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Abstract 

Renewable-based production plants for District Heating Networks (DHN) should be deployed massively in the 

coming years. The present document introduces to the community a new pre-feasibility study tool, ENRSIM, to 

simulate such plants. That business-oriented tool allows the simulation of plants with up to 3 different units with 

an optional thermal storage. The plant model is implemented in Dymola and controlled using field-based expert 

laws using a co-simulation platform. Computation is performed over 1 year at a time step of 1 hour and takes 

about 1 minute on a standard laptop. An example including solar, biomass, gas and storage is here presented 

highlighting the type of results obtained. The example is extended to predictive control highlighting that the latter 

associated to MILP programming leads to optimal interactions between the components. A minimal increase of 

4.3% in renewable energy content and 77% in biomass boiler startups was obtained using predictive control as 

opposed to field based expert laws. 
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1. Introduction and tool features 

Due to their ability to distribute large amount of renewable energy, District Heating Networks (DHN) are expected 

to exhibit a considerable development in the coming years in France (DGEC France, 2019). In that context, the 

appropriate sizing of the renewable-based production units in accordance to the other production units becomes a 

prime objective. Traditional sizing methods are static and combine the demand monotone together with linear cost 

characteristic to obtain a break-even diagram (Frederiksen and Werner, 2013). The latter results in a piling of the 

heat generators on the demand monotone as a function of their profitability zones, which depend on their hours of 

operation. Another solution is to use dynamic tools (such as EnergyPRO®) and successive calculations. 

The ENRSIM software, introduced by the present paper and cofounded by the French Renewable Energy Agency 

(ADEME), aims at providing such a simple dynamic tool for multi-renewable based DHN plants simulations, 

particularly for the integration of solar energy and storage. It targets mostly engineering offices and collectivities. 

It is available in French and English. The user can simulate up to 3 generators in the following list: Solar thermal, 

Biomass boiler, Gas boiler, CHP and Heat pump. Daily storage common to all generators and dedicated daily 

storage for each solar field can be setup. Finally, various configurations (serial and parallel) can be simulated. As 

the tool focuses on solar thermal, many parameters are available for the solar plant while the other heat units have 

a limited number of parameters. 

Operational performances of complex energy systems can be significantly underestimated when rule-based 

(expert laws) control is used (Giraud et al., 2017). Thus, appropriate sizing of storage capabilities is sub-optimal 

when using tools based on such rules. The reasons are: i) they do not consider a time horizon compatible with the 

storage time constant and ii) they pre-assume specific utilization of the storage. Thus, an extension of the EnRSim 

calculation core to predictive control associated to Mixed Integer Linear Programming (MILP) is here presented 

on a case study. 

The present paper is organized as follows: presentation of the EnRSim tool architecture in Section 2, a tool demo 

through a case study in Section 3, an extension of the case study with the introduction of predictive control in 

Section 4 and conclusions and perspectives in Section 5.  
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2. Tool architecture and description 

2.1. Overall architecture 

Fig. 1 presents the tool architecture including a graphical user interface, pre-processing modules, the calculation 

core and post-processing modules. The tool performs a 1-year simulation at a time step of 1 hour. The following 

paragraphs give details on the pre-processing modules, calculation core and post-processing modules while the 

next section presents snapshot of the graphical user interface through a case study. 

 

Fig. 1:  Overall EnRSim tool architecture 

 

2.2. Pre-processing modules 

The first pre-processing module, referred as ‘Load Curve Generation’ in Fig. 1, calculates the hourly aggregated 

DHN heat demand and associated departure/return temperatures based on user input monthly overall heat 

demands. To do so, the module i) first, distributes the monthly loads among monthly losses, domestic hot water 

(DHW) and space heating and ii) second, allocates the calculated monthly contribution for each 1 hour time step. 

For both steps, the module uses the user chosen hourly ambient temperature profile together with assumptions on 

i) heating laws for the network temperatures, ii) yearly heat loss, iii) cold water mains temperature, iv) normed 

monthly distribution of  DHW load, v) DHW production temperature and simultaneity factor, vi) normed daily 

distribution of DHW and space heating loads. The methodology implemented in this module was previously 

validated using real DHN data (Provent et al., 2013). It is worth mentioning that the user can also use his own 

load curve. 

The second pre-processing module, referred as ‘Solar Resource’ in Fig. 1, treats the user input solar resource with 

i) tilt and ii) solar masks correction. The former transforms the user input horizontal direct and diffuse irradiation 

into the associated tilted contributions. The latter accounts for external and array shading, whose validations are 

respectively shown in Fig. 2 and Fig. 3 for the direct part of the irradiation (diffuse part not shown). Both figures 

present the value of the correction factor along the year (time step of 1 hour) in a plan Elevation vs Azimuth. For 

the external shading, Fig. 2 clearly shows that the external correction factor 𝑓𝑑𝑖𝑟,𝑒 is 0 (i.e. incoming irradiation is 

fully shaded) when the sun is below the external mask while it is 1 (i.e. no shading) when above. Regarding array 

shading (Fig. 3), simulations with type 56 of TRNSYS® were performed for fixed solar azimuth values (vertical 

lines with triangle markers on Fig. 3), which allowed validating the results obtained with the ‘Solar Resource’ 

module for the array shading correction factor 𝑓𝑑𝑖𝑟,𝑎 (circle markers). 

