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Abstract 

The paper at hand describes an FSC-based method to automatically assess the performance of a solar combi 
system. The impact of both inexpensive and improved sensor equipment on the detection accuracy is investigated, 
capabilities and limitations of this approach are discussed. Advantages and disadvantages of this overall system 
evaluation are compared to those of the standard fault detection system by means of a component-oriented 
approach. 
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1. Overall System Evaluation – FSC-based approach 
This section gives a short overview of the Fractional Solar Consumption (FSC) in application to assessing the 
performance of a solar combi system. More details on the capabilities and limitations of this approach can be 
found in (Schmelzer et. al. 2018, Georgii et. al. 2019).  
The overall system evaluation is based on FSC, which was 
developed in IEA SHC task 26 to compare solar combi 
systems with different system designs at different locations 
in Europe (Letz, 2002). The underlying principle is 
illustrated in fig. 1: to determine the maximum solar 
fraction, the usable solar radiation (orange dashed area) is 
divided by the reference demand (green + orange dashed 
area). The usable solar radiation is calculated by comparing 
the radiation on the collector plane and the measured heat 
demand (with estimated storage losses), taking into account 
that solar excess radiation in summer cannot be used. 

 
Fig. 1: Comparison of monthly energy demand and solar 
radiation to determine the maximum usable solar energy 
for a specific building, dhw demand, collector area, slope 

and tilt (Letz, 2002) 

FSC does not depend on any system design aspects (except the collector area), but on the total irradiation on the 
collector plane and the demand. Therefore, it describes the energetic boundary conditions for the system. To 
calculate FSC, the heat demand for domestic hot water Qdhw (incl. circulation) and space heating Qsh must be 
measured. Since the storage in solar heating systems is larger compared to a reference system, the storage losses 
for the reference Qloss,ref are estimated using eq. 1. The equation considers a storage size of 75 % of the daily dhw 
draw-off. 
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With these losses, the reference energy Eref can be calculated as follows: 

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑄𝑄𝑑𝑑ℎ𝑤𝑤 + 𝑄𝑄𝑠𝑠ℎ + 𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑟𝑟𝑟𝑟𝑟𝑟.       (eq. 2) 

As described above, the usable solar energy is calculated as sum of monthly minima of the irradiation on the 
collector plane �𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝐻𝐻𝑡𝑡,𝑚𝑚� and the heat demand Eref  for the whole year:  

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =  ∑ min��𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝐻𝐻𝑡𝑡,𝑚𝑚� ,𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚�12
𝑚𝑚=1 .     (eq. 3) 

The FSC is then calculated by dividing the usable solar energy by the reference energy demand:  

𝐹𝐹𝐹𝐹𝐹𝐹 =  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟

.         (eq. 4) 
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There are some minor differences to the standard calculation approach described in (Letz, 2002). For simplicity, 
no boiler efficiencies were taken into account. In eqs. 2-4 only delivered energies are considered. 

To assess the systems performance, another key figure describing the actual system behaviour is needed. In the 
following, this is done by a slightly adjusted definition of the fractional solar savings fsav. Normally, boiler 
efficiencies and a (simulated) reference for the auxiliary energy are required to calculate fsav. By assuming that 
the boiler efficiencies are almost the same and estimating the storage losses according to eq. 1, fsav can be 
calculated as follows: 

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 =  1 − 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟

 .        (eq. 5) 

In (Letz, 2002) quadratic correlations are used to describe the relation between the expected fsav (for fault free 
systems) and FSC. In the present approach power functions are chosen (see eq. 6), which enable the correction of 
several influential parameters (Georgii et. al. 2009). 

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑒𝑒𝑐𝑐0 ∙ (𝐹𝐹𝐹𝐹𝐹𝐹)𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹 ∙ (𝑋𝑋1)𝑐𝑐1 ∙ (𝑋𝑋2)𝑐𝑐2 ∙ (𝑋𝑋3)𝑐𝑐3 ∙ …     (eq. 6) 

The underlying system simulations and the subsequent analysis showed that the following parameter must be 
considered for a reliable prediction of fsav: 

• Share of Qdhw in Esol,usable 

• Ratio of auxiliary heated storage volume to daily dhw draw-off 

• UA-value of the storage 

• Specific storage volume (l/m²coll) 

• Boiler setpoint temperature 

With the described set of formulas, the systems performance can be assessed automatically by calculating the 
measured energy savings fsav,measured (eq. 5) and comparing them to the expected savings fsav,expected for the fault-
free system operation, using eq. 6. Fig. 2 illustrates the general principle. 

