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Abstract 

Solar power plants are very interested in the prediction of power net generation and the instabilities that can affect 
the production of the plant. System Advisor Model (SAM) is widely used to simulate the behavior of concentration 
solar power plants, where different inputs parameters can be considered for simulations. Reliable short-term 
forecasting of the solar resource has significant positive consequences since it helps the planning of power plant 
operators for power dispatch and assess the plant reliability and the market trends. In this work, we quantify the 
accuracy of the electricity predictions of a solar power plant at different hour-scale, by using the solar irradiance 
forecasting obtained from Meteosat satellite images. For that, we have simulated the power generation of a solar 
power plant taking as input the solar irradiance forecasting with the purpose to determine the best forecast horizon 
time. The main novelty in this work is the analysis on the impact of short-term forecasting of DNI in the plant 
energy output at different forecasting horizons in solar tower plants with large thermal storage systems. 
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Introduction 

The growing human population is causing an ever-increasing demand for conventional energy resources, which 
results in environmental negative effects. Renewable energies offer a viable and potent solution to counter the 
effects of this problem since they are pollution free, inexhaustible and affordable. In this context, solar energy 
technologies are growing in the last two decades being an alternative of conventional ways to produce electricity. 
Before constructing a solar power plant, several simulations are carried out to determine the best emplacements 
where technology can optimize the final production. System Advisor Model (SAM) is a software, which allows 
to determine a complete list of features to consider a plant in a concrete region. Developed and delivered at no 
cost by NREL (National Renewable Energy Lab), it has become the standard model for calculating the 
performance of solar thermal and photovoltaic plants since it has proven high reliability and performance 
compared to TRNSYS libraries designed for modeling CSP plants (Dobos et al., 2014; Wagner, 2008; Wagner 
and Gilman, 2011). Once that the solar plant has been built, the operation mode plays an important role. Decisions 
can increase the optimization of the plant and, subsequently, the electricity production and grid-power integration. 
Solar irradiance predictions are one of the best techniques to introduce in the operator systems for determining 
the future episodes that can affect the plant working. Concretely, Meteosat Second Generation (MSG) images are 
commonly used in the meteorological field, providing images every 15 mins, serving as relevant data for many 
researchers, for predicting the atmospheric conditions in short and large temporal scales (Alonso-Montesinos and 
Batlles, 2015; Boulifa et al, 2015).  
In this work, we present a first approximation of the electricity generation simulation, where satellite predictions 
are used as input of the SAM simulation software. The aim is to obtain some deterministic characteristics for the 
choosing of the best forecasting horizon time, which would be very useful in the management and optimization 
of a solar power plant. 
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Data acquisition and solar plant design 

Radiation data are obtained from a radiometric station placed at the CIESOL building at the University of Almería, 
Spain (36.8º N, 2.4º W, at sea level). The meteorological station has a two-axes solar tracker (2AP Kipp&Zonen) 
above which direct, diffuse and global radiation sensors are installed. Furthermore, we collect images from a 
Meteosat Second Generation (MSG) satellite station, also placed on the roof of the CIESOL building. Radiation 
data are collected every minute. For the forecasting radiation, MSG satellite channels are collected every 15 
minutes for 2013 and 2014 years.  

The solar tower plant performance has been modeled with the System Advisor Model (SAM). SAM is a free and 
open source tool developed and distributed by the National Renewable Energy Laboratory (NREL) for estimating 
the energy production of different renewable energy systems (Dobos et al., 2014). In this work, the specific module 
for molten salt power tower systems is used (Neises and Wagner, 2012; Wagner, 2008). For the simulation of the 
solar power plant, one molten salt solar tower plant is selected as reference: Gemasolar, which is as a small plant 
with a very large thermal storage system. According to the case studies reported by NREL, the uncertainty in the 
annual production of Gemasolar plant computed with SAM is around 2.4%. Gemasolar has a total solar field area 
of 305401 m2, the tower height is 140 meters with a total of 2650 heliostats. The technology is based on central 
receiver, using NaNO3-KNO3 as heat transfer fluid. The power block has 19.9 MWe and the total capacity for 
storage is 15 hours. 

 

 

Methodology 

This section introduces the methodology for power gross output of a central tower plant, combining remote 
sensing techniques SAM simulations.  

 

3.1. Intra-hour DNI forecasting  

For power gross output, it is necessary to carry out a solar radiation forecasting to know the radiation level 
available in the near future. For that, three consecutive images are processed to determine the vectors that identifies 
the pixel motion along the time based on cloud detection. Figure 1 shows a MSG satellite image, where the raw 
image (upper image) represents the Iberian Peninsula, focusing the interest in the CIESOL area (marked in red 
and presented in the bottom-left image), and the final image represents the identification of clouds in this area.   
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Fig. 1: MSG satellite image obtained on 10th February 2018 at 12:00 hours. 

