 
compared to those of the TRNSYS models which represent here the reference. 

Tab. 2: Climates, building types and collector areas used to form the 36 simulation environments 
Climate Building Collector area (m²) 
Zurich SFH100 10 
Stockholm SFH60 13 
Barcelona SFH30 16 
  19 

The most interesting criterion to evaluate the performance of a solar thermal system is to measure its energy 
consumption during a specific period of time. This allow to characterize its performance (see section 2.3. and 
paragraphs below). For these reason, the power consumed by the auxiliary system, output of the models, will 
be integrated in time to measure the annual consumption prediction of the two systems. Estimation results 
are presdented in (fig. 8) and (fig. 9). 

 
Fig. 8: Comparison between the annual energy consumption of the standard system predicted and calculated respectively by 

the NN model and the TRNSYS model 

Each point in the graphs represents two simulations but in one specific environment (boundary conditions): 
one with a NN model and the second using the reference model. Each point gives an idea on how the energy 
estimated using the NN model is close to the reference one. Symbols, colours and the size of symbols denote, 
respectively, the climate, building type and the collector area used during each simulation. The size of the 
symbol is proportional to the collector area. 

On the whole, predictions of the black box models and the detailed TRNSYS simulations are very close. In 
fact, coefficients of determination, R², for the two systems are about 0.98. Differences between both methods 
to estimate system energy consumption are almost within the ±10% range (line in light-blue) for all 
simulations. For low heat demand simulations (environment with Barcelona as climate for instance), absolute 
differences are not excessive but the low energy level makes those differences proportionally higher. 

It can be noted also on this two figures that the neural model of the optimized system has learn the physical 
behaviour of the system more effectively that the other model. In fact, the latter does not differentiate a lot 
between collector areas like the first model. 

Some environments are not realistic e.g. they do not respect the rules of designing a solar combisystem such 
as combining a high solar collector area with a low heat demand. For those types of environments, 
predictions are less accurate but still acceptable. In general neural networks do not work effectively in 
extrapolation mode. This means that if a set of data is very different from the one used during the learning 
process the neural network predictions will not be good. Neural network estimation abilities stay good as 
long as means and variances of its inputs have values close to those used during training. 
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Fig. 9: Comparison between the annual energy consumption of the optimized system predicted and calculated respectively by 

the NN model and the TRNSYS model 

 
Fig. 10: NN and TRNSYS outputs evolutions in function of time, case of the optimized system and the environment formed 

with Zurich climate, SFH60 and 13 m² of collector area 

In (fig. 10) are represented evolutions of the energy rate estimated by the NN and calculated by the TRNSYS 
detailed model. The figure shows that the neural network model is capable to predict, with a good degree of 
accuracy (R² around 0.92), not only the annual energy but also its rate. 

b. System characterization 

In (fig. 11) each combisystem is characterised from black box model results, according to the FSC method. 
The distribution of the points is following the quadratic function of the fractional solar consumption FSC 
which is in agreement with what was showed in the FSC method theory. Characterization of systems using 
the FSC method is a visual way to compare energy performances of different systems. In the present work, it 
appears clearly that the optimization of the regulation system of the combisystem improve significantly its 
performances by about 20%. This percentage is a bit lower for environments with low FSC and a bit greater 
for environments with high FSC. The construction of a characterization curve could help engineers to better 
design the solar collector area. In fact, for a given site and a building type it is possible to estimate how much 
the collector area will affect the performance of the system. 
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Fig. 11: Characterization curves of the optimized and standard systems 

Finally in the case of solar combisystems using the proposed approach for modelling and the FSC method for 
characterization, it will be possible to establish a strategy for energy labelling. In fact, by superimposing 
characterization curves of several systems on the same drawing, it will be possible to locate regions where, 
for a given conditions (FSC), the system must be of class A or B etc. in the image of refrigerators for 
instance. 

4. Conclusion and perspectives 

In the present paper, some first results of the development of a new methodology to model solar thermal 
energy systems are presented. This methodology is supposed to be generic and able to be applied to systems 
as we can find them in the market, no need to dismantle the system in order to characterize it. The NN 
models developed are able to predict with a good precision degree the annual consumption of two tested 
systems based on a short learning sequence of only 12 days. In fact, by means of the NN generalization 
ability it is possible to predict the system behavior in various environments (other climate types and other 
building types) different from the one used during the NN learning. Prediction errors are almost in the range 
of ±10% and R² coefficients for energy rates are about 0.92 for non-extreme environments. Thanks to this 
approach the characterization of a real solar combisystem is done according to the FSC method without any 
extra test. 

Neural network limitations appear in extreme conditions. In fact, NN predictions are poor for some 
environments very different from the one used during the physical test. 

Future works will be concentrated in the development of an optimal method to build the learning data set. 
Using data from different climates and conditions seems to be relevant. This certainly will improve the 
generalization ability of the neural model and might reduce the sequence length too. The extension of the 
methodology to other solar thermal configuration systems will be done too. 
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