
 

Conference Proceedings 
EuroSun 2016 

Palma de Mallorca (Spain), 11 ‒ 14 October 2016 
 

A constrained multi-objective optimization approach is used to optimize the exergy efficiency and material 
costs of thermocline packed-bed thermal energy storage systems. The storage height, top and bottom radii, 
insulation-layer thickness, and particle diameter were chosen as design variables. The competing objectives 
of maximizing the exergy efficiency and minimizing the material costs are dealt with by forming a Pareto 
front. The Pareto front allows the identification of the most efficient design for a given cost and is an 
important tool in the design of thermal energy storage systems. Constraints are imposed to obtain storage 
systems with a specified capacity. The optimization approach is applied to identify the influence of various 
design variables on the exergy efficiency and the material costs. The results show that a storage shaped like a 
truncated cone with the smallest cross-section on top has a higher exergy efficiency than common designs 
with a cylindrical shape or a truncated cone with the largest cross-section on top. The basic thermodynamic 
mechanisms leading to this superior performance are identified with detailed information about the axial 
temperature distribution in the packed bed and thermal losses through the structure and insulation materials. 

Keywords: thermal energy storage, thermocline energy storage, packed bed, exergy efficiency, multi-
objective optimization, Pareto optimality, Pareto front 

Thermal energy storage (TES) systems are required when there is a time difference between the availability 
and demand of thermal energy. Examples are concentrated solar power (CSP) [1] and advanced adiabatic 
compressed air energy storage (AA-CAES) plants [2]. CSP plants have an irregular power input due to the 
time-dependent nature of solar radiation and require TES to control the electricity output by partially 
decoupling electricity production from solar radiation. AA-CAES plants store the thermal energy produced 
during compression in a TES and use the stored energy later to reheat the air before expansion in a gas 
turbine. For both CSP and AA-CAES plants, the integration of a TES improves the system efficiency and the 
competitiveness on the electricity market [2, 3]. Especially thermocline TES systems using a packed bed of 
rocks as sensible storage material are suitable because they require only low-cost storage materials and have 
been shown to have high thermal efficiencies [4, 5]. 

The design of TES systems requires an accurate and efficient numerical model. A TES system is 
characterized by a large number of design variables and may need to satisfy several constraints and 
objectives. Tab. 1 lists the operational, geometrical, thermophysical, and performance parameters of a 
general TES system. The operational parameters are in general defined by the application in CSP or AA-
CAES plants, the values of the geometrical parameters are usually arbitrary but need to satisfy structural 
constraints, the thermophysical parameters depend usually on the temperature and pressure (and therefore the 
operational parameters), and the performance parameters are used to compare and characterize TES systems. 
The large number of geometric parameters can lead to very large number of design combinations. For 
example, considering ten values each of the storage height, the top and bottom radii, the two insulation 
layers, and the particle diameter would lead to  designs, each of which would need to be simulated long 
enough to reach quasi-steady-state conditions. If, in addition, a combination of three storage materials is 
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considered, the number of simulations would increase to . Even with efficient one-dimensional numerical 
models, the computational cost of evaluating this many designs is prohibitive. To reduce the computational 
cost of finding the optimal design, a numerical optimization procedure is essential. By optimal design, we 
mean a TES design that combines high efficiency with low costs. It is important to note that it is in general 
not possible to identify any single design as optimal because high efficiency and low cost are usually 
contradictory requirements. Instead, the optimization procedure should provide a series of designs depending 
on the relative importance of high efficiency compared to low costs.   

Tab. 1: Operational, geometrical, thermophysical, and performance parameters of general TES systems. The subscript i 
indicates that several instances of a particular parameter exist, such as multiple structural and insulation layers. 