 
Fig. 2: ‘Solar Resource’ module external shading validation 

 
Fig. 3: ‘Solar Resource’ module array shading validation 

 

2.3. Plant Model 

The plant model is programmed using the Modelica language and implemented within Dymola®. It uses 

production unit and storage models from the in-house ‘DistrictHeating’ library (Giraud et al., 2015). Fig. 4 shows 

a schematic of the model implemented. It is meant to be generic, i.e. the goal is to have a single model capable of 
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managing a large majority of the current configurations or ones that look promising going forward for a heating 

network thermal plant. In this thermal heating plant model, we find 5 potential generators in parallel (Biomass, 

Cogeneration, Heat Pump, Gas and Solar), 3 potential generators in series upstream (Cogeneration, Heat Pump, 

Solar), 1 potential common storage and 1 back-up generator whose aim is to satisfy the load curve in all 

circumstances. Both solar fields also include a dedicated storage. For each of the block embedded, steady-state 

mass balance and dynamic energy balance are solved. Further details are provided in Appendix. 

 

 
Fig. 4: Schematic of the generic calculation core plant model  

The Modelica-based plant model is encapsulated using FMI standard (FMI development group, 2014) and 

embedded into the in-house co-simulation platform PEGASE (Vallée et al., 2019) where it is operated aside a 

controller module containing the expert laws. Fig. 1 illustrates the interaction between the plant model and the 

controller. 

 

2.4. Expert Control Laws 

The EnRSim tool is based on predefined control laws. The parameters of each unit for the control laws are i) the 

calendar availability (𝐴), ii) the priority (𝑃), iii) the minimum and maximum thermal power (𝑃𝑚𝑖𝑛/𝑃𝑚𝑎𝑥), and iv) 

the maximum outlet temperature (𝑇𝑜,𝑚𝑎𝑥). Depending on the plant configuration (2 units in parallel and 1 unit in 

upstream serial, 3 in parallel, 2 in serial, etc.) , the control laws are different. Fig. 5 presents the expert law logic 

for 2 units in parallel. Each branch leads to a set of thermal power and mass flow rate set points for both generators. 

Startup and shutoff are handled within this logic diagram. 

 

 
Fig. 5: Example of expert law control for 2 units in parallel 

Another set of control laws exist for the common storage (shown in Fig. 4). For the latter, the user can choose 

between ‘Charging’ or ‘Discharging’ priority. For both priorities, charge and discharge modes are controlled 

differently, as shown in Fig. 6, depending on the storage state of charge (𝜏) and the level of thermal power of each 

generator (𝑃𝑖). To summarize, charging priority prevents frequent start and stop of generators while discharging 

priority favors storage discharge during peak demand events. 
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Fig. 6: Common storage expert control laws 

2.5. Post-processing modules 

The tool includes three post-processing modules that respectively calculate economic (e.g. Levelized Cost of 

Heat), energetic (e.g. Solar fraction), technical (e.g. number of startups) and environmental indicators (e.g. CO2 

emissions and renewable energy ratio). 

 

3. Case study  

This section introduces the case study addressed in the present paper. The case study is first used to present 

snapshot of the tool graphical user interface (see section 3). Second, it is used to compare expert control and 

predictive control (see section 4). 

3.1. Presentation 

The architecture chosen for the present case study is shown in Fig. 7, which is a snapshot of the plant configuration 

tab of the tool graphical user interface (GUI). This architecture represents a typical problem of solar thermal 

integration into district heating network production plants already equipped with a biomass boiler. In such a case, 

the biomass boiler generally operates as base load generator during the heating season and is stopped during 

summer because of minimum load technical constraint. In summer, the gas boiler thus ensures the entire load. In 

order to increase the summer renewable energy share, solar thermal seems to be an attractive solution. 

However, this solution is problematic during mid-season when the biomass is still operating. Indeed, the solar 

thermal production during sunny days of the mid-season may push the biomass boiler close to its technical 

minimal load and sometimes even to stoppage. The latter leads to significant operational difficulties and generally 

results unwantedly in an increase of gas share in the production mix. The use of a storage can reduce this behavior. 

However, its sizing and control operation represent tedious tasks.  

 
Fig. 7: Plant Configuration Tab 

For the present case study, the solar field has an upwind serial position with respect to the biomass boiler, gas 

boiler and storage, as seen in Fig. 7. With this location, the solar field is not affected by possible higher temperature 

coming from the storage during charging phase. However, the solar field does not have access to the common 

storage and must then be equipped with a dedicated storage (not shown on Fig. 7). In this position, the common 

storage is thus useful to the biomass boiler operation only. 

Lyon (France) was chosen as the location of the production plant. From weather data from MeteoNorm®, the 

‘Load Curve Generation’ pre-processing module (see section 2) constructed the load curves, whose GUI snapshots 
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are shown in Fig. 8 and Fig. 9, respectively for the thermal power monotone and the hourly DHN temperature 

variations. 

 
Fig. 8: Monotone of the load curve (MW) 

 
Fig. 9: Generated Load Curve (Temperatures) 

The base sizing considered for this production plant is as follows: 

- Common storage : 400m3 (about 22MWh for the DHN operational temperatures, see Fig. 9) ; 

- Solar field: 150 solar collectors of about 15m² each of transparent area whose characteristics are typical 

of large collectors designed for district heating applications. The solar collectors azimuth and tilt are 

respectively 0° and 30°. As explained beforehand, a solar field dedicated storage of 100m3 is also 

considered, the storage operating as an interface between the solar field and the network return pipe; 

- The biomass boiler nominal power is 4.5MW with a minimum to maximum power ratio of 30%. The 

biomass is stopped during summer season (from 15th of May to 1st of October).  

