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Abstract 

Sorption storage tanks for long-term heat storage have complex operating behavior that makes it difficult to 
determine the storage tank's state of charge. The approach of a virtual sensor is presented, which processes 
different measurement data and simulation data together in stages and thus helps to provide the process control 
with reliable and fail-safe data about the operating state of the memory. 
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1. Introduction 

Thermal energy storages (TES) are believed to be appropriate candidates to play an important role in the future 
thermal management system. Broad deployment of energy storage technologies for an increased share of renewable 
energy is motivated by global climate action and the ambition of CO2 reduction. 

The ability of thermochemical materials (TCM) to store energy long-term with practically no losses during the 
conservation phase makes them promising candidates for seasonal storage applications. High energy densities 
using the zeolite-water couple have been demonstrated for some applications, exceeding those of water storage by 
a factor of 2-3 (Hauer, 2020) (Zettl, 2020). There are several process solutions for sorption technology, open and 
closed systems, as well as moving-bed and fixed-bed reactions, which have specific advantages.  

For all types of energy storage, the current state of charge (SOC) is an important parameter for operation and 
control. In contrast to sensible heat storage, the state of charge of thermochemical storage cannot be determined via 
the current discharge temperature. Rather, the current moisture content of the material and the moisture distribution 
over the entire storage system is a representative value for the state of charge. Since the material moisture balance 
is much more difficult to measure with “inline” methods (without taking probes) than the temperature, various 
physical measurement methods were tested in a preliminary project. One of the best ways is to utilize the dielectric 
conductivity, or permittivity, which correlates with the moisture content of the material. It can be detected, for 
example, by utilizing microwaves or by determining electrical capacitance (Zettl, 2022). However, the moisture 
measurement methods react sensitively to density fluctuations and temperature differences in the material, 
therefore comprehensive error correction and the combination of different measurement methods can improve 
accuracy here. For this purpose, a virtual sensor is being developed that eliminates various factors that interfere 
with the measurement and significantly increases the measurement quality. 

2. Methodology 

2.1 Sensor architecture 

There are currently no sensors available for directly measuring the state of charge of sorption materials storage 
systems. An indirect method relying on electrical capacitance measurement was shown to be feasible in a 
laboratory environment (Kirchsteiger and Kefer, 2020). However, the method suffers from calibration requirements 
which potentially restrict practical applications: Material density fluctuations in moving bed applications and 
temperature influences the signals widely. SOC determination can be significantly enhanced by combining 
hardware sensors with appropriate mathematical models for so-called virtual sensors.  
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Fig. 1: Principle of the operating levels of the virtual sensor 

 

From a systems-theory point of view, the SOC of the sorption storage is an internal state which is not accessible for 
direct measurement (orange elements in Fig.1). There is the possibility to estimate this internal state using 
sophisticated software tools such as dynamic state observers. A particular type of observer, known as Kalman-
filter, is implemented to take advantage of a combined model-based and real-time measurement strategy. 
Appropriately tuned, the filter assures a balanced SOC estimate which is not directly affected by short-time 
measurement errors (for example: temporary drops in a temperature measurement) since they are not plausible 
compared to the implemented model. At the same time, inevitable systematic model deviations are compensated 
with the aid of real-time measurements. 

 

2.2 Adsorption model 

The material adsorption model used in this work represents a sorption storage system of a zeolite bed. An axial 
humid airflow or vapor diffusion drives the sorption process and allows direct charging/discharging of the sorption 
material. The model implementation is done in Simulink, an additional package of MATLAB. To perform the 
numerical simulations, the model is based on the following assumptions (Daborer-Prado, et al., 2019): 

 a one-dimensional approach is assumed, where no radial influence is considered 

 a lumped element storage model is used for material and airflow, it is assumed that the air leaves each store 
node with the node temperature 

 the sorption equilibrium is modelled by the Dubinin-Astakhov-approach and the reaction kinetics is 
described by a linear driving force approach 

 the specific heat capacity of the air is not a function of the humidity or the temperature in the system; the 
specific heat capacity of the solid is only a function of humidity (water loading) but not of the temperature in the 
system. 

 

2.3 System simulation  

The system simulation is based on the specific procedural features of the open and closed sorption systems, which 
differ in their boundary conditions. The principle of operation of typical reactor elements is shown in Fig. 2. These 
elements can be enlarged and combined into a more complex system to represent the storage system. Specific 
operating situations such as partial loading, diffusion, external losses, and internal leveling processes within the 
system and material changes (degradation) must be represented separately from the typical cells. 

