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Abstract 

A comprehensive study of the performance of 36 separation models selected from the literature is presented 
here, using high-quality 1-min data of global horizontal irradiance (GHI) and direct normal irradiance (DNI), 
toward the evaluation of the uncertainty in GHI-derived DNI. A detailed performance assessment is 
conducted from 9 stations over arid or desert areas of 5 continents, where the solar resource is high and solar 
systems have great potential. To evaluate the performance of each model, three summary statistics are 
calculated. The random errors are found significant, even though the test stations have only low cloudiness 
compared to temperate climates. For some models, the errors are exacerbated by cloud enhancement effects. 
The uncertainty in the predicted DNI appears highly dependent on the local radiation climate, the specific 
separation model, and the number of predictors used. The two Perez models, which both use a variability 
predictor, are most generally those generating the best predictions, although they conversely have more bias 
than simpler models, and may occasionally generate spurious results.  

Keywords: Direct-diffuse separation; DNI; irradiance variability; cloud enhancement; validation. 

1. Introduction 

The successful development of solar power requires precise solar resource information, particularly in terms 
of direct normal irradiance (DNI). This is essential for concentrating solar power (CSP) or concentrating PV 
(CPV) systems, most particularly. Such systems are increasingly being deployed over arid areas, where 
cloudiness is low and solar resource is high. One difficulty is that, in most cases, DNI must be derived from 
measured or modeled global horizontal irradiance (GHI), by performing its “separation” or “decomposition” 
into the direct and diffuse (DIF) components. This is done systematically, for instance, to produce time series 
of DNI when GHI is derived from satellite imagery with the common “cloud index” method.  

Separation models are empirical by design, consist of locally- or regionally-adjusted functions, and are 
derived from data measured most usually at temperate sites. Their accuracy is therefore not verified yet over 
arid or desert areas, where many conditions are different: Cloud regime, aerosol loading, and ground albedo, 
most importantly. The separation process is a major source of uncertainty when used in the derivation of the 
global tilted irradiance used by PV plants (Gueymard, 2009). Furthermore, the proper simulation of CSP 
projects requires solar radiation data at time steps shorter than the customary hourly interval. This is because 
of the non-linear and transient effects that substantially affect those systems, for which an ideal simulation 
time step would be of the order of 10 minutes or less (Hirsch et al., 2010).  

In parallel, modern radiometric stations typically report irradiance data as 1- to 10-min averages, while some 
commercial providers of satellite-derived irradiance data time series can now provide data at 10- to 15-min 
time steps, in addition to the more usual hourly frequency. However, in satellite-derived data, the production 
of DNI and DIF still relies on empirical separation models developed from and for hourly irradiances, again 
usually obtained using data from temperate sites. A validation of these methods over arid environments and 
at sub-hourly time steps is thus desirable, which is the focus of this contribution. To this end, 1-min data 
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from 9 sites in diverse environments over five continents and at various elevations are used. The objectives 
of this study are multiple: (i) Validate existing separation models at the 1-min data time step; (ii) Determine 
which model(s) could potentially be of universal validity under arid conditions; (iii) Determine whether 
adding predictors can effectively improve the performance of models; and (iv) Evaluate model performance 
under high irradiance conditions. 

2. Separation models 

The literature has been searched for separation models using GHI at hourly or sub-hourly time steps. In most 
cases, the diffuse fraction, K, (i.e., the DIF/GHI ratio), from which DNI can be easily derived via the 
radiation closure equation, is first evaluated from the clearness index, Kt, (the ratio of GHI to its 
extraterrestrial counterpart). A few other models rather derive DNI more directly from Kt, through a 
functional relationship between it and the direct transmittance of the atmosphere, Kn, which in turn provides 
DNI. (Note that the fundamental closure relationship Kn = Kt (1–K) is convenient to easily intercompare all 
these models.) Following a thorough literature search, 90 separation models have been found in scientific 
journals, conference proceedings or reports, which is an indication of the importance of this topic, and of its 
vitality since the 1960s. Due to space limitations, only 36 of these models are benchmarked here. The models 
under scrutiny have been selected as follows: (i) those most frequently cited in the literature and/or being 
used operationally to derive DNI databases from satellite data (recognition criterion); (ii) those showing the 
best consistency between sites (universality criterion); and (iii) those performing best at single sites (local 
performance criterion). The models are listed in Table 1 and categorized as a function of the number of their 
inputs, for reasons that will be discussed in Section 4.3. Model acronyms appear in small caps to distinguish 
them from their authors’ names. 