Operational parameters Geometrical parameters Thermophysical parameters Performance parameters 
Mass flow: ,  
Charge/discharge time: ,  
Inflow temp.: ,  
Charge/discharge pressure: ,  

TES (packed-bed) height:  
Top/bottom radius: ,  
Structural thickness:  
Insulation thicknesses:  
Particle diameter:  
Packed-bed porosity:  

Thermal cond.: , ,  
Density: , ,  
Heat capacity: , ,  
Viscosity:  

Charged capacity:  
Net discharged energy:  
Supplied energy:  
Efficiency: ,  
Cost:  

Several TES optimization studies were published that optimize only the thermal performance of 
TES systems without considering the TES costs [6, 7] or consider a multi-objective optimization approach 
where the TES efficiency and the costs are optimized simultaneously [8-10]. The above-mentioned 
publications use models with strong simplifications to predict the TES performance, such as algebraic 
equations to calculate the one-dimensional temperature distribution in packed-bed TES systems, together 
with basic optimization methods such as the direct search method to find optimal operating and design 
parameters. The restrictive model simplifications and basic optimization methods can be used for a rough 
evaluation of packed-bed TES systems. To advance the scope and improve the accuracy of TES 
optimization, the model must be more sophisticated to simulate realistic charging and discharging cycles. 
Therefore, the TES model in this work is capable of handling variable charging, discharging, and idle 
periods, multiple structural and insulation layers with different thicknesses, non-cylindrical TES geometries, 
and temperature-dependent thermophysical properties. In addition, an efficient optimization method is 
required to reduce the computational costs. In this work, the objective function is formed from the exergy 
efficiency at the quasi-steady state and the material costs. We expect the objective function to be continuous 
and to have a single maximum. Because reaching the quasi-steady state often requires a large number of 
charge-discharge cycles to be simulated, the objective function can be relatively expensive to compute. To 
decrease the computational cost, the number of evaluations of the objective function should be small. 
Therefore, the gradient-based sequential quadratic programming (SQP) algorithm is used for the 
optimization in this work. 

The objective of the present study is to use multi-objective optimization to design packed-bed TES 
systems with rocks as heat-storage medium and air as heat-transfer fluid (HTF). The objective function is 
formed from the exergy efficiency and the material costs. The design variables include the packed-bed 
height, top and bottom radii, insulation-layer thicknesses, and particle diameter while the net discharged 
energy and the packed-bed volume are used as nonlinear constraints. The trade-off between increasing the 
exergy efficiency and reducing the TES material costs is demonstrated through the concept of Pareto 
optimality to identify optimal designs that combine a high efficiency with low costs.  

The optimization tool is a combination of a previously developed heat-transfer model [4] and the 
optimization package NPSOL [11, 12]. The coupling of the heat-transfer model with the optimization 
package is described in [13].  

The heat-transfer model can accurately predict the one-dimensional temperature distribution of packed-bed 
thermocline TES systems and is described in [4]. The model was verified with the exact solutions for the 
simplified cases of no axial conduction and wall losses during the first charging of the TES [14] and during 
the steady charging-discharging behavior in the limit of fast switching times [15]. Several experimental 

 



 
studies were used to validate the model, including storages with rocks [5] and ceramic particles [16] using air 
as HTF and a storage with a combination of quartzite and sand using molten salt as HTF [17]. 

The optimization package NPSOL uses the SQP method to minimize an objective function that depends on 
design variables and linear and non-linear constraints [18]. The optimization problem can be formulated as 

minimize  subject to  with  (1) 

where  is a vector of  design variables,  is the objective function,  and  are vectors with the lower 
and upper bounds of each design variable,  is a  matrix describing the  linear constraints, and 

 is a vector with  nonlinear constraint functions. The values of , , , and the initial values of  are 
required as input parameters to NPSOL. The functions  and  are calculated by the TES code 
described above and provided to NPSOL. Besides the function values of  and , the SQP method 
requires also the gradients of  and  with respect to each design variable. 