The SOC determination on the three levels, material properties, local SOC, and system SOC is intended to largely 
rule out errors: 

 The material calibration procedure determines the relationship between the physical sensor signal and 
material properties 

 The filter algorithm and the adsorption model verify the material property changes based on the process 
parameters and determine the (local) material loading, 

 The storage simulation model considers the process technology and operational management of the entire 
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system (the sum of all cells and boundary conditions) 

Using this step-by-step approach and with the help of an experimental setup and measured data for training and 
demonstrating the virtual sensor operation, a sophisticated approach to SOC determination for thermochemical 

storage is developed and a reliable metric for process control is developed. 

 

…….. 

Fig. 2: Operating principle of the closed and open sorption TES (above) and the boundary conditions of two typical reactor elements 

 

3. Experimental Results 

3.1. Open Sorption Reactor 

In an open moving bed reactor, a capacitive sensor is used between which electrodes the material is allowed to 
move freely (Fig. 3). Depending on the moisture content of the material, the electrical permittivity changes and 
with it the effective capacitance value of the capacitor.  

To record the signal, the capacitor is integrated into a parallel resonant circuit and the resonant frequency of the 
resonant circuit is reacting on the moisture content of the material. The resonant frequency is therefore used as a 
relatively sensitive but stable indicator of the material moisture. The resonant frequency of the oscillating circuit is 
around 196 kHz, the capacitance of the unfilled capacitor 8.8 pF. A turntable with a diameter of 100 cm and a 
material volume of 15 litres simulates the moving bed of a storage system. The rotating speed of the disk is about 5 
revolutions per minute. 

 

 
Fig. 3: Parallel plate capacitor placed in a moving bed of zeolite granules of 1.5-2.5mm diameter. 

 
The dehydrated zeolite (12h @ 250°C) is filled into the turntable and ventilated with moist air from an ultrasonic 
fogger. Samples are taken at periodic intervals and the material moisture is measured using the reference 
measurement (2 hours in a drying furnace @ 350°C). The measurement ends when no further moisture increase is 
recognized in the zeolite bed. The material moisture content achieved in the experiment is approx. 5-10% lower 
compared to the manufacturer's data sheet. 
The measurement result for two types of zeolite in four different varieties is shown in the figures below. 
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Fig. 4: Measured resonant frequency during the adsorption experiment at low temperature (25-40°C) in zeolite 13X (left) and 13X 

binder free (right), both 1.5-2.5 mm granules. 

 
 

Fig. 5: Measured resonant frequency during the adsorption experiment at low temperature (25-40°C) in zeolite 4A 1.5-2.5 mm 
granules (left) and 4A binder free, 3-5 mm granules (right). 

The results of the experiments show a clear influence of the material humidity on the resonant frequency. In 
general, the higher the humidity the lower the resonant frequency, but influence is non-linear: rate of frequency 
drop at the beginning of the experiment (dry material) is lower, for more humid material frequency drop is higher. 
For 4A-BF, no frequency change until approx. 13 wt.% of water was detected.  

The temperature also plays a certain role, in general, higher temperatures tend to lower the resonant frequency. For 
adsorption reactions in the range of 30-50°C, the temperature plays no important role for zeolite 13X since the 
humidity influence is dominant. For other zeolites such as 4A-BF further calibration measurements should lead to a 
kind of temperature correction term for the resonant frequency. For high temperature desorption application (150-
250°C) of the suggested measurement principle, separate calibration measurement would be necessary.  

As mentioned earlier the resonant frequency relies on the active capacity in the electronic oscillator, while the 
capacity value itself consist of the addition of several parts: the electronic capacity inside the electronic circuit (Cp), 
the capacity of the sensor cable (CC), and the sensor itself including the material (Cs). The built-in components of 
the oscillator are: Cp=470 pF and L=1.4 mH, the oscillator-print itself (without external components) exhibit an 
resonance frequency of 196.11 kHz.   