 

The solar thermal field is operated at constant primary (solar collectors) and secondary (between heat exchanger 

to storage) flow rates. The latter is set to induce a 20K temperature increase throughout the field at the field 

nominal power (700 ∙ 𝐴𝑠𝑜𝑙𝑎𝑟,𝑓𝑖𝑒𝑙𝑑 with 𝐴𝑠𝑜𝑙𝑎𝑟,𝑓𝑖𝑒𝑙𝑑  [𝑚2] the total solar field transparent area). The flow rate from 

the DHN through the storage depends on the temperature level in the storage. When the latter is below the return 

temperature of the DHN, the flow rate is set to zero. When it is above the DHN return temperature but below the 

DHN departure temperature, it is set equal to the DHN flow rate. Finally, if it is above the departure temperature, 

flow mixing is performed as shown in Equation (1).  

 �̇�𝑠𝑜𝑙 = �̇�𝐷𝐻𝑁 ∙
𝑇𝑑𝑒𝑝,𝐷𝐻𝑁 − 𝑇𝑟𝑒𝑡,𝐷𝐻𝑁

𝑇ℎ𝑖𝑔ℎ,𝑠𝑡𝑜𝑐𝑘 − 𝑇𝑟𝑒𝑡,𝐷𝐻𝑁

 (1) 

With �̇�𝑠𝑜𝑙  [𝑘𝑔/𝑠] and �̇�𝐷𝐻𝑁 [𝑘𝑔/𝑠] the flow rates respectively through the solar dedicated storage and the DHN, 

and 𝑇𝑑𝑒𝑝,𝐷𝐻𝑁, 𝑇𝑟𝑒𝑡,𝐷𝐻𝑁 and 𝑇ℎ𝑖𝑔ℎ,𝑠𝑡𝑜𝑐𝑘 the DHN departure, DHN return and top solar dedicated storage 

temperatures. 

 

3.2. GUI results 

Fig. 10 and Fig. 11 present snapshots of the GUI results visualization panel with respectively a zoom of the hourly 

production trajectories and the monthly energy mix. In addition to those results, the GUI provides a set of 

indicators and alerts regarding undesired results (solar field overheating, high number of generator startups, etc.). 

Finally, the user can generate an automatic report with an extra set of graphs. 

 
Fig. 10: Production trajectories 

 
Fig. 11: Monthly Energy Mix 

For the base sizing of the case study, the results listed in the GUI are an energy mix composed of 74.2% biomass, 

9.8% solar and 16.0% gas. The number of biomass startup is however very high (177) and the tool thus gives an 

alert. At this point, it is worth mentioning that number of startup includes both cold and warm startup. While the 

former represents switch off of the generator for a long period of time, the latter represents short switched off 

periods. For the biomass boiler, it means that it does not produce for the DHN but its combustion chamber is kept 

at nominal temperature.  

Further results will be shown in the next section, which will compare various sizing but also various control laws. 
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4. Sizing influence and extension to predictive control 

The present section will deal with simulations of the case study for various sizing of the biomass boiler. In 

addition, we will show the influence on the sizing of the substitution of expert laws by predictive control. 

4.1. Principles of predictive control 

During the sizing stage, representative boundary conditions (weather, loads, etc.) over a given temporal horizon 

are generally supposed. Accounting for the knowledge of this boundary conditions in the future (𝑡 > 𝑡𝑛𝑜𝑤) when 

taking an operation decision at time 𝑡𝑛𝑜𝑤 gives a predictive rather than reactive characteristic to the controller. 

The principle of predictive control is thus to benefit from previsions on boundary conditions by evaluating their 

impact on the future states of the system and including this knowledge in the calculation of next operational set 

points. 

Accounting for the knowledge of the future boundary conditions using an expert law (i.e. rule-based ) approach 

can be very complex to formulate and is generally sub optimal. Another solution is to use a mathematics-based 

approach in which the physic of the production plant is described in a simplified manner within a mixed integer 

linear programing (MILP) framework. The latter allows accounting for system-based constraints (mass and energy 

balances) together with technical constraints (power levels, ramps, etc.) in the calculation of the control 

trajectories while certifying an optimal of an objective function (generally the cost) with respect to the constraints 

defined. The combination of predictive control and MILP is referred from now on as optimal control. 

The general MILP formulation is shown in Equation (2). The objective is to find the vector of decision variables 

𝒙𝑇 = (𝒙𝟏, … 𝒙𝒋, 𝒙𝒋+𝟏, … , 𝒙𝒏) solution of the problem of Equation (2), 𝒙 being composed of continuous (1, … , 𝑗) 

and integer (𝑗 + 1, … , 𝑛) variables.  

 

min
𝑥

𝑓𝑐𝑜𝑠𝑡 = 𝑐𝑇 . 𝒙

𝑤𝑖𝑡ℎ  {
𝐿𝐻𝑆 ≤ 𝐴. 𝒙 ≤ 𝑅𝐻𝑆

𝑙𝑏 ≤ 𝒙 ≤ 𝑢𝑏

 (2) 

where c [n] is a vector of cost, 𝐴[m x n], 𝐿𝐻𝑆[m] and 𝑅𝐻𝑆[m] are respectively the matrix and vectors of linear 

constraints, and 𝑙𝑏 [n] and 𝑢𝑏 [n] are respectively the lower and upper bounds vector for the decision variables. 