To avoid the “step-size dilemma” of finite-difference methods, the complex-step derivative approximation is 
used [19-21]. This method uses complex calculus to calculate the derivative without subtraction and hence is 
unaffected by cancellation errors. This allows a very small step size to be used to reduce the truncation error 
and therefore the accuracy of the complex-step derivative approximation can exceed the accuracy of finite 
difference by several orders of magnitudes [19, 21]. 

To apply the complex-step derivative approximation, the floating-point variables and constants used 
in the TES code are converted into complex variables and constants and the intrinsic Fortran functions and 
operators are overloaded to handle complex arguments. The conversion process is automated by a code that 
adjusts all Fortran files and the overloaded intrinsic functions and operators are defined in an additional 
Fortran module similar to [21]. By introducing a complex step size to a specific design variable, e.g. , 
while setting the complex part of the other design variables to zero, the complex part of the objective 
function  can be used to approximate the derivative of the objective function with respect to this 
particular design variable using 

 

 (2) 

where  are the design variables and h is the complex step size (typically chosen to be ). The 
same procedure can be applied to any function calculated by the converted TES code. 

The objectives in multi-objective optimization are in general competing, so one objective can only be 
improved when at least another objective is worsened [22]. This trade-off can be visualized with the Pareto 
front that describes the best possible combinations of the competing objectives within the objective function 
space [23]. Several approaches exist to combine the competing objectives to calculate the Pareto front [24]. 
One of the simplest methods is the weighted-sum method in which a single objective function is calculated 
by combining the competing objectives according to 

 (3) 

where  is the total number of objectives and  is the relative weight of objective . The sum of all 
weights is equal to unity. For competing objectives, the Pareto front can be computed by varying the weights 
gradually and computing for each set of weights the optimum of the weighted sum [25]. 

Two objective functions are considered in the present study: the exergy efficiency of one charge-
discharge cycle at the quasi-steady state and the material costs of the TES. The weighted sum of these two 

 



 
objective functions is given by  

 (4) 

where  is the exergy efficiency,  is the total material cost of the TES, and  is an estimation of 
the material cost. The normalization is used to avoid one objective function dominating the other. The exergy 
efficiency is defined in [4] and the material cost of the TES is computed from 

 (5) 

where  is the total number of materials,  is the volumetric cost of material , and  is the volume of 
material . The material cost includes the storage material, the structural materials, and the insulation 
materials. The volumetric costs of the various materials are given in [4]. 

In the present study, two non-linear constraints are considered: the net discharged energy  and the 
packed-bed volume . The net discharged energy describes the net thermal energy extracted from the TES 
during discharging and is given by 

 (6) 

where  is the mass flow rate and  is the temperature-dependent enthalpy of the HTF. The volume of the 
packed bed is calculated with the well-known expression for a conical frustum. 

The results will be presented in two parts. In the first part, the optimization procedure is illustrated by using a 
simple TES configuration characterized by two design variables. This allows the objective and constraint 
functions to be visualized. In the second part, a pilot-scale TES, similar to that shown in [5], is optimized for 
several combinations of design variables. For the second part, each multi-objective optimization considers 
the exergy efficiency and the material costs as objective functions and uses the weighted-sum method as 
shown in Eq. (4) to find Pareto-optimal solutions. Each multi-objective optimization uses 9 values of the 
weight ( 1.0, 0.99, 0.95, 0.8, 0.5, 0.2, 0.05, 0.01, 0.0 ) to form the Pareto front. For all configurations, 
the TES geometry is a truncated cone with variable top and bottom radii. The structure of the TES is given 
by two concrete layers consisting of ultra-high performance concrete (UHPC) and low-density concrete 
(LDC) together with two layers of insulation material consisting of Microtherm® (MT) and Foamglas® 
(FG) as explained in [5]. To calculate the thermal losses through the structure and insulation layers, the outer 
wall of the TES is assumed to be at ambient temperature. The thermophysical properties of all structure, 
insulation, and thermal storage materials and the HTF are temperature-dependent as specified in [26]. Each 
TES simulation is run until a quasi-steady state is reached.  