Some of the models examined here suffer from typographical errors in their published coefficient values, 
which makes their predictions inconsistent or sometimes even unphysical. This is the case for BOLAND2, 
POSADILLO, RUIZARIAS2, and TORRES1. The correct coefficients were directly obtained from their respective authors. 

 
Tab. 1: General information on the 36 tested models. The predictors are: Kt, clearness index; Ktc, clear-sky clearness index; Ktm, 

mean daily Kt; t, local time; Z, zenith angle; m, air mass, ��, surface albedo; V, variability index; RH, relative humidity, T, air 
temperature; Tdp, dew-point temperature; Ec, clear-sky global irradiance; Ebnc, clear-sky direct normal irradiance. 

 

# Predictors Model acronym Author, Year Predictor(s) Remark on Model 
1 BOLAND1 (Boland et al., 2008) Kt  
 DEMIGUEL (De Miguel et al., 2001) Kt  
 ERBS (Erbs et al., 1982) Kt  
 HOLLANDS1 (Hollands, 1985) Kt  
 LAM (Lam and Li 1996) Kt Whole year model (Table 2) 
 LI (Li  and Lam, 2001) Kt Whole year model (Table 1) 
 LOUCHE (Louche et al., 1991) Kt  
 MONDOL (Mondol et al., 2005) Kt  
 MORENO (Moreno et al., 2009) Kt  
 MUNEER (Muneer et al., 1997) Kt  
 OLIVEIRA (Oliveira et al., 2002) Kt  
 REINDL1 (Reindl et al., 1990) Kt  
 RUIZARIAS1 (Ruiz-Arias et al., 2010) Kt Model “G0“ 
 SANCHEZ (Sanchez et al., 2012) Kt  
 TORRES1 (Torres et al., 2010) Kt Model 1; corrected coefficient a8 in Table 1 
 TORRES2 (Torres et al., 2010) Kt “Model 3” 
2 GONZALEZ (González and Calbó, 1999) Kt, Z  
 HELBIG (Helbig et al., 2010) Kt, Z  
 HOLLANDS2 (Hollands and Crha, 1987) Kt, �  
 MACAGNAN (Macagnan et al., 1994) Kt, Z  
 MAXWELL (Maxwell, 1987) Kt, m  
 POSADILLO (Posadillo and Lopez Luque, 2009) Kt, Z Corrected coefficient in Eq. 10 
 REINDL2 (Reindl et al., 1990) Kt, Z  
 RIDLEY1 (Ridley et al., 2004) Kt, t  
 RUIZARIAS2 (Ruiz-Arias et al., 2010) Kt, m Model “G2”; corrected coefficient in Eq. 19 
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 SKARTVEIT1 (Skartveit and Olseth, 1987) Kt, Z  
 STAUTER (Stauter and Klein, 1980) Kt, Ktc Paired with Hottel’s clear-sky model 
 SUEHRKE (Suehrcke and McCormick, 1988) Kt, m  
 ZHANG (Zhang et al., 2004) Kt, Z  
3 SKARTVEIT2 (Skartveit et al., 1998) Kt, �, V  
4 PEREZ1 (Perez et al., 1992) Kt, Z, Tdp, V  
 REINDL3 (Reindl et al., 1990) Kt, Z, T, RH  
5 BOLAND2 (Boland et al., 2013) Kt, Z, t, Ktm, V Corrected coefficients in Eq. 4 
 LAURET (Lauret et al., 2013) Kt, Z, t, Ktm, V  
 RIDLEY2 (Ridley et al., 2010) Kt, Z, t, Ktm, V  
6 PEREZ2 (Perez et al., 2002) Kt, Z, Tdp, V, Ec, Ebnc Paired with Perez-Ineichen clear-sky model 