Fig. 12 presents the modifications operated to EnRSim calculation core (see Fig. 1) in order to integrate optimal 

control as a replacement of expert law reactive control. The modifications are two folds: 

i) The new temporal scheme with consideration of the boundary conditions over the horizon 𝑡 to 𝑡 +
𝑓𝑢𝑡𝑢𝑟𝑒. It is worth mentioning here that 𝑓𝑢𝑡𝑢𝑟𝑒 means a given number of time steps (48 for the 

present case study). The latter allows having a tractable MILP problem that can be solved rapidly. 

In order to perform a simulation, we perform an optimization over the next 48 hours at every time 

step of 1 hour. That temporal scheme is referred as receding horizon with the end of the 𝑓𝑢𝑡𝑢𝑟𝑒 

number of time steps getting closer and closer to the end of the year at each simulation. The PEGASE 

co-simulation platform (Vallée et al., 2019) which embeds the calculation core has native receding 

horizon capabilities. 

ii) The replacement of the rule-based reactive control block by the optimal block whose equations are 

described in next section. 

 

 
Fig. 12: Extension of EnRSim calculation core to optimal control 

4.2. MILP model 

The different models used for the MILP formulation of the case study are now described. In the following 

equations, the bold variables represent optimisation variables, i.e. the ones constituting the 𝒙 vector from equation 

(2). 
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Equation (3) : System energy balance 

In the energy balance of Equation (3), the thermal power of he biomass boiler (𝑷𝒃𝒊𝒐(𝑡)), gas boiler (𝑷𝒈𝒂𝒔(𝑡)), 

and charge/discharge (𝑷𝒄𝒉𝒂𝒓𝒈𝒆
𝒔𝒕 (𝑡) and 𝑷𝒅𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆

𝒔𝒕 (𝑡)) of the storage are optimization variables. The total demand 

(𝑃𝑙𝑜𝑎𝑑) is a boundary condition while the solar production (𝑃𝑠𝑜𝑙), calculated by the plant production model at 

each time step of the future horizon, is an input data.  

 𝑷𝒃𝒊𝒐(𝑡) + 𝑷𝒈𝒂𝒔(𝑡) + 𝑷𝒅é𝒄𝒉𝒂𝒓𝒈𝒆
𝒔𝒕 (𝑡) + 𝑃𝑠𝑜𝑙(𝑡) = 𝑷𝒄𝒉𝒂𝒓𝒈𝒆

𝒔𝒕 (𝑡) + 𝑃𝑙𝑜𝑎𝑑(𝑡) (3) 

 

Equation (4) : Heat generators power levels constraints 

Equation (4) is used for both the biomass and gas boilers.  𝑟𝑖  represent the ratio betwenn the minimum and nominal 

power 𝑃𝑚𝑎𝑥
𝑖  of  generator ‘i‘ (30% and 0% respectively for the biomass and gas boiler). 𝑷𝒊(𝑡) is the thermal power 

of generator ‘i‘ and 𝒀𝒊(𝑡) represent the state ON (1) or OFF (0) of generator ‘i‘. 

 𝑟𝑖 ∗ 𝑃𝑚𝑎𝑥
𝑖 ∗ 𝒀𝒊(𝑡) ≤ 𝑷𝒊(𝑡) ≤ 𝑃𝑚𝑎𝑥

𝑖 ∗ 𝒀𝒊(𝑡) (4) 

 

Equations (5) and (6) : Heat generators startup constraints 

In order to be representative and avoid unrealistic heat generators startup at high frequency, it is necessary to 

constrain it by introducing a new intermediate variable 𝑿𝒊(𝑡). The latter is 1 when the generator is started and 0 

the rest of the time, as shown in Equation (5). Equation (6) is then used to set the value of 𝑿𝒊(𝑡). However, the 

latter equation does not set the value of 𝑿𝒊(𝑡) when 𝒀𝒊(𝑡 − 1) = 𝒀𝒊(𝑡) = 1, i.e. when the generator is ON and 

stays ON (a very frequent situation). In this situation, we want the value of 𝑿𝒊(𝑡) to be 0. Introducing startup costs 

in the objective function (see Equation (12)) will force the optimizer to use 𝑿𝒊(𝑡) = 0 in this situation. 

 𝑿𝒊(𝑡) = {1 𝑖𝑓 𝒀𝒊(𝑡 − 1) = 0 𝑎𝑛𝑑 𝒀𝒊(𝑡) = 1
0 ℎ𝑜𝑤𝑒𝑣𝑒𝑟

 (5) 

 𝒀𝒊(𝑡) − 𝒀𝒊(𝑡 − 1) ≤ 𝑿𝒊(𝑡) ≤ 𝒀𝒊(𝑡) (6) 

 

Equations (7) to (11): Storage model 

Equation (7) present the energy balance of the storage with 𝑷 [𝑊] and 𝑬 [𝐽] respectively the power and energy, 

∆t[s] the time step, 𝐾𝑙𝑜𝑠𝑠  [𝑠−1] the heat loss coefficient and the indices ‘ch’ and ‘disch’ for charge and discharge. 