 
 

For each image collected every 15 minutes, 5 channels are used from the total 11 spectral channels. These channels 
are VIS 0.6, VIS 0.8, IR 3.9, IR 10.8 and IR 12.0. The images received are reduced, taking a 121x161 pixel raster 
image is taken, centred on the University of Almería. After that, an algorithm for detecting the presence of any 
clouds is applied in the various atmospheric layers of the raster map, considering full raster image (Escrig et al. 
2013).  With the cloud detection carried out in the three consecutive images, it is determined the cloud motion 
vectors. When vectors are calculated, the estimation of solar irradiance is obtained from the last image applying 
the Heliosat-2 method (Rigollier et al. 2000). Basically, this method considers the DNI estimation under cloudless 
skies for next applying an attenuation factor determined by presence of clouds. The expression which represents 
this approach can be defined as follows: 

 

ܫܰܦ ൌ  ,௖௦   (eq. 1)ܭ௦௞௬	௖௟௘௔௥ܫܰܦ

 

where ܫܰܦ௖௟௘௔௥	௦௞௬ is the DNI predicted for a clear sky condition using the ESRA model and ܭ௖௦ is the attenuation 

factor considering the presence of clouds. 

In order to determine the value of ܫܰܦ௖௟௘௔௥	௦௞௬, eq. 2 defines the expression to obtain the aforementioned 

value. 

 

௦௞௬	௖௟௘௔௥ܫܰܦ ൌ ሻߙሺ	sin	ߝ	଴ܫ ௥ܶ௕ሺߙሻ   (eq. 2), 
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where	ܫ଴ is the solar extraterrestrial radiation, ߝ is the correction used for the variation in the sun-earth distance 

from its mean value, ߙ is the solar altitude angle and ௥ܶ௕ሺߙሻ is an expression which related the Linke Turbidity 

factor and the Rayleigh optical thickness, as a function of the ߙ angle.  

When ܫܰܦ௖௟௘௔௥	௦௞௬  is obtained for cloudless skies, the last step for estimating the DNI value is to obtain the ܭ௖௦ 

value through Heliosat 2 method which employs satellite images to calculate atmospheric attenuation (Rigollier 
et al. 2004; Alonso-Montesinos et al. 2015). The next expression shows the process to determine this attenuation 
factor at the pixel level: 

 

݊ ൏ 	െ0.2, ௖௦ܭ ൌ 1.2     (eq. 3),	
െ0.2 ൏ ݊ ൏ 0.8, ௖௦ܭ ൌ 1 െ ݊	
0.8 ൏ 	݊ ൏ 1.1, ௖௦ܭ ൌ 2.0677 െ 3.667	݊ ൅ 1.667	݊ଶ	
݊ ൐ 	1.1, ௖௦ܭ ൌ 0.05 

where n is the cloud index, obtained using the albedo retrieved from satellite image. 

After that, there are two matrices, each with 121x161 pixels: one matrix corresponds to the ܫܰܦ௖௟௘௔௥	௦௞௬ 
estimations whereas the other one represents/corresponds to the ܭ௖௦ factor, both of them at pixel level. Therefore, 
the next step consists of determining the future DNI values. As one motion represents a 15-minute prediction, 12 
motions are practiced to obtain a forecast from 15 to 180 minutes. Consequently, we have applied cloud motion 
vectors to each pixel of the raster image. 
Therefore, for having a final DNI forecasting, when the ܭ௖௦ pixels are moved, the ܫܰܦ௖௟௘௔௥	௦௞௬ is estimated for 

the future moments and for a cloudless sky in all the pixels of the satellite raster image (Alonso-Montesinos et al. 
2015), ending with the product between the ܫܰܦ௖௟௘௔௥	௦௞௬, estimated in a pixel, and the ܭ௖௦, in the same pixel, 

generating the final DNI forecast.  

 

3.2. Power plant simulation 

 
After obtaining the DNI forecasting from 15 minutes to three hours, we simulate the power net production of a 
central tower solar power plant including the predictions obtained from satellite images. The aim is to compare 
the output gross production using each DNI prediction and the real DNI value to compare the differences, due to 
we simulate that Gemasolar plant is located in the CIESOL emplacement. Due that, we can use measured data 
from CIESOL’s radiometric station.  

The simulations are undertaken by means of the SAM software. The results obtained are then used to determine 
the best forecasting horizon by analyzing the impact of meteorological input compared to the experimental 
irradiance. For this work, the extinction model was used by default according to 25 km of visibility, not 
considering atmospheric attenuation measurements. This impact can be included in the operation and decisional 
way of a solar power plant management control system. The first results show that the predicted and real scenarios 
follow an interesting trend that can be deterministic in the choosing of the best forecasting time-scale applied in a 
solar power plant.  
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Results 

 
Before to present the graphs for the two different plants, the trend between DNI experimental values and DNI 
forecasting values is analyzed. This result is the first parameter considered for determining the accuracy of the 
prediction model. Fig. 2 represents the total DNI for one year using experimental data against the DNI for the 
same year using the 12 predictions each one for 15 minutes, in an interval that goes from 15 to 180 minutes. 

