
 

 

Energy saving and the integration of renewable energies are critical issues in Net Zero Energy Buildings 
(NZEB). In this context, the availability of methods for the prediction of the Electrical Load Demand (ELD) 
is extremely important mainly due to its relevance for an appropriate energy management, sizing of NZEB 
energy systems, and, especially, for the implementation of suitable energy control strategies, such as energy 
storage. This paper describes the development and assessment of an electricity demand short-term predictive 
Artificial Neural Network (ANN) model for a characteristic laboratory within an NZEB located at Almería 
(Southeastern Spain). As the model is aimed to be used as part of advanced building energy control schemes, 
some specific requirements, as a tradeoff between accuracy and simplicity, have been considered. The work 
presented in this paper contains both a description of the algorithms and reference data for an appropriate 
development of this kind of models. Moreover, a detailed discussion of the obtained ANN model which has 
been validated using real data obtained from the NZEB used as case-study has been included. 

Keywords: Net Zero Energy Buildings, Electrical Load Demand, Artificial Neural Network, Radial Basis 
Functions. 

Nowadays, the concept of NZEB and energy efficiency measurement applied to buildings are receiving an 
extensive attention all around the world mainly due to their huge contribution to reduce climate change 
(Kolokotsa et al., 2001). Therefore, the prediction of ELD within the scope of NZEB is presently being widely 
studied since the optimization of the use of renewable energy sources by means of specific control systems 
requires an accurate knowledge of building energy consumption patterns, both for the peak and average loads 
and for the short and medium-term building rooms use dynamics (Castilla et al., 2014). 

In this work, a bioclimatic building has been considered as a case of study. More specifically, this building is 
located at Almería (Spain) and it has been built to take advantage of the benefits provided by solar energy and 
natural ventilation for passive heating and cooling. In addition, it has a Heating, Ventilating and Air 
Conditioning (HVAC) system which uses solar thermal energy for active cooling of the rooms.  Furthermore, 
a grid connected photovoltaic (PV) installation completes the building energy infrastructure to cope with the 
building electricity demands.  

In literature, there are many studies that take into account the consumption of the whole building (Khosravani 
et al., 2016; Mena et al., 2014), several buildings or even the whole city (Ferreira et al., 2010), others are 
related to the power demand, wind speed, power forecasting and solar irradiance forecasting with different 

© 2016. The Authors. Published by International Solar Energy Society
Selection and/or peer review under responsibility of Scientific Committee
doi:10.18086/eurosun.2016.01.20 Available at http://proceedings.ises.org

 



 
range of parameters (Ren et al., 2015). The approach presented in this paper takes into account one room (a 
laboratory) which can be observed in Fig.1, as a representative environment of the building. In this case, there 
are several factors that influence energy consumption such as weather variables, building's construction, 
building's occupants and their behavior, the use of artificial lighting, the use of the HVAC system, etc.  

Artificial Neural Networks (ANNs) have been used to obtain predictive models for the power consumption. In 
addition, the modeling capabilities of Radial Basis Functions (RBFs) are influenced by the shape of basis 
functions, the number and placement of the centers, and the width (spread) of the basis function (Ferreira et 
al., 2012).  The using of ANNs for forecasting has led to a tremendous increment in research activities in this 
field in the past years. As the interesting reader can check in the following works (Zhang el at, 1997; Mena et 
al, 2014). 

In this work, an ANN for the prediction of the energy consumption of the laboratory has been considered. 
More specifically, it takes into account the energy consumption of artificial lighting, computers, and other 
equipment in the laboratory.  

 

 
  

The paper is organized as follows: Section 2 describes the scope of the work. The methodology used to obtain 
the ANN is presented in Section 3. In Section 4 the obtained results are briefly discussed. Finally, Section 5 
includes the main conclusions and future works.  

The CIESOL building (http://www.ciesol.es) is a solar energy research center, see Fig. 2, which is located 
inside the Campus of the University of Almería in the southeast of Spain. This geographic location is 
characterized by having a typical desert Mediterranean climate, with an annual average number of 2965 hours 
of sunshine (climate values registered at the meteorological station of the Almería airport, located 3.5 
kilometers far from CIESOL). This building is distributed into two different floors with a total surface of 
1071.92 m2. In addition, it was built following several bioclimatic criteria that affect to its architecture, as the 
use of photovoltaic panels to produce electricity and an HVAC system based on solar cooling.  

This HVAC system makes use of a solar collector field, a hot water storage system, a boiler and an absorption 
machine with its refrigeration tower in order to produce heat or cold air as a function of the demanded 
necessities. Moreover, it has a wide network of sensors and actuators, and an appropriate data acquisition and 
measurement system. The availability of these data will allow to understand the behavior of each one of the 

 



 
bioclimatic strategies which are implemented in this building, the energy saving and CO2 emissions reduction 
which can be obtained with them, and also, to perform energy scheduling tasks to optimize the use of renewable 
energies against conventional energy sources. 

 

ANNs can be seen as weighted directed graphs where the neurons are nodes and the directed edges (with 
weights in each) are connections between input and output neurons. They are used for non-linear mapping 
between the input data X and the output vector Y in order to model relations or detect patterns among them. 
ANNs are black-box models and, thus, their parameters and structure have to be determined from data. 