Equation (8) sets equal the storage energy at time  𝑡 =  0 and 𝑡 =  𝑡𝑓𝑢𝑡𝑢𝑟𝑒, which corresponds to the end of the 

future horizon considered by the optimal control. Equations (9) and (10) represent the thermal power limit (𝑃𝑚𝑎𝑥
𝑠𝑡 ) 

for the charge and discharge with 𝒀𝒔𝒕 a binary variable forcing the storage to be either charging or discharging but 

never both at the same time. Finally, Equation (11) limits the maximum of energy 𝐸𝑚𝑎𝑥
𝑠𝑡  that the storage can 

handle. 

 
𝑬𝒔𝒕(𝒕) − 𝑬𝒔𝒕(𝒕 − 𝟏)

𝛥𝑡
= 𝑷𝒄𝒉

𝒔𝒕 (𝒕) − 𝑷𝒅𝒊𝒔𝒄𝒉
𝒔𝒕 (𝒕) − 𝐾𝑙𝑜𝑠𝑠 ∗ 𝑬𝒔𝒕(𝒕) (7) 

 𝑬𝒔𝒕(𝒕 = 𝟎) = 𝑬𝒔𝒕(𝒕 = 𝑵 ∙ 𝚫𝒕) (8) 

 0 ≤ 𝑷𝒄𝒉
𝒔𝒕 (𝒕) ≤ 𝑃𝑚𝑎𝑥

𝑠𝑡 ∗ (1 − 𝒀𝒔𝒕(𝒕)) (9) 

 0 ≤ 𝑷𝒅𝒆𝒄𝒉
𝒔𝒕 (𝒕) ≤ 𝑃𝑚𝑎𝑥

𝑠𝑡 ∗ 𝒀𝒔𝒕(𝒕) (10) 

 0 ≤ 𝑬𝒔𝒕(𝒕) ≤ 𝐸𝑚𝑎𝑥
𝑠𝑡  (11) 

 

Equation (12): Objective function 

The objective function for the MILP model is shown in Equation (12). The latter is composed of startup 𝑐𝑑𝑒𝑚
𝑖   and 

production 𝑐𝑝𝑟𝑜𝑑
𝑖   costs for each generator ‘i’. The variable 𝐻𝑜𝑟 is the number of time steps of the horizon 

considered and 𝑁𝑒𝑞𝑢 is the number of generator (2 in the present case study). The starting costs of the biomass 

boiler are here considered 3 times higher than the gas boiler ones. 
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 𝑓𝑐𝑜𝑢𝑡 = 𝑐𝑑𝑒𝑚 + 𝑐𝑝𝑟𝑜𝑑 = ∑ ∑ 𝑐𝑑𝑒𝑚
𝑖 ∗ 𝑿𝒊(𝑡)

𝑁𝑒𝑞𝑢

𝑖=1

𝐻𝑜𝑟

𝑡=1

+ ∑ ∑ 𝑐𝑝𝑟𝑜𝑑
𝑖 ∗ 𝑷𝒊(𝑡) ∗ 𝛥𝑡

𝑁𝑒𝑞𝑢

𝑖=1

𝐻𝑜𝑟

𝑡=1

 (12) 

 

The MILP model has been implemented using an in-house library. At each time step, the MILP model is solved 

using Cplex (IBM ILOG, 2015). 

 
4.3. Results 

Fig. 13 presents a synthesis of the results obtained for the case study (biomass boiler, gas boiler, storage and solar 

thermal field, see Section 3). The biomass nominal power is varied from 2 to 6MW while the rest of the parameters 

and sizing are kept fixed. Rules-based (expert law) and optimal control are compared. The results are shown in a 

plan Yearly gas share =f(number of biomass startup). The number of full storage cycles (i.e. ratio of the yearly 

integral of charged power over maximum storage energy) is also shown with a color scale. 
 

 
Fig. 13: Gas share as a function of number of biomass boiler startup for various size of biomass boiler – Expert laws vs predictive 

control 

The main conclusions to draw from Fig. 13 are the following: 
- For all the cases, the optimal control allow limiting both the gas share and the number of biomass startup 

with respect to the expert laws; 
- The obtained results are much more sensitive to the biomass boiler sizing in the case of the expert laws; 

- The expert law control presents an optimum with respect to the 2 indicators (for 𝑃𝑛𝑜𝑚
𝑏𝑖𝑜 = 3.5𝑀𝑊) while 

the predictive control presents a Pareto front, i.e. for each point of the curve, there is no other point for 

which both indicators are better. This fact highlights clearly that optimal control reaches control 

optimality for each design; 

- For the expert laws, the increase of biomass startup below a sizing of 3.5MW is due to the static laws 

presented in section 2. Indeed, the storage discharge is stopped based on the power level at a given time 

instant and a margin with respect to the minimum power. The latter gives a smaller margin when the 

minimum power of the biomass is smaller. The solar production being the same, this margin is not 

sufficient anymore to prevent a stoppage of the biomass boiler, i.e. storage discharge is too significant; 

- Finally, the non-adaptive feature of the expert laws leads to a monotonic storage cycles variations when 

the biomass boiler sizing is decreased. Contrarily, the adaptive feature of the optimal control modify its 

storage behavior as a function of the biomass boiler sizing, leading to non-monotonic storage cycles 

evolution. 

 

Thus, Fig. 13 shows clearly a strong inter-dependency between the sizing optimization and the expert law 

parametrization. However, using optimal control allows focusing on the optimization of the sizing with respect to 

a set of indicators without having to readjust for each sizing the parameters of the controller. The 2 systems pointed 

out by an arrow on Fig. 13 are now studied with more details (Pmax/Pmin = 3.5MW/1.05MW). 
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Fig. 14 and Fig. 15 presents the daily averaged monotone of the demand together with the associated energy mix 

respectively for expert law and predictive control. The striking result here is the better storage usage during the 

critical periods, i.e. during winter peaks and mid-season solar intermittency, when using predictive control. The 

latter leads to an extra gas usage when using expert laws during these critical periods.  