3. Experimental data 

Because separation models are empirical in nature, the robustness of their derivation directly depends on the 
quality of the data on which they are based. Data quality depends on many factors, including radiometer 
calibration, station maintenance, instrument cleaning, as well as radiometer specifications and performance. 
To decrease the impact of such factors on this analysis, only data from research-class stations are used here. 
A database of high-quality 1-min irradiance measurements has been assembled from nine stations located in 
arid or desert areas over five continents (Table 2). They all use thermopile radiometers and all independently 
measure the three components (direct, diffuse and global), which is necessary for thorough quality control 
postprocessing (Long and Shi, 2008; Roesch et al., 2011). Only data points passing these tests and for a 
zenith angle, Z, less than 85° are used here. 

Some of the models tested here use more inputs than just Kt. A few use Z or air mass, m, which is not an 
issue because these are deterministic quantities. REINDL3 additionally requires temperature, T, and relative 
humidity, RH. Such variables are not always measured alongside irradiance or at the same frequency, which 
can cause problems, and ultimately can limit the applicability of the model. In the present case, T and RH are 
available at all sites except Alice Springs and Tamanrasset, where REINDL3 could thus not be tested. At Sede 
Boker, T and RH are only available in 10-min increments. They have been interpolated to 1-min steps with a 
cubic spline. PEREZ1 and PEREZ2 use dew-point temperature, Tdp, which is not measured at any of the sites 
under scrutiny here. Fortunately, Tdp can be derived from T and RH with appropriate empirical equations 
(typically used by meteorological services) for that purpose. The Perez models still work—albeit presumably 
in less optimum conditions—whenever Tdp is not available (Perez et al., 1992). This makes it possible to test 
them at all sites, including the two sites with no T, RH data. 

HOLLANDS2 and SKARTVEIT2 require the surface albedo, �, which is rarely measured. A fixed default value was 
thus determined for each site, based on an educated guess. Two models, PEREZ2 and STAUTER, require an 
evaluation of clear-sky global and direct irradiance. For PEREZ2, the Perez-Ineichen model is used, as 
suggested and described by Perez et al. (2002), along with the popular monthly-mean, high-resolution Linke 
turbidity data described by Remund et al. (2003), and available from the SoDa service1. For STAUTER, the 
Hottel model was used, as suggested in the original publication (Stauter and Klein, 1980). These clear-sky 
models have limited performance (Gueymard, 2012a; Gueymard and Ruiz-Arias, 2015), so slightly better 
DNI results could potentially be obtained with other radiation models.  

Some separation models use information on the temporal variability of GHI through the use of a specific 
variability index, noted V in Table 1,which was originally developed from sequences of hourly irradiances 
immediately before and after the moment being modeled. The same algorithms are used here, therefore using 
1-min sequences instead. Note that this definition of variability, as currently implemented in these models, 
can make them unfit for nowcasting or forecasting applications without proper adaptation. Similarly, a few 
models also use the daily-mean Kt as a predictor. This is not an issue here, but this requirement would also 
make them unfit for the aforementioned applications. 

 

Tab. 2: General information on the nine test stations. N is the number of valid data points.  
The mean measured DNI is expressed in W/m2. 