 
Fig. 2: System assessment with FSC – 1. Calculate fsav,measured with measured 

auxiliary energy – 2. Calculate fsav,expected using FSC correlations 

Thus, the performance indicator PI can be calculated: 

 𝑃𝑃𝑃𝑃 = 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 .       (eq. 7) 

With this easy-to-understand key figure, the system performance can directly be evaluated. The performance 
indicator can theoretically detect any fault with a significant impact on the solar energy yield. 

  

 
C. Schmelzer / EuroSun2020 / ISES Conference Proceedings (2020)



 
2. Impact of measurement uncertainties on detection accuracy of FSC-based 

overall system evaluation 
2.1 Methodology – Monte Carlo Analysis 
To estimate the impact of different sensor equipment on the accuracy of the key figures and calculate respective 
uncertainties, a Monte Carlo Analysis (MCA) was performed. To do so, sensor data, previously modelled by 
simulations, was used as the true value of each sensor and then uncertainties were added as follows. 

In the first step, the systematic sensor uncertainties usys are chosen normally distributed and independent of each 
other. The standard deviation for the normal distribution σ is set to be a half of the measurement uncertainty of 
the respective sensor (X): 

𝜎𝜎 = 𝑢𝑢𝑋𝑋,𝑠𝑠𝑠𝑠𝑠𝑠
2

 .       (eq. 8) 

This approach ensures that 95.5 % of the selected 
uncertainties lie within the specified limits. Conversely, 
this also means that 4.5 % of the measurement errors 
exceed the limits and show larger deviations. As an 
example, fig. 3 illustrates three different fixed systematic 
errors for a sensor measuring temperature or temperature 
difference. The 2σ range [-0.8K, 0.8K] is marked in 
magenta. Three specific systematic uncertainties each 
fixed for one calculation run, are depicted by blue, green 
and cyan arrows. The mean of the normal distribution is 
chosen at 0 K, meaning that randomly chosen 
uncertainties are most likely much smaller than the 
specified limit. However, there is a small probability of 
4.5%, that the randomly chosen value exceeds the 2σ 
range, e.g. the cyan arrow in fig. 3. At the end of step one, 
each signal gets shifted by its offset (fig. 4, left). 

 
Fig. 3: MCA – Exemplary selection of systematic 

uncertainties for temperature or temperature difference 
measurement 

In the second step, normally distributed stochastic noise is applied to the data (with a standard deviation equal to 
half of the maximum error of each sensor and the mean value equal to zero), see fig. 4, right. 

 
Fig. 4: MCA – Exemplary selection of systematic uncertainty (shift on the left) and stochastic 

noise (on the right) for a temperature difference 

Finally, the monthly energies and key figures are calculated using sensor data manipulated in two previous steps. 

To obtain reliable probability distributions for the system key figures, it is required by the MCA to repeat these 
three steps very often (in this paper n = 1,000 times). In this way, a large number of randomly selected systematic 
uncertainties is taken into account. From the distributions 68 % and 95.5 % quantiles can be derived, which can 
be used as a measure for the resulting uncertainties for fsav and FSC. In the following, the 95.5 % quantiles are 
used. 

2.2 Impact of inexpensive sensor equipment on detection accuracy 
Since the additional costs are crucial for the implementation of a fault detection system, first step was to investigate 
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the impact of an inexpensive reference measurement equipment on the fault detection accuracy. The reference 
sensor equipment consists of the following sensors: 

• Temperature sensors: Class B 

• Flow measurement: Vortex Sensors (accuracy ± 5 % RD) 

• Radiation: Estimated via satellite data 

Fig. 5 illustrates the resulting uncertainties for fsav and FSC for one example system and their impact on the 
detection accuracy of the system evaluation. The black circle shows the actual fsav-FSC-value for one specific 
combi system in Germany with a collector area of 20 m². As displayed by the red error bars, the key figures cannot 
be determined very precisely. The actual fsav = 34 % and FSC = 66 % can only be roughly estimated due to 
inaccuracy of the sensor equipment at the following ranges: fsav = (22..46) %, FSC = (57..75) %. 