 
Fig. 14: Daily averaged monotone of the demand and energy 

mix for expert laws control (𝑷𝒏𝒐𝒎
𝒃𝒊𝒐 = 𝟑. 𝟓𝑴𝑾)  

 
Fig. 15: Daily averaged monotone of the demand and energy 

mix for predictive control (𝑷𝒏𝒐𝒎
𝒃𝒊𝒐 = 𝟑. 𝟓𝑴𝑾) 

 

In view of this advantageous storage behavior with optimal control, the energy mix is more virtuous, as shown in 

Tab. 1 with 4.3% increase in renewable energy content of the production. Additionally, the number of biomass 

startup is reduced by 77%. It is worth noticing here that, when looking at Fig. 13, those values represent the lower 

boundaries of the benefit we can obtain with optimal control. Thanks to optimal control, the initial willingness, 

which was increasing the renewable energy share in summer by integrating solar thermal, can thus be achieved 

without introducing control issues during mid-season.  

It is worth mentioning here that we have performed our analysis with a fixed solar thermal field and common 

storage size with only a variation of the biomass boiler size. A different approach with a fixed biomass boiler size 

but varying solar field size would have led to a larger solar field using optimal control for the same set of 

indicators. 

Tab. 1 : Energy mix and number of biomass boiler startup obtained for the sizing 𝑷𝒏𝒐𝒎
𝒃𝒊𝒐 = 𝟑. 𝟓𝑴𝑾 

 Expert Laws Optimal Control 

Biomass [%] 78.0 82.3 

Thermal solar [%] 9.8 9.8 

Gas [%] 12.2 7.9 

Renewable Energy Content [%] 87.8 92.1 

Number of biomass boiler startup [-] 106 25 

 

A closer look on the operational differences between the 2 control modes is presented in Fig. 16 and Fig. 17. The 

figures highlight 5 days of operation early May, i.e. mid-season, respectively for expert laws and predictive 

control. Both the energy mix and the storage level are shown on the 2 graphs. Interestingly, the storage is much 

more active when using expert laws with an overall very high storage level. However, the expert laws are i) unable 

to discharge the storage to avoid using gas during the first demand peak above the nominal biomass boiler power 

and ii) unable to charge the storage during the solar production toward the end of the week, leading to undesired 

biomass stoppages. Optimal control however leads to no gas consumption during these 5 days of operation. It is 

also worth noting that in this control mode the charge and discharge phases are arranged so that heat does not stay 

too long in the storage. The latter is due to Equation (7) and the heat loss associated to high level of energy is the 

storage. The optimizer will always try to limit them. 

 

 
Fig. 16: Detailed hourly results for 5 days in April and expert 

laws control (𝑷𝒏𝒐𝒎
𝒃𝒊𝒐 = 𝟑. 𝟓𝑴𝑾) 

 
Fig. 17: Detailed hourly results for 5 days in April and 

predictive control (𝑷𝒏𝒐𝒎
𝒃𝒊𝒐 = 𝟑. 𝟓𝑴𝑾) 
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5. Conclusion and perspectives 

The present paper introduced the EnRSim tool, a simulator of renewable-based production plants using field-

based expert laws. That tool aims at helping professionals to size the units in the pre-feasibility stage. The tool is 

composed of i) pre-processing modules calculating the DHN load and the solar resource corrections, ii) a 

calculation core based on a co-simulation platform including a model of the production plant and a rule-based 

control module, iii) post-processing modules for energetic, economic and environmental calculations, iv) a user 

friendly graphical user interface, and v) an automatic report generation engine. Up to three generators among 

biomass boiler, solar thermal, heat pump, cogeneration and gas boiler can be simulated in various configuration 

(serial and parallel) with or without storage. Yearly simulations are performed at a time step of 1 hour in about 1 

minute on an office laptop computer. A case study using biomass boiler, solar thermal field, gas boiler and storage 

showed the type of results obtained, i.e. production trajectories and key performance indicators. Since summer 

2020, the tool including expert law control is available for download in French and English for free. 

 

The EnRSim calculation core was then modified by replacing the expert law control block with optimal control 

(predictive control with MILP model and receding horizon). The paper then shows how optimal control can be 

used in a sizing stage. The same case study as for the tool demo was extended to various biomass boiler sizing 

and tested under optimal and expert law controls. In summary, the advantage of predictive control combined to 

MILP is that the interactions between the components of the production plant are not predefined and are rather 

calculated optimally and at each time step. The latter allows the controller to be adaptive and led for the case study 

to a minimal 4.3% increase in renewable energy content and 77% reduction in biomass boiler startup. With such 

an approach, the full potential of a storage can thus be accounted for in sizing stage. More specifically, it is shown 

here that for the MILP, the storage handles more properly both the peak heat demands in winter and the potential 

short biomass startup/shutoff cycles in mid-season. There is obviously the possibility of improving both the expert 

law and its parameters. Better results, but not better than the MILP (for which optimality is proven), should be 

obtained at the price of a time-consuming iteration process to find the right set of parameters, which itself depends 

on the sizing and thus require an update for each sizing. 