A simple method to visualize and examine the optimization procedure is to use one or two design variables 
and plot the objective and constraint functions as a function of the design variables. The visualization of the 
optimization procedure is done for the pilot-scale TES with a fixed packed-bed height of  and the 
top and bottom packed-bed radii of the TES as design variables. The used model parameters are listed in  
Tab. 2. Fig. 1 shows contour lines of the exergy efficiency, the material costs, the net discharged energy, and 
the packed-bed volume, as a function of the top and bottom packed-bed radii. The visualization depicted in 
Fig. 1 is based on 400 quasi-steady-state TES simulations for discrete values of the design variables together 
with a linear interpolation routine to smooth the contour lines. 

Fig. 2 shows on the left-hand side the exergy efficiency as a function of the top and bottom packed-
bed radii together with the optimization iterations for different initial conditions and on the right-hand side a 
close-up of the computed optima together with the predicted optimum. Depending on the initial condition, 

 



 
the optimizer requires between 12 and 35 iterations to reach the optimum. The computed optima differ by 
less than 0.01% from the optimum predicted from the interpolated results of the 400 quasi-steady-state 
simulations. Compared to a systematic approach with twenty discrete values for both design variables and 
the simulation of all design combinations, the gradient-based optimization reduces the computational cost by 
about 91 and 97%. This reduction will be even more significant when the number of design variables is 
increased. 

Tab. 2: Operational and geometrical parameters of the pilot-scale TES model. 

Operational 
parameters 

charging duration,    

Geometrical 
parameters

void fraction,  
discharging duration,    particle diameter,  
mass flow rate, air   1st concrete layer,  
charging temperature,  K  2nd concrete layer,  
discharging temperature,  K  1st insulation layer,  
ambient temperature,  K  2nd insulation layer,  

 

 
Fig. 1: Exergy efficiency, material cost, net discharged energy, and packed-bed volume as a function of the top and bottom 
packed-bed radii of the TES for a fixed packed-bed height of m and TES model parameters according to Tab. 2. 

 
Fig. 2: Left-hand side: exergy efficiency as a function of the top and bottom packed-bed radii of the TES together with 
optimization iterations for different initial conditions. Right-hand side: close-up of the computed optima for all initial conditions 
(symbols) and the predicted optimum (dashed lines). 
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To simplify the interpretation of the multi-objective optimization results, the TES configurations have the 
same operating conditions but different numbers of design variables and constraints. With this approach, the 
influence of individual design variables on the optimization results can be pointed out. The optimization uses 
two nonlinear constraints and five design variables as shown in Tab. 3. The nonlinear constraints are the net 
discharged energy and the packed-bed volume and the design variables are the height, top and bottom radii 
of the packed bed, the outer insulation-layer thickness, and the particle diameter. For simplicity, the 
considered structure and insulation materials have on the top, bottom, and side walls of the TES the same 
thicknesses. Depending on the optimization configuration, the packed-bed volume and some of the design 
variables are fixed or variable as indicated in Tab. 3. To have a benchmark for the designs, the net discharged 
energy is used as constraint and must be . (For all configurations,  does not exceed 

.) 

Tab. 3: Nonlinear constraints and design variables of the pilot-scale TES optimization configurations. 

Configuration  1 2 3 

Nonlinear constraints net discharged energy,        
packed-bed volume,      

Design variables 

packed-bed height,    −   −   
top radius,  −   −   −   
bottom radius,  −   −   −   
outer insulation,      −   
particle diameter,      −   

 

The first configuration uses  and  as nonlinear constraints and the top and 
bottom packed-bed radii as design variables. With a fixed packed-bed volume, all Pareto-optimal solutions 
must lie on the contour indicating a packed-bed volume of  in Fig. 1. 

Fig. 3 depicts the TES geometries for the two extreme cases  and  together with the 
intermediate case  according to Eq. (4). (During charging, the HTF enters the TES from the top and 
exits from the bottom; during discharging, the flow direction is reversed.) The inflow and outflow ports are 
not indicated in Fig. 3 because they are not considered in the simulations. 