 
Fig. 5: Impact of inexpensive sensor equipment on detection accuracy 

Moreover, the uncertainties have a strong impact on the detection accuracy and on the informative value of the 
system assessment. The orange area in fig. 5 illustrates the resulting uncertainties for the correlation. The dotted 
red line shows the minimum fsav for systems with this measurement equipment, that still might be close to the 
theoretical correlation. Only if the measured fsav lies within the red area it is certain, that there must be a fault in 
the system causing a detectable reduced energy yield. This also means that the fault detection is not possible where 
the red area is zero. Thus, for the inexpensive sensor equipment, the detection is only applicable for systems with 
fsav > 18 % or an FSC > 35 %. 

 

2.3 Cost-efficient measurement equipment 
To reduce measurement uncertainties and therewith enhance detection accuracy, a cost-efficient solution must be 
found. Based on an extensive market research, costs for different sensors were identified (end user prices for 
Germany incl. VAT and installation). Then, each sensor was improved separately and the effect on fsav and FSC 
was analysed. In this way, the most influential sensors can be determined and reasonable sensor combinations for 
improving the detection accuracy identified. A detailed analysis of the effects of single sensors on the measured 
heat quantities in each loop can be found in (Schmelzer et. al. 2019). Fig. 6 shows the resulting costs and 
uncertainties. On the y-axis the improved uncertainties of fsav and FSC are divided by the uncertainty of the 
reference sensor equipment, see 2.2. On the x-axis costs of different sensor improvements are shown. Starting 
with the reference sensor equipment at total costs of approx. 1,000€, the first step is replacing the temperature 
sensors in the auxiliary and space heating loops by class AA sensors. In the second step, additionally, the dhw 
temperature sensors are improved to class AA sensors, water meters are placed in aux and sh loop and a radiation 
sensor is installed. Steps 3, 4 and 5 show the additional impact of heat meters in different loops. 
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Fig. 6: Costs for improving sensor accuracy and impact on uncertainty of resulting key figures fsav and FSC 

As fig.6 illustrates, the first two steps have the largest impact on uncertainty of both key figures, while still being 
reasonably priced. For additional 190 €, the uncertainties of fsav and FSC can be reduced by 60 % and 50 %, 
respectively. In the further steps it can be seen that a heat meter in the auxiliary loop does not reduce the 
uncertainties noticeably, but a heat meter in the space heating loop has a significant impact on the accuracy of fsav. 
Since the heat meter price (incl. installation) is about 200 €, application of heat meters is not considered in the 
following. To show the impact of an improved sensor equipment, the second step is chosen as the improved set 
of sensors (magenta ellipse in fig.6, improved: T class AA in aux, sh and dhw loops; water meter in aux and sh 
loops; radiation sensor). 

2.4 Impact of improved sensor equipment 
Fig. 7 illustrates the impact of the improved sensors on the uncertainty ranges for fsav and FSC (green error bars) 
compared to the inexpensive reference equipment (red error bars). With the improved sensors the resulting 
uncertainty ranges of the example system are reduced significantly: The actual values of fsav = 34 % and FSC = 
66 % can be estimated at the following ranges: fsav = (30..38) %, FSC = (61..71) %. 

 
Fig. 7: Impact of improved sensor equipment on detection accuracy 

The uncertainty range for the system assessment is also significantly reduced by this improvement. As fig. 7 
shows, the yellow area is much narrower compared to the reference (see fig. 5). This means that the fault detection 
is possible for systems with a mean or predicted fsav > 10 % and FSC > 20 %. Thus, the fault detection is applicable 
for a much wider variety of combi systems. Tab. 1 summarises the results of different sensor equipment. 
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Tab. 1: Impact of inexpensive and improved sensor equipment on system assessment 

 Additional costs 
(approx.) 

Uncertainty range of fsav and 
FSC for example system 

No assessment for systems 
with a mean fsav or FSC if 

Reference sens. 
equipment 

1,000 € 
fsav  = (34 ± 12) % 
FSC  = (65 ± 8) % 

fsav  < 18 %  
FSC < 35 % 

Improved sens. 
equipment 

1,200 € 
fsav  = (34 ± 4) %  
FSC  = (65 ± 5) % 

fsav  < 10 %  
FSC  < 20 % 

3. Component-Oriented Approach 
Instead of aiming at the most universal and powerful fault indicator, another approach is to make use of the already 
existing measurement equipment and to investigate, which information regarding the functionality of the STS can 
be derived. Often, this approach focuses on the assessment of single components rather than on the evaluation of 
the whole system. Fig. 8 shows a stepwise approach for an algorithm-based, component-oriented fault detection. 
In the first step, measured values are combined to generate features, e.g. a flow sensor can be used to calculate 
the feature “loop in operation” if the measured flow is above a specified threshold. If a feature or a combination 
of features reveal unusual or unexpected behaviour, a symptom is generated. E.g. if the temperatures in the solar 
loop are very high during operation. In the last step, faults in the system can be diagnosed or at least narrowed 
down by analysing the occurring symptoms. 