 

                                                 
1 http://www.soda-is.com/eng/services/climat_free_eng.php#c5 
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Station Country Data Source Latitude (°) Longitude (°) Elevation (m) Period N Mean DNI 
Alice Springs Australia BSRN 19.539 -155.578 547 2009–2012 732457 667.2 
Desert Rock, NV USA NOAA 36.626 -116.018 1007 2009–2013 971591 755.3 
Gobabeb Namibia BSRN -23.561 15.042 407 2012–2014 511578 741.5 
Masdar UAE Masdar Inst. 24.442 54.617 6 2013 90530 544.0 
PSA Spain DLR 37.091 -2.358 500 2011–2012 240047 571.1 
Sede Boker Israel BSRN 30.860 34.779 480 2008–2011 719935 625.9 
Solar Village Saudi Arabia BSRN 24.907 46.397 768 1999–2002 750872 585.6 
Tamanrasset Algeria BSRN 22.790 5.529 1385 2006–2009 878736 621.7 
Tucson, AZ USA NREL 32.230 -110.955 786 2011–2014 781236 685.5 

4. Results and discussion 

4.1 Statistical results 
As discussed by Gueymard (2014), various statistical indicators can be used to evaluate the performance of 
DNI predictions. However, only conventional indicators are used here for conciseness: Mean Bias Deviation 
(MBD), Root Mean Square Deviation (RMSD), and Mean Absolute Deviation (MAD), all expressed in 
percent of the mean measured DNI at each station. These statistics are compiled in Table 3 for each model, 
considering all stations combined. This complete dataset contains N = 5.677 million data points, for an 
overall mean DNI of 662.4 W/m2. All statistics are expressed in percent of the latter value. It is difficult to 
compare the present results to those of the literature, because the latter most generally refer to DIF rather 
than DNI. A notable exception is the study of Perez et al. (1992), which reports hourly absolute errors 
relative to DNI (in W/m2) for some of the same models used here, i.e., ERBS, MAXWELL and PEREZ1. The 1-min 
absolute RMSD found here for these three models averages to 112, 103 and 97 W/m2, respectively. These 
values are somewhat larger than the hourly RMS errors obtained by Perez et al. (1992) for the same models 
and the sunny/arid sites of Albuquerque and Phoenix, for instance. This suggests, as could be expected, that 
random errors increase with temporal resolution. 

A graphical representation of these results, this time considering each test station separately, appears in Figs. 
1–3. The best performer in each of the 6 model categories described in Table 1 is indicated by a color dot. 
For each station, the acronym of the best overall performer is also indicated. Note the significant scatter in 
the results at all sites. At Masdar, SUEHRKE appears as an outlier, with largest MBD, RMSD and MAD of all 
models and all sites. From Figs. 2 and 3, a remarkable localization effect clearly appears: RMSD and MAD 
are about twice as large at Tamanrasset than at Gobabeb, most likely because the former site has a much 
higher turbidity, which has a substantial effect on DNI (Gueymard, 2012b; Gueymard and Ruiz-Arias, 2015). 

 

Table 3. Summary performance statistics (in percent of the overall mean DNI, 662.4 W/m2) for all 36 tested models  
at all test sites combined. Best results in each category are in bold; best results overall are in bold italic and underlined. 

Acronym #Predictors MBD RMSD MAD Acronym #Predictors MBD RMSD MAD 
BOLAND1 1 0.6 18.0 12.5 GONZALEZ 2 0.2 16.0 11.9 
DEMIGUEL 1 -2.0 17.0 13.1 HELBIG 2 0.0 16.0 11.6 
ERBS 1 -0.6 16.9 12.5 HOLLANDS2 2 -3.6 21.4 15.3 
HOLLANDS1 1 2.0 18.7 12.6 MACAGNAN 2 1.2 18.6 14.1 
LAM 1 -8.3 21.2 18.3 MAXWELL 2 4.3 15.6 10.6 
LI 1 -4.9 18.6 15.4 POSADILLO 2 5.7 17.8 12.4 
LOUCHE 1 5.0 17.4 11.4 REINDL2 2 -4.9 17.7 14.0 
MONDOL 1 -7.7 18.8 16.0 RIDLEY1 2 -0.4 18.8 12.8 
MORENO 1 6.7 19.3 13.0 RUIZARIAS2 2 -1.9 18.1 14.0 
MUNEER 1 -4.7 17.9 14.1 SKARTVEIT1 2 -4.5 16.3 13.2 
OLIVEIRA 1 0.2 17.2 13.0 STAUTER 2 -5.8 19.0 15.3 
REINDL1 1 -0.4 16.9 12.5 SUEHRKE 2 -2.7 15.7 11.2 
RUIZARIAS1 1 4.7 18.3 12.2 ZHANG 2 3.5 17.4 11.3 
SANCHEZ 1 6.1 18.0 12.4 SKARTVEIT2 3 -3.9 16.5 12.6 
TORRES1 1 -1.5 17.3 13.7 PEREZ1 4 5.3 14.7 9.7 
TORRES2 1 -0.2 17.1 13.1 REINDL3 4 -0.4 12.5 9.5 
     BOLAND2 5 1.4 15.8 11.0 
     LAURET 5 4.3 17.4 11.3 