 

The extension of EnRSim calculation core to predictive control will allow evaluating more profitably additional 

configuration combining biomass, solar thermal and storage, especially those for which the common storage can 

also be used by the solar field, as done in many existing installations. 
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Appendix: Details of the dynamic plant models  

 
Biomass, Gas and CHP 

From the point of view of the core calculation, biomass, gas and cogeneration generators are modelled in the same 

way. It is important to note that in this model, we consider only the power injected in the heat transfer fluid. The 

difference in yield between these generators is calculated in the post-processing. Another difference between these 

models is in the user’s settings.The energy balance for this model of generator is presented in equation (13) below. 

 

 ((𝜌. 𝑐𝑝. 𝑉)𝑓 + 𝐶𝑏𝑜).
𝑑𝑇𝑜𝑢𝑡

𝑑𝑡
= 𝑃𝑏𝑜 − �̇�𝑓 . 𝑐𝑝. (𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛) − 𝐺. (𝑇𝑚𝑜𝑦 − 𝑇𝑒𝑥𝑡) (13) 

Where 𝜌 [𝑘𝑔. 𝑚−3] is the density of the heat transfer fluid, 𝑐𝑝 [𝐽. 𝑘𝑔−1. 𝐾−1] the heat transfer fluid’s specific 

thermal capacity, 𝑉 [𝑚3] the internal volume of the combustion chamber [𝑚3], 𝐶bo [𝐽. 𝐾−1] the boiler’s thermal 

capacity, 𝑃𝑏𝑜  [𝑊] the power transferred to the fluid by the boiler, �̇�𝑓 [𝑘𝑔. 𝑠−1] the flow of the heat transfer fluid, 

𝑇𝑜𝑢𝑡  [𝐾] and 𝑇𝑖𝑛 [𝐾] the respective inlet and outlet temperatures, 𝑇𝑚𝑜𝑦  [𝐾] the heat transfer fluid’s mean 

temperature in the boiler, 𝑇𝑒𝑥𝑡  [𝐾] the room temperature in the boiler room and 𝐺 [𝑊. 𝐾−1] an overall thermal 

loss coefficient. 

 

If these generators are installed in parallel, the settings sent by the control unit are the power and the flow. If the 

generators are installed in series (cogeneration), the setting sent by the control unit is only the power.  

 

 

Heat pump 

The energy balances for the heat pump model are presented in Equations (14), (15) and (16). The COP (coefficient 

of performance) laws are explained in Equation (17) and (18).  

 

 𝜌. 𝑐𝑝. 𝑉ℎ𝑜𝑡 .
𝑑𝑇ℎ𝑜𝑡

𝑜𝑢𝑡

𝑑𝑡
= −𝑄ℎ𝑜𝑡 − �̇�𝑓,ℎ𝑜𝑡 . 𝑐𝑝. (𝑇ℎ𝑜𝑡

𝑜𝑢𝑡 − 𝑇ℎ𝑜𝑡
𝑖𝑛 ) (14) 

 
𝜌. 𝑐𝑝. 𝑉𝑐𝑜𝑙𝑑 .

𝑑𝑇𝑐𝑜𝑙𝑑
𝑜𝑢𝑡

𝑑𝑡
= −𝑄𝑐𝑜𝑙𝑑 − �̇�𝑓,𝑐𝑜𝑙𝑑 . 𝑐𝑝. (𝑇𝑐𝑜𝑙𝑑

𝑜𝑢𝑡 − 𝑇𝑐𝑜𝑙𝑑
𝑖𝑛 ) 

(15) 

 𝑊 + 𝑄ℎ𝑜𝑡 + 𝑄𝑐𝑜𝑙𝑑 = 0 (16) 

 𝐶𝑂𝑃𝑔𝑙𝑜𝑏𝑎𝑙 = −
𝑄ℎ𝑜𝑡

𝑊
 (17) 

 𝐶𝑂𝑃𝑔𝑙𝑜𝑏𝑎𝑙 = 𝐾𝑑𝑒𝑔𝑟𝑎𝑑 . 𝐶𝑜𝑒𝑓𝑓𝑐𝑎𝑟𝑛𝑜𝑡 .
𝑇ℎ𝑜𝑡

𝑜𝑢𝑡

𝑇ℎ𝑜𝑡
𝑜𝑢𝑡 − 𝑇𝑐𝑜𝑙𝑑

𝑜𝑢𝑡  (18) 

Where 𝑉ℎ𝑜𝑡  [𝑚3] and 𝑉𝑐𝑜𝑙𝑑[𝑚3] are respectively the volumes of heat transfer fluid on the hot side (condenser) and 

cold side (evaporator) of the heat pump, 𝑇ℎ𝑜𝑡
𝑜𝑢𝑡  [𝐾] and 𝑇𝑐𝑜𝑙𝑑

𝑜𝑢𝑡  [𝐾] the outlet temperatures on the hot and cold side 

respectively, 𝑇ℎ𝑜𝑡
𝑖𝑛  [𝐾] and 𝑇𝑐𝑜𝑙𝑑

𝑖𝑛  [𝐾] the inlet temperatures on  the hot and cold side respectively, �̇�𝑓,ℎ𝑜𝑡  [𝑘𝑔. 𝑠−1] 

and �̇�𝑓,𝑐𝑜𝑙𝑑  [𝑘𝑔. 𝑠−1] the respective flows on the heat network and cold source sides in the heat pump, 𝑄ℎ𝑜𝑡  [𝑊] 