For the Pareto optimal designs, a comparison of the TES material costs are presented in Fig. 4. Since 
the packed-bed volume is constant, the cost of the storage material is constant and the cost reduction is 
caused by the reduction of the required structure and insulation material. The cost of the storage material is 
negligible compared to the structure and insulation material. The cheapest design has a cylindrical shape 
because this minimizes the surface area per volume and accordingly requires the smallest amount of structure 
and insulation materials. 

The Pareto front of the two objective functions is presented on the left-hand side of Fig. 5. The exergy 
efficiency can only be increased when the TES material costs is increased, which reflects the trade-off 
between maximizing the exergy efficiency and minimizing the material costs of a TES system. From the 
Pareto front, it is possible to identify the most efficient TES for a given cost and vice versa. The right-hand 
side of Fig. 5 shows the exergy efficiency as a function of the top and bottom radii of the packed bed. The 
difference between the top and bottom radii decreases with decreasing exergy efficiency while the top radius 
is smaller than the bottom radius until a cylindrical shape is reached. Next to the exergy efficiency, the left-
hand side of Fig. 5 also presents the exergy-loss breakdown that indicates how the pumping work, thermal 
loss, and internal heat transfer decrease the exergy efficiency. The main decrease of the exergy efficiency 
results from an increase of the thermal loss while the exergy loss due to internal heat transfer stays for all 
designs almost constant and the required pumping power is negligible. 

Fig. 6 shows on the left-hand side the net charged and net discharged exergy for each design. The net 
charged exergy stays constant and with a negligible exergy loss due to the required pumping power, the 
exergy efficiency depends mainly on the net discharged exergy. The net discharged exergy increases when 
the air outflow temperature during discharging increases. The comparison of the HTF outflow temperature 
during discharging for designs 1 and 9 is shown on the right-hand side of Fig. 6. As expected, for both 
designs the outflow temperature decreases during discharging while for design 1 the mean outflow 

 



 
temperature is about 11 K higher than for design 9.  

The mean outflow temperature during discharging is strongly influenced by the energy losses through 
the TES walls, particularly the top wall. Fig. 7 compares for all designs of Configuration 1 and for one 
charge-discharge cycle the energy losses from the storage material to the structure and insulation material 
through the top and side walls. When comparing the cheapest with the most efficient design, the losses 
increase by about 800 and 140%, respectively. This increase depends mainly on the increase of the top radius 
and accordingly an increase of the surface areas on the top wall and the upper part of the side wall where the 
temperatures and the temperature gradients to the outside are higher than in the lower section of the TES. 
The loss through the bottom wall is negligible compared to the top and side wall losses because the bottom 
wall temperature is close to the ambient temperature. 

Fig. 8 shows the thermocline of the fully charged and fully discharged states for designs 1 and 9. The 
thermoclines of the two designs differ mainly in the upper section where the hot air enters the TES during 
charging. Compared to design 9, design 1 has a smaller cross-section in the upper part that leads to a higher 
flow velocity of the HTF and accordingly the temperature front moves further down during charging. An 
additional effect of the higher flow velocity is a higher Nusselt number that leads to a better interphase heat 
transfer. 

The efficient designs in this study have, as depicted in Fig. 3, a shape like a truncated cone with the 
smaller cross-section on top and accordingly a negative cone angle. This shape is in contrast to existing 
designs that are either cylindrical [17] or have a positive cone angle [27, 28]. The trend of negative cone 
angles having smaller losses is consistent with the results shown in Fig. 13 of [27]. In prior works, negative 
cone angles appear to have not been considered because of possible drawbacks related to thermal ratcheting. 
Thermal ratcheting is a well-known problem of packed-bed TES systems caused by different thermal-
expansion rates of the storage and structural materials. The different expansion rates can cause the storage 
material to settle and pack with cycling and eventually cause the storage structure to fail [29, 30]. To prevent 
material failure, positive cone angles have been suggested as a way to guide the expanding storage material 
upwards along the inclined wall and hence reduce the stresses on the storage and structural materials [27, 
28]. This study does not consider mechanical stresses for simplicity. The practical implementation of a 
packed-bed thermocline storage with negative cone angle may require structured storage materials [31, 32] 
or additional material layers between the storage material and the structure to absorb the mechanical stresses 
[33]. 