 
Fig. 8: Stepwise approach for an algorithm-based, component-oriented fault detection 

To develop algorithms for a specific fault, first the suspicious system behaviour (symptom) which points to this 
fault must be identified. On this basis, different detection paths can be investigated and tested with measured or 
simulated data. Depending on the required sensors, paths with low or no additional costs can be identified. E.g., 
if the pump in the solar loop stops working, this could easily be detected with a flow sensor, which, however, is 
usually not installed in small STS. One symptom related to this fault is, that no temperature difference between 
flow and return side is expected, even when the operation conditions are met (fig. 9). The operation conditions 
can be checked by the controller’s pump signal (feature in magenta). The feature in cyan is an indicator for pump 
operation generated by using the flow and return temperatures only. In this STS, a valve in the solar loop was 
closed between 18th and 21st May 2016 to simulate a pump failure. As fig. 9 shows, the described symptom is 
reliably reported (green/red) on the days where the pump failure is simulated. 

 
Fig. 9: Features and symptom for a pump failure detection, using controller signal and temperatures 
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4. Conclusion and comparison 
The capabilities and limitations of the discussed approaches are summarised and compared in Tab. 2. On the one 
hand, the main advantage of the FSC-based overall system evaluation is its comprehensibility and, at the same 
time, simplicity of the PI indicator: the output describes the whole system and it can be understood without any 
background knowledge. Moreover, this approach automatically detects faults whenever the fractional solar 
savings fsav are significantly reduced. Therefore, so the approach is reliable and automatically rates faulty states 
according to their impact on the energy savings, thus avoiding “unimportant” faults. On the other hand, the 
approach is only applicable for larger combi systems and has high additional costs of about 1,200 € because of 
the required precise measurement equipment. The FSC-based system assessment does not provide information on 
the possible cause for the reduced fsav, and since 12 months of data are required to calculate the key figures, the 
reaction time is rather slow. 

The component-oriented approach on the contrary addresses exactly these challenges. It is applicable for basically 
any system and reacts directly to faults that can be detected by available measurement equipment at no additional 
costs. Since the algorithms must be designed for specific faults or symptoms (suspicious system behaviour), the 
informative value of the output is much higher. However, often a component’s behaviour must be derived 
indirectly, taking into account its interactions with other components. Hence, the prior information is required or 
(implicit) assumptions have to be made about a component’s surrounding, i.e. to which other components it is 
linked, and which other signals are available. This means that it is much effort to take into account many different 
possibilities for both the surroundings of a component and the available measurement equipment, even when 
looking at just one fault or symptom. This has a negative impact on the level of automation and the 
comprehensibility of the delivered output. Instead of a single intuitive key figure, the different algorithms generate 
symptoms and create warnings if the system behaves unusually. These messages have to be “manually” analysed 
by the user or by sophisticated subsequent algorithms which still have to be developed.  Additionally, it must be 
noted, that the capabilities and limitations for the algorithm-based approach significantly depend on the existing 
or planned measurement equipment. Starting with basic equipment at no additional costs, only few algorithms 
will be applicable and, thus, few faults detectable. If an extensive system assessment is to be implemented, the 
additional costs will increase.  

Tab. 2: Comparison of Overall System Evaluation and Component-Oriented Approach 

 
Overall System Evaluation 
(FSC-based approach) 

Component-oriented approach 
(algorithm-based) 

Easy to understand + -  
Reliable  

(no false alarms) + - 

Automated + + 

Low costs - + 
Informative  

(what is wrong) - + 

Applicable  
for any system - + 

Response time - + 

For larger solar combi systems, application of both approaches is recommended. In this way the assessment can 
benefit from the additional information and the fast response time of the algorithm-based approach on the one 
hand, and from the automated rating of the energetic impact of any fault on the other hand. For smaller solar 
assisted heating systems and other applications, the component-oriented, algorithm-based approach is still the 
only applicable option and should hence be considered early in the planning phase. It can be very beneficial, if 
additional (inexpensive) sensors are implemented in strategic places to enable the applicability of as many 
algorithms as possible. 
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