RIDLEY2 5 4.9 16.5 10.5 
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     PEREZ2 6 2.1 13.8 9.3 
 

 

 

Fig. 1: MBD results for each station. In each category, the name of the best model is indicated, along with a color code. 

 
 

Fig. 2: Same as Fig. 1, but for RMSD. 
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Fig. 3: Same as Fig. 1, but for MAD. 

The results presented here tend to confirm previous studies, (e.g., Ineichen, 2008), to the effect that the Perez 
models (PEREZ1 and, even more so, PEREZ2) perform consistently better. The use of a 1-min variability index, 
rather than the hourly variability they were designed for, is therefore not detrimental to these two models. 
Arguably, their use of a variety of predictors in addition to Kt makes them more robust to changes in local 
conditions. However, this would also have benefitted other models with many predictors, such as REINDL3, 
BOLAND2, LAURET or RIDLEY2, which do not perform as consistently. The functional form of the Perez models thus 
appears as a key to their success. Surprisingly, however, the two Perez models usually have a non-negligible 
high bias (MBD). Conversely, those models with negligible bias do not perform as well as the Perez models 
with regard to the RMSD or MAD indicators. More discussion on these findings is offered in Section 4.3.  

4.2 Impact of cloud enhancement and high irradiances 
For CSP/CPV applications, what matters most is when DNI is high and around the design irradiance value. It 
is thus desirable to evaluate the performance of separation models when GHI and Kt are high too. Figure 4 
shows the frequency distribution of Kt and K at Tucson, considering both hourly and 1-min data. 
Remarkably, significant differences in the Kt frequency distribution occur if Kt > 0.65. In particular, when 
Kt > 0.9, its hourly frequency is negligible, whereas its 1-min frequency is not. At the sites under scrutiny 
here, the absolute maximum value of 1-min Kt is typically ≈1.2, which means that GHI can be occasionally 
20% larger than its extraterrestrial counterpart—and still be a valid observation. This is caused by the cloud 
enhancement effect (also referred to as cloud lensing or over-irradiance), which is frequent under scattered 
cumulus cloud conditions when the sun is high. However, its magnitude decreases rapidly when time 
integration increases, which explains why such cases are much less noticeable in hourly data.  

 
 

Fig. 4: Frequency distributions of hourly and 1-min Kt and K at Tucson. 

Figures 5–7 show scatterplots of predicted vs. measured DNI for ERBS, LOUCHE and PEREZ2 at Tucson. The Erbs 
model (Fig. 5) is one of the most popular in the literature. Two issues are evident here: The S shape of its 
scatterplot, and the large fraction of overestimations when the measured DNI is larger than ≈400 W/m2. This 
overestimation culminates when the measured DNI is ≈950 W/m2 but predictions are (unphysically) up to 
≈1400 W/m2. This behavior can be explained by the functional form of the model: It assumes that K remains 
fixed at 0.165 when Kt > 0.80. By completely ignoring the cloud enhancement effect, the predicted K is much 
too low when Kt > 0.9, thus resulting in a largely overestimated DNI. 