  
Fig. 3: Visualization of Pareto-optimal designs with  = 1.0, 
0.5, and 0.0 of Configuration 1. 
 

Fig. 4: Breakdown of the TES material costs for the Pareto-
optimal designs of Configuration 1. 
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Fig. 5: Left-hand side: exergy efficiency and the exergy-loss breakdown as a function of the TES material costs. Right-hand side: 
exergy efficiency as a function of the top and bottom packed-bed radii of Configuration 1. 

 
Fig. 6: Left-hand side: net charged and discharged exergies during one charge-discharge cycle for the Pareto-optimal designs. 
Right-hand side: HTF outflow and mean temperature during discharging for two designs of Configuration 1. 

 

  
Fig. 7: Energy losses over the top and side walls from the 
storage material to the structure and insulation material 
during one charge-discharge cycle for the Pareto-optimal 
designs of Configuration 1. 

Fig. 8: Air temperature along the axial direction at fully 
charged and fully discharged state for two designs of 
Configuration 1. 

 

The second configuration of the multi-objective TES optimization uses  as a nonlinear 
constraint and the height and the top and bottom radii of the packed bed as design variables. Compared to 
Configuration 1, the packed-bed volume is variable. The storage geometries are depicted in Fig. 9 for the two 
extreme cases  and  and the intermediate case .  

Fig. 10 shows the exergy efficiency as a function of the packed-bed height (left), the packed-bed 
volume (middle), and the material costs (right). When increasing the height, the volume and therefore the 
material costs increase considerably. An increased height has a favorable influence on the exergy efficiency 
by expanding the thermocline and reducing thereby the possibility of overcharging and overdischarging the 
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TES, which leads to an undesirable increase and decrease of the outflow temperatures during charging and 
discharging, respectively. This trend can be seen in Fig. 11 where the fully charged and discharged 
thermoclines of the most efficient and cheapest designs are presented. The most efficient design has 
temperature difference between the fully charged and discharged states of about 10 K at the top and bottom 
of the storage whereas the temperature differences of the cheapest design are about 200 K. Depending on the 
application of the TES, the minimum and maximum outflow temperatures during the charge-discharge cycle 
are important operational parameters that need to be considered during the design phase of the TES. For 
brevity, the breakdown of the TES material costs is not shown. 

 
Fig. 9: Visualization of TES geometries for Pareto-optimal designs with  = 1.0, 0.5, and 0.0 of Configuration 2. 

 

 

The third configuration of the multi-objective TES optimization uses  as a nonlinear 
constraint and the height, the top and bottom radii of the packed bed, the thickness of the outer insulation 
layer, and the particle diameter as design variables. The TES geometries for the two extreme cases  
and  and the intermediate case  are depicted in Fig. 12. Compared to Configuration 2, the 
main difference of the TES geometries is the increased outer insulation-layer thickness of design 1.  

Fig. 13 shows on the left-hand side the exergy efficiency as a function of the outer insulation-layer 
thickness consisting of Foamglas®. As expected, the more efficient designs have a larger insulation-layer 
thickness, which reaches the upper limit of 1.0 m and the lower limit of 0.01 m for the most efficient and for 
the cheapest designs, respectively. Increasing the insulation-layer thickness reduces the thermal losses 
through the top, bottom, and lateral walls but also increases the material costs as indicated on the right-hand 
side of Fig. 12. A breakdown of the material costs is shown in Fig. 14. For all designs, the cost for the 
insulation materials is the major contributor to the total TES material costs while the cost for the storage 
material is negligible. The four most efficient designs have an outer insulation-layer thickness between 0.66 
and 1.0 m that contributes to about half of the total costs. Reducing the required amount of the insulation 
material is therefore essential to reduce the material costs. 