The ANN is an artificial intelligence technique that mimics the human brain’s biological neural network in the 
problem solving processes. As humans solve a new problem based on the past experience, a neural network 
takes previously solved examples, looks for patterns in these examples, learns these patterns and develops the 
ability to correctly classify new patterns. In addition, the neural network has the ability to resemble human 
characteristics in problem solving that is difficult to simulate using the logical, analytical techniques of expert 
system and standard software technologies (Daosud et al., 2005). In this work an RBF neural network is used. 
As it can be observed in Fig. 3, an RBF ANN has three layers. The first layer represents the inputs to the 
network from the outside environment. The second layer, also denominated hidden layer, applies a non-linear 
transformation on the input set. This layer usually has a large number of neurons to achieve better results. 
Finally, the third layer, which usually has a single neuron, performs a linear combination over the outputs of 
the neurons from the previous layer, that is, the hidden layer. Hence, the output of this layer is the result 
provided by the neural network. 

Therefore, the output of an RBF ANN can be expressed as: 

where  is the weight associated with the ith hidden layer node,  is the radial function,  is the center location 
and x is the input point. The modeling capabilities of this network are determined by the shape of the radial 
function, the number and placement of the centers, and the width (spread) of the function. Moreover, different 

 



 
options can be selected as radial function, such as radial linear function, radial cubic function, Gaussian 
function, thin plate spline function, multi-quadratic function, inverse multi-quadratic function or shifted 
logarithm function. However, the most used radial function is the Gaussian, see (eq. 2):  

  
where  is the standard deviation,  is the center of the distribution, and x is the input point. 

 

 

In general, during the training process, the training error decreases. However, generalization error, that is, the 
accuracy of the used algorithm to predict the output for previously unseen input values, evolves as it is shown 
in Fig. 4. This problem is known as overfitting. Typically, the generalization error is estimated as the difference 
between the expected and the empirical error over a generalization data-set, which is a fixed set of data samples 
not from the training data-set. Therefore, the initial data-set should be partitioned into a training data-set and a 
testing data-set. Afterwards, the training data-set is split into two different data-sets: one to estimate the model, 
and the other to its validation. Hence, three different data-sets are used: training, generalization, and testing 
(Haykin 2005). 

 

 



 
To obtain the RBF ANN proposed in this paper, a set of historical data from the CIESOL building has been 
used. Concretely, the historic data-set comprises since the 11th of December 2013 to the 11th of February 2014, 
so it has a total length of 63 days, with a sample time of 1 minute, that is, 90720 points. These points were 
obtained from different measurement systems. Hence, to synchronize both of them, 60 points (1 hour) were 
removed from the historic data-set. Therefore, the final number of points was 90660 points. 

Due to the sample time of the historic data, the power consumption signal had a random noise in it. Therefore, 
to remove this noise a smooth filter has been used. More specifically, the MATLAB smooth function has been 
applied to the data. This function smooths data using a 5-point moving average, that is, the  

 

moving average filter smooths data by replacing each data point with the average of the neighboring data points 
defined within the span. This process is equivalent to a low pass filter. Hence, the response of the smooth 
function is given by the following difference equation: 

  

where  is the smoothed value for the ith data point, N is the number of neighboring data points on either 
side of , and  is the span (MathWorks Website, 2016). Fig. 5 shows a fraction of the data before 
and after the filter process has been applied. 

As has been pointed out within the Introduction Section, the output of the ANN model presented in this paper 
is the prediction of the power demand (excluding the HVAC system) of a representative laboratory of the 
CIESOL building, see Fig. 1. The original data-set has a total length of 63 days but, after removing the 
mistaken, unavailable, and unwanted data the size is reduced to 40 acceptable days that can be useful for 
modeling purposes, see Fig. 6. Figure. 7 shows the power demand of these 40 days in cyan color, and the 
average power demand in blue color. Finally, from this subdata-set only 23 days have been selected to be used 
for design the ANN. 
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This subdata-set of 23 days has been divided into three different data-sets: training, generalization, and testing 
data-sets which contains the 12%, 8%, and 80% of total points respectively. These points have been selected 
randomly from the subdata-set of 23 days and, thus, the final size of training, generalization and testing data-
set are 3974, 2650 and 26496 points respectively. 

The ANNs proposed in this paper uses as inputs 2 lags of the power demand [W] of the laboratory, the CO2 
concentration inside the laboratory [ppm], the outside direct irradiance [W/m2] and the number of people inside 
the modeled room [-]. The behavior of occupants have a major effect on the power consumption in the building 
(Virote and Neves-Silva, 2012). More specifically, they have a direct effect from their physical presence in 
the space, and an indirect effect derived from their social behavior and awareness of the power saving aspect 
(Oikonomou et al., 2009).   