 

 

Fig. 2: Daily DNI for UAL emplacement. 

 

In general, the main and important characteristic is the similitude between experimental and predicted data. This 
fact indicates the good concordance obtained from predictions using MSG images regarding to the measured DNI 
values. The trend goes from lower values (first and last part of the graph) that corresponds with winter days, 
reaching an average daily DNI value of 3000 Wm-2, whereas for central days in the year (corresponding to summer 
days) this value is centered in 7000 Wm-2. Obviously, there are important oscillations occasioned by clouds 
covering the surface of study, but they are well represented by the satellite predictions. 

Considering the forecast method suitable according the results observed, the next consideration is to analyze the 
impact of the forecast interval in CSP plants. To represent the degree of concordance between the energy output 
obtained from simulation using real DNI values and obtained from simulation using DNI predictions, it has been 
developed one graph for the CSP plant. 

 

J. Alonso-Montesinos / EuroSun 2018 / ISES Conference Proceedings (2018)

 



 

 

 

Fig. 3: Forecasted and simulated daily gross output for the UAL emplacement. 

 

The daily gross energy output for Gemasolar plant follows a similar pattern than daily DNI, however, the 
oscillations present a lower amplitude, thanks to the plant's capability for producing energy using the heat stored 
in the molten salt tanks. The peak energy output values appear in summer where there are more hours of sunshine, 
reaching values near to 500 MWh. Moreover, the results show that the forecasting energy is in general agreement 
with the experimental in terms of the dynamics along the year. However, the forecasted energy has a trend to 
overestimate the energy. More detailed, green line is the more visible along the year, so, the other predictions 
present better approximations. 

The accuracy of the predictions is analyzed in terms of both the root mean square error (RMSE) and mean bias 
error (MBE) between the predicted values Yest and the measured ones, Ymea. They are expressed as a percentage of 
the mean value of the latter, തܻ௠௘௔. The RMSE gives information about how concentrated the data are around the 
line of best fit and the MBE shows the tendency of the model to provide over- or under- estimation predictions. 
They are calculated according to Eqs. 4 and 5: 

 

ሺ%ሻܧܵܯܴ ൌ
ଵ଴଴

௒ത೘೐ೌ
ටଵ

ே
∑ ሺ ௘ܻ௦௧ െ ௠ܻ௘௔ሻଶே
௜ୀଵ  (eq. 4), 

 

ܧܤܯ ൌ 100
భ
ಿ
∑ ሺ௒೐ೞ೟ି௒೘೐ೌሻ
ಿ
೔సభ

௒ത೘೐ೌ
					 (eq. 5). 

	

 
 
 
 
 
 
 
 
 
 
 
 

J. Alonso-Montesinos / EuroSun 2018 / ISES Conference Proceedings (2018)

 



 

 

Figure 4 shows the relative metrics for the performance in daily basis, the MBE and the RMSE for Gemasolar 
plant.  

 

Fig. 4: MBE and RMSE results for the predictions from 15 minutes to 2 hours in Gemasolar plant. 

 

The bias of the forecasted DNI  presents a monotonically increase trend with the forecasting horizon while the 
RMSE exhibits an almost constant value of around 15% for daily values and for any forecasting horizon The bias 
clearly shows the overestimation  tendency of all the forecasting horizons corresponding to the daily power output 
predictions. However a minimum bias and RMSE can be observed at around 75 and 90 minutes of forecasting 
horizon. Similarly, the RMSE decreases with the forecasting horizon till 90 minutes where it is placed around 
24% in daily basis for both plants. Beyond 90 minutes, the RMSE (%) turns to an increase trend with the 
forecasting horizon. These results would suggest an optimum forecasting horizon for this type of solar tower 
plants with large thermal storage systems. 

Moreover, it is important to focus the attention in one particular because of the influence of the prediction can 
play a deterministic role for adapting the CSP plant management. 

 

Conclusions 

In this work, a novel CSP power output forecasting has been presented, where satellite images along with the 
SAM simulation software are used to predict DNI values from 15 minutes to three hours.  

A prototype of central tower power plant based on the Gemasolar plant and located at the University of Almería 
(Spain), where measured and predicted DNI are available, is used to undertake the simulations  

The results obtained analyzing the full year of DNI prediction show a good concordance between measured and 
predicted values. In general terms, the DNI is overestimated along with RMSE values lower than 15% for all 
forecast horizons. 

The power output is overestimated about a 10-17%. Furthermore, the results manifest a best approximation at 90-
min horizon, with a MBE value of 12% and a RMSE value of 23%. In this respect, the molten salt thermal storage 
can modify the behavior of the DNI forecasting error, presenting better results within this specific horizon interval.  

Therefore, this work has left in evidence that forecasting horizon plays an important role in the power output 
forecasting that can be decisive in the study of viability and management of a CPS plant.  
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