Fig. 15 presents the exergy efficiency and the exergy-loss breakdown as a function of the particle 

  
Fig. 10: Exergy efficiency as a function of the packed-bed height, pack-bed 
volume, and TES material costs for the Pareto-optimal designs of 
Configuration 2. 

Fig. 11: Air temperature along the axial 
direction of the fully charged and fully 
discharged TES for two designs of 
Configuration 2. 
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diameter. The exergy efficiency increases with increasing particle diameter. The least efficient design has a 
particle diameter that is equal to the lower limit of 1.0 mm while the most efficient design has a particle 
diameter that is 21.5 mm and therefore below the upper limit of 100.0 mm. A decreasing particle diameter 
influences the TES performance in two ways: it increases the heat transfer between the solid and fluid phase 
and it increases the pressure drop over the packed bed. An increasing heat transfer reduces thermal 
irreversibility and therefore increases the exergy efficiency while an increasing pressure drop increases the 
exergy loss due to the required pumping power and therefore decreases the exergy efficiency. The strong 
increase of the required pumping power for very small particles can be seen from the exergy-loss breakdown 
in Fig. 15. For design 9, the required pumping power is about 140 times bigger than for design 1. The 
increase of the heat transfer between the solid and fluid phase for a decreasing particle diameter results 
mainly from an increase of the specific surface area. The optimal particle diameter is therefore a trade-off 
between increasing the pressure drop and increasing the interphase heat transfer. 

 

  

Fig. 12: Visualization of TES geometries for Pareto-optimal 
designs with  = 1.0, 0.5, and 0.0 of Configuration 3. 

Fig. 13: Exergy efficiency as a function of the outer 
insulation-layer thickness (left) and the TES material costs 
(right) for the Pareto-optimal designs of Configuration 3 

 

  
Fig. 14: TES material costs for the Pareto-optimal designs of 
Configuration 3. 
 

Fig. 15: Exergy efficiency and exergy-loss breakdown as a 
function of the particle diameter for the Pareto-optimal 
designs of Configuration 3. 

A gradient-based multi-objective optimization method was used to optimize the exergy efficiency and the 
material costs of packed-bed TES systems based on their height, top and bottom radii, insulation-layer 
thickness, and particle diameter. Competing objectives like maximizing exergy efficiency and minimizing 
material costs are treated using Pareto fronts. The Pareto front shows the best possible TES designs and 
enables the most efficient TES for a given cost to be determined. 

A systematic optimization of three pilot-scale TES configurations was used to point out the 
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influence of individual design variables on the exergy efficiency and material costs. In general, increasing 
the TES height increases the exergy efficiency but also increases the material costs. The optimization of the 
top and bottom radii showed that a TES design with a negative cone angle has a higher exergy efficiency 
than commonly used cylindrical shaped TES or designs with a positive cone angle. This results mainly from 
a reduced surface area in the hot upper section of the TES and therefore decreased thermal losses to the 
environment. The basic thermodynamic mechanisms leading to the superior performance of a TES with a 
negative cone angle were identified with detailed information about the axial temperature distribution in the 
packed bed and thermal losses through the structure and insulation materials. The potential mechanical 
drawbacks of a negative cone angle related to thermal ratcheting are not considered in this work but could 
perhaps be solved by using structured storage materials without loose particles or material layers that absorb 
the thermomechanical stress during charge-discharge cycles. Detailed material-cost breakdowns showed that 
for low-cost storage materials like rocks, a reduction of the required insulation material is essential to further 
reduce the TES material costs. In addition, the optimization revealed the trade-off between reducing the 
pressure drop and improving the interphase heat transfer when optimizing the particle diameter. 
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