and 𝑄𝑐𝑜𝑙𝑑  [𝑊] the thermal power transferred to the fluid on the hot and cold side respectively, 𝑊 [𝑊]the electrical 

power of the heat pump compressor, 𝐶𝑂𝑃𝑔𝑙𝑜𝑏𝑎𝑙  [−] the heat pump’s coefficient of performance, 𝐶𝑜𝑒𝑓𝑓𝑐𝑎𝑟𝑛𝑜𝑡 a 

coefficient representing the heat pump’s performance relative to a Carnot efficiency (set from the man-machine 

interface) and 𝐾𝑑𝑒𝑔𝑟𝑎𝑑  [−]  a linear coefficient of degradation of the COP between 0 and 1 between a heating 

capacity of 0 and a minimum heating capacity (given by the man-machine interface) 𝑄ℎ𝑜𝑡,𝑚𝑖𝑛 [𝑊].  
 

If the generator is installed in parallel, the instructions sent by the control unit are the power and the flow. If the 

generator is installed in series, the instruction sent by the control unit is only the power. 

 

Storage 

The storage system’s stratification is considered. It is therefore discretized in 𝑁𝑠𝑒𝑔 segments (see Fig. 18). The 

storage has an input/output port at the top and an input/output port at the bottom for the charge/discharge modes 

respectively. 
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Fig. 18: Schematic of the stratified storage model 

 

The distributed model of this sensible storage is presented in Equation (19) for each segment ‘i’. 

 𝑄𝑡𝑜𝑝,𝑖 + 𝑄𝑏𝑜𝑡,𝑖 + 𝑄𝑝𝑒𝑟𝑡𝑒𝑠,𝑖 = 𝜌. 𝑐𝑝. 𝑉𝑖 .
𝑑𝑇𝑜𝑢𝑡,𝑖

𝑑𝑡
+ �̇�𝑓,𝑠𝑡 . 𝑐𝑝. (𝑇𝑜𝑢𝑡,𝑖 − 𝑇𝑜𝑢𝑡,𝑖−1) (19) 

Where 𝑄𝑡𝑜𝑝,𝑖  [𝑊] and 𝑄𝑏𝑜𝑡,𝑖  [𝑊] are the thermal exchanges at the top and bottom terminals of the element 

considered. These thermal powers take into account i) the axial conduction between the different fluid elements, 

ii) the thermal loss through convection at the top and bottom of the storage and iii) an automatic destratification 

term if a cold element should be above a hot element. 𝑄𝑝𝑒𝑟𝑡𝑒𝑠,𝑖  [𝑊] represents the thermal loss of segment ‘i’ 

through its lateral surface, �̇�𝑓,𝑠𝑡  [𝑘𝑔. 𝑠−1] is the flow of fluid in the storage. Lastly, 𝑉𝑖, 𝑇𝑜𝑢𝑡,𝑖 and 𝑇𝑜𝑢𝑡,𝑖−1 

respectively represent the volume, the outlet temperature of segment ‘i’ and the outlet temperature of element ‘i-

1’.  

 

Depending on how the storage is used, it is important that the �̇�𝑓,𝑠𝑡  sign varies (positive for discharging and 

negative for loading). For this storage, the instruction sent by the control unit is the through flow �̇�𝑓,𝑠𝑡. 

 

 

Solar field 

The energy balance in this element is presented in the Equations (20) and (21) below. 

 

 𝐶
𝑑𝑇𝑚

𝑑𝑡
 = 𝐴𝑓𝑖𝑒𝑙𝑑(𝜂0𝐺𝑇 − 𝑎1(𝑇𝑚 − 𝑇𝑎) − 𝑎2(𝑇𝑚 − 𝑇𝑎)2) + �̇�𝑠𝑜𝑙𝑐𝑝(𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡)  (20) 

 𝐺𝑇 = 𝐼𝑏𝐾𝑏 + 𝐼𝑑𝐾𝑑 (21) 

Where 𝐶 [𝐽. 𝑘𝑔−1] is the total capacity of the panel (fluid and structure), 𝑇𝑚  [𝐾], 𝑇𝑖𝑛 [𝐾], 𝑇𝑜𝑢𝑡  [𝐾] and 𝑇𝑎  [𝐾] the 

mean inlet, outlet and exterior temperatures, 𝐴𝑓𝑖𝑒𝑙𝑑  [𝑚2] the area of the field considered, 𝜂0 [−], 𝑎1 [−] and 𝑎2 [−] 

respectively the optic effectiveness and the coefficient of first order and second order thermal losses, 

�̇�𝑠𝑜𝑙  [𝑘𝑔. 𝑠−1] the solar exchanger’s secondary flow (network side), 𝑐𝑝 [𝐽. 𝑘𝑔−1. 𝐾−1] the specific thermal 

capacity of the heat transfer fluid, 𝐼𝑏[𝑊 ∙ 𝑚−2] and 𝐼𝑑[𝑊 ∙ 𝑚−2] respectively the direct and diffuse irradiation in 

the collector tilt, and 𝐾𝑏[−] and 𝐾𝑑[−] the incidence angle modifiers respectively for the direct and diffuse 

radiations. 

 

The modelling of the exchanger is done through a constant thermal conductance. The inertia and the thermal losses 

in the field’s pipes are taken into account through thermal capacities and conductance. The modelling of the solar 

storage is similar to that used for the common storage system. 

 

For the installation of this field in parallel and in series, the instruction sent by the control unit is the flow going 

through the specific storage.  
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