𝑓 =
√

  … . 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑡 𝑓𝑟𝑒𝑞𝑢𝑛𝑒𝑐𝑦  (eq. 1) 

𝐶 = 𝐶 + 𝐶 + 𝐶 … . 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦   (eq. 2) 

𝐶 = 𝜀 ,    𝜀 = 𝜀 𝜀 ,    𝜀 = 8,845 10 𝐴𝑠/𝑉𝑚   (eq. 3) 

A certain drop of the resonant frequency indicates an increase of the sensor capacity Cs, according to eq.1 and 2 
due to an increase of relative permittivity r according to eq.3. After connecting sensor and cable to the oscillator 
resonance frequency decreases by 3.3 kHz, which corresponds to an additional capacity Cc+Cs= 16.5 pF while 
Cs= 8,9 pF (according to eq.3). By measuring the further frequency decrease after inserting into the zeolite bed the 
permittivity of the material while humidified can be calculated.   

𝜀 = − 𝐶 − 𝐶     (eq. 4) 
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Calculating the relative permittivity out of the recorded frequencies leads to the results shown in Fig.6. The 
permittivity of the dry zeolite is in the range of r =5….10, while in the hydrated material r rises to 15…20. For 
comparison, dielectric properties of various minerals can be found in the literature. The values for sand or clay with 
a material moisture content between 0…..20% are comparable, with measured values of r in the range of 5 to 20.  

 
Fig. 6: Calculated relative permittivity of different zeolites  

In literature the development of the dielectric constant is explained with the help of a multiphase model. In porous 
minerals and soils, water fraction below the point WP (Fig. 7) are addressed as “bound water”, above the porosity 
point P as “free water” and between as “mixed state”, producing a multi-phase signal (Park, C.-H., et.al., 2017). 
The so-called wilting point WP refers to a certain water fraction in a hydroscopic porous material, below which 
water is bound by adsorption (e.g., in clay and soil, plants are not able to benefit from it).  In adsorption process 
engineering, the multiphase model refers to the formation of layers of adsorbate in the pores of the adsorbent: the 
first layer is bound more strongly than the second and subsequent ones, which form capillary condensation.  

 
Fig. 7: Multiphase model of dielectric constant (permittivity) of humid minerals, redrawn from (Park, C.-H., et.al., 2017)   

 

3.1. Closed Sorption Reactor 

For the application in a closed sorption vessel, there are several challenges for the sensor technology, such as 
vacuum resistance, resistance to high temperatures (up to 200°C) during desorption, the influence of the 
measurement signal by the fixed-bed heat exchanger and by the locally different reaction states in the storage tank.  

As shown in Fig. 8, a sector cylinder condenser was developed, which contains in the inside the same sorption 
material as the rest of the storage tank. The water uptake of the internal sorption material inside the enclosure 
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influences the capacitor and the measurement, therefore. Due to the large dimension of closed sorption vessels 
several regions are covered by linked sectors of the cylindrical capacitor.Fig. Fig. 9 shows a picture of several 
coupled sectors, so that several areas in the fixed-bed storage tank can be measured simultaneously with one sensor 
installation. 

 

Fig. 8: Setup of the cylinder condenser 

 

Fig. 9: Coupling of several sector cylinder condensers 

Fig. 10 shows the characteristic frequency curves of the zeolite 13X BF as a function of the temperature and the 
degree of humidity in a fixed bet reactor. They act as the basis for programming a microprocessor when the 
measured frequencies and temperatures are interpreted as the degree of humidity in the measured sector. 

 

Fig. 10: Characteristic frequencies of zeolite 13X BF as a function of the temperature and the degree of humidity 
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The measurement results obtained by using an oscillator in the 2.5-5.0 GHz frequency range clearly show the 
combined humidity and temperature influence and are usable for calibration of the data controller, therefore. 

 

4. Filter Development 

4.1. General Function of Kalman Filter 

A Kalman Filter is a virtual dynamical system (a computer algorithm) which is generating an estimate 𝑥 of the 
current state 𝑥 of a real dynamical system based on the history of input (𝑢) and output (𝑦) measurement data from 
the real system and a mathematical model of the system (Grewal and Andrews 2001). There are numerous 
applications of Kalman filters as real-time estimators, for example SOC and state of health estimation in battery 
cells, estimation of position and orientation of moving objects such as quadcopters for example, based on easily 
available accelerometer measurements. In general, it enables to estimate an internal quantity of a process which is 
otherwise not accessible through direct measurement, hence the alias “virtual sensor”. Since the filter works with 
real-time measurement data, its results are affected by the corresponding measurement noise. However, under 
certain statistical assumptions (