In Fig. 6, a similar S-shaped scatterplot is obtained for LOUCHE, another popular model. The behavior under 
high irradiance is different than with ERBS, however. A strong horizontal cluster is obvious for a predicted 
DNI of ≈1000 W/m2, and a sizeable number of considerably underestimated outliers is found when the 
measured DNI is in the 800–1000 W/m2 range—a pattern that does not exist in Fig. 5. This can be explained 
by the functional form of LOUCHE. It consists of a 5th-order polynomial providing Kn = f(Kt), which reaches a 
maximum for Kt = 0.86 and then decreases, to the point where it becomes negative for Kt > 1.05. This 
produces unphysical values of the predicted DNI, which need to be zeroed out. Although such cases would 
not likely occur with hourly data, they do occur at 1-min resolution, then generating incorrect estimates. 

The S shape of the ERBS and LOUCHE scatterplots is a feature that has apparently not been documented until 
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now. In any case, the issues described above explain why these two models do not perform as well as they 
could when using 1-min data, even though they may perform well with hourly data. In turn, this underlines 
the fact that not all hourly separation models work well with shorter time steps. Nevertheless, LOUCHE 
remarkably obtains the best overall MAD in its category of single-predictor models, and overall performs 
almost identically to LAURET, which uses 5 predictors (Table 3). 
 

 
 

Fig. 5: Scatterplot of predicted vs. measured 1-min DNI using the ERBS model at Tucson 

 
 

Fig. 6. Same as Fig. 5, but for the LOUCHE model 

 

In contrast, Fig. 7 shows a similar scatterplot, but for PEREZ2, which obtains the best performance at Tucson 
(among other sites) with respect to the RMSD and MAD statistics. Its S shape is much less pronounced, and 
its predicted DNI is well clustered around the diagonal, at least above 700 W/m2. Still, there is a lot of scatter 
above the diagonal, and some outliers below it in the range 800–1000 W/m2. This latter feature is similar, but 
much less pronounced, than with LOUCHE. The former issue can explain in large part why PEREZ2 (or PEREZ1 for 
that matter) tends to overestimate and surprisingly never performs best or too well with respect to MBD. 
 

  



Christian A. Gueymard / EuroSun 2014 / ISES Conference Proceedings (2014) 
 

 
 

Fig. 7: Same as Fig. 5, but for the PEREZ2 model 

4.3 Impact of the number of predictors 
The present results clearly indicate that models based on many predictors, particularly if they include 
variability, tend to obtain the best results, as far as the RMSD and MAD performance indicators are 
concerned. A predictor is defined here as a single physical quantity, irrespective of how many times it 
appears in a functional form with different exponents, like in fifth-order polynomials for instance. In 
contrast, the total number of variables, including their different powers, is referred to here as “degree of 
freedom”. Thus, in the case a fifth-order polynomial of Kt is used, such as with LOUCHE, there are 5 degrees of 
freedom but just 1 predictor.  

The variability-savvy models with the best results are PEREZ2, PEREZ1, SKARTVEIT2 and RIDLEY2, in decreasing 
frequency of appearance in the best rankings. Surprisingly, however, the two other models that include 
variability, LAURET and BOLAND2, do not perform as well. Equally surprising is that none of the variability-savvy 
models obtain the best rankings in terms of MBD. In any case, adding more predictors, most importantly 
variability, appears a potentially effective way to decrease random errors in separation models. This is 
logical, because these errors most frequently occur under partly cloudy conditions, which correspond to high 
variability in GHI. However, just adding variability as a predictor is not a guarantee in itself, since this 
predictor can interfere with other aspects of the model and eventually become counterproductive, as could be 
the case with LAURET and BOLAND2.  