Moreover, the output of the ANNs is the prediction of the power demand in the laboratory. In Fig. 8 the three 
exogenous inputs data and the power demand of the period considered in this study are shown. The structure 
of the proposed ANN can be observed in Fig. 9.  
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As different ANNs to predict the power demand of a representative laboratory have been obtained, each of 
them with different configurations, it is necessary to determine which of the proposed ANNs is the best one. 
For this aim, the Normalized Root Mean Square Error (NRMSE) has been used. This index is the percentage 
of the Root Mean Square Error (RMSE). In addition, this index has also been used to validate the proposed 
ANNs as a function of the prediction horizon (from 1st step and 16th step), see eq. 4, where  is a weighting 
factor for each NRMSE: 

 

In the previous equation  and  are the NRMSE of the validation data-set for 1st step 
and 16th step prediction horizons respectively, and , in this case, has been fixed to 0.5. 

The experiments had been run for all the combinations of these parameters: 
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• The number of the centers can be 3, 6, 9, 12 and 15. 

• The  parameter with values of 0.05, 0.01, 0.005 and 0.001, which is the termination criterion with 
early stopping, since an early stopping method with generalization data-set has been used. 

In this work, the RBF ANN used to predict the power consumption of the laboratory has been trained using 
the Levenberg–Marquardt (LM) algorithm (T. Olofsson, 1998; D.W. Marquardt, 1963) which minimizes a 
modified training criterion (A. Ruano, et al, 1991; P.M. Ferreira and A.E. Ruano, 2000). This method has been 
successfully used in (P.M. Ferreira, 2012). 

In Table 1 a summary of the different models which have been obtained from training the ANN with real data 
from the bioclimatic building are shown. More specifically, the NRMSE index has been used to assess the 
performance on the different models. Moreover, validation results for one step ahead (using 1 minute interval) 
show an appropriate performance with a NRMSE less than 5% in the worst case. However, it does not happen 
with the worst case for 16 step ahead, which is higher. Thus, a final RMSE, which is the mean of the previous 
ones (1 and 16 steps ahead), has been calculated to select the most suitable model in both cases.  

Finally, the results of the power demand for these 5 models in Table 1 are shown in Fig. 10, and the prediction 
of the 16 steps of the first model are shown in Fig. 11. In addition, the validation results of the 1st and 16th step 
prediction ahead for model number 1 can be observed in Fig 12. 

The number of neurons that compose the hidden layer of the ANN, the small size of the data window and the 
parameters of the training algorithm for the experimental works carried out in this paper suggest that these 
values should be carefully studied, but anyway, many neurons were not needed to get satisfactory results.  

 
Tab. 1: Results of the best five obtained models  

Model 
number 

Number of 
centres  

NRMSE 
training 

NRMSE  
generalization 

NRMSE 
testing for 1 
step ahead 

NRMSE 
testing for 16 

step ahead 
Final RMSE 

1 3 0.0099 0.0095 0.0097 0.2124 0.0555 
2 3 0.0102 0.0105 0.0104 0.2125 0.0557 

3 3 0.0103 0.0099 0.0103 0.2131 0.0558 

4 3 0.0099 0.0095 0.0097 0.2172 0.0567 

5 3 0.0102 0.0104 0.0103 0.2174 0.0569 

 
 

Tab. 2: Statistical analysis of the best five obtained models  

Model number 
Mean 

Absolute Error 
(MAE) 

Mean Relative 
Error (MRE) 

Maximum 
Absolute Error 

(MaxAE) 

Standard 
Deviation 
Error (SN) 

Normalized 
Mean 

Absolute Error 
(NMAE)  

1 
1st step 1.1898 0.0855 58.4 3.8921 1.0298 

16th step  45.6813 6.1393 1041.6 84.8871 2.4538 

2 
1st step  1.2927 0.1060 94.0 4.1700 0.6938 

16th step  48.0858 8.1748 777.5 84.3525 3.1858 

3 
1st step  1.3399 0.1262 81.7 4.1145 1.0006 

16th step  49.2480 8.3953 1316.6 84.4973 2.5201 

 

 



 

Model number 
Mean 

Absolute Error 
(MAE) 

Mean Relative 
Error (MRE) 

Maximum 
Absolute Error 

(MaxAE) 

Standard 
Deviation 
Error (SN) 

Normalized 
Mean 

Absolute Error 
(NMAE)  

4 
1st step  1.1754 0.0838 57.8 3.8782 1.0333 

16th step  46.0759 6.3502 1060.8 86.7969 2.3949 

5 
1st step  1.1957 0.0953 105.1 4.1120 0.5983 

16th step  47.2486 10.4861 1077.7 84.7124 2.4327 
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The obtained RBF ANN shows optimistic results with a simple structure as a method for the prediction of 
electric load in one room. The main virtue of this ANN model is its simplicity, which is based on the fact that 
the developed tool is very simple and the resources for its application are tiny and available at modern 
automation systems. In particular, in order to apply it to a control system, only data from simple sensors and 
electric power measurements are required. 

As a future work, another ANN will be developed in order to predict the HVAC power consumption used for 
cooling/heating the laboratory. Moreover, other future research line is the use of the ANN as the basis of a 
control system which, through the ANN model, will be able to maintain the thermal comfort of the users of 
building whereas the energy consumption necessary to reach this thermal comfort situation is minimized. 
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