Some of the models reviewed here appear in different categories of Table 1, depending on the number of 
predictors of the various model variants proposed by their authors. This is the case for the REINDL (3 variants) 
and RUIZARIAS (2 variants) models. When developing a separation model, a central question is which, and thus 
how many, predictors should be used. A general trend in the literature has been to increase the number of 
predictors (and, sometimes, degrees of freedom too) in an attempt to also increase accuracy. Since all 
parameterizations are done empirically, a serious risk behind this approach is what is referred to as 
overfitting. Increasing the model’s degrees of freedom, or even the number of predictors, might indeed 
improve predictions for the sites where the parameterization was developed, but might as well degrade its 
generalization skill. Another aspect of this question is that some predictors might not be readily available 
locally, particularly at 1-min resolution, as already mentioned in Section 3. 

When considering all results separately for each test station, the present results show that PEREZ1 performs 
better than PEREZ2 in one third of cases, which is contrary to expectations, since PEREZ2 has more predictors 
and was designed to improve on PEREZ1. This might be caused, at least in part, by inaccuracies in the clear-
sky radiation model implied in PEREZ2 and/or its input data for specific sites. It is worth mentioning that using 
a clear-sky radiation model to directly obtain DNI from atmospheric data under cloudless situations is 
significantly more accurate than separating it from GHI (Gueymard, 2005). Similarly, the overall results in 
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Table 3 do not provide a clear answer about which variant of those models that offer multiple choices, such 
as REINDL and RUIZARIAS, has the potential to perform better under specific arid conditions. Typically, one 
variant performs better at some, but not all, sites, and results also differ depending on the performance 
indicator being used. For the 9 stations under scrutiny here, more detailed results are assembled in Table 4, in 
the form of the total number of stations where each model variant performs best relatively to a specific 
statistical indicator. The mixed results obtained in this example confirm the issue of performance rankings 
being dependent on the selected statistical indicator (Gueymard and Myers, 2008). A possible solution would 
consist in adopting a more robust indicator, such as the Combined Performance Index (Gueymard, 2012a, 
2014). A detailed statistical analysis (using, e.g., the Bayesian Information Criterion) would also be desirable 
to evaluate whether adding predictors to a basic, simple model can improve its performance in a really 
significant way. 

 

Tab. 4: Number of stations (out of a total of 9 for all models—except REINDL3, tested at 7 stations only) 
at which each model variant performs best according to different statistics. 

 

Model Best MBD Best RMSD Best MAD 
REINDL1 4 4 4 
REINDL2 2 3 (tied) 1 
REINDL3 3 3 (tied) 4 
RUIZARIAS1 4 4 7 
RUIZARIAS2 5 5 2 

5. Conclusion 

A comprehensive statistical analysis of 36 separation models of the literature is described here. Their 
performance assessment is obtained by comparison of their DNI predictions with high-quality 1-min 
measured data obtained at 9 stations in different arid areas of the world where the DNI resource is high and 
thus favorable to the development of concentrating solar technologies, in particular. The uncertainty in the 
predicted DNI is found dependent on the specific separation model used, local specificities (such as 
atmospheric turbidity), as well as the number of predictors each model uses. The analysis thus considers a 
categorization of all models as a function of their number of predictors. 

Some of those separation models that include a variability index tend to be more accurate than those that do 
not, but it is not a general conclusion, all the more that these models have usually more bias than simpler 
models and may generate spurious predictions. Models that use the clearness index as their single predictor 
do not necessarily perform worse than those using a higher number of predictors, except (in some but not all 
cases) if these include some description of variability. 

Modeling issues are found in two models, which prevent them to perform as efficiently with 1-min data than 
with the hourly data for which they were designed. This finding is directly related to the significant impact of 
cloud enhancement on 1-min data, which may temporarily increase the clearness index to over-unity values.  

It is hoped that the present findings will help stimulate the development of advanced functional forms for this 
type of radiation model. Indeed, to improve the accuracy of DNI predictions at high frequency and decrease 
their current noise, an obvious conclusion is that a more efficient and truly “universal” model is necessary. 
Since the statistical results presented here—as well as the ranking of models that can be derived from them—
are dependent on local conditions and statistical indicator, more validation studies are desirable to evaluate 
which model performs best over any specific region, with the help of more advanced statistical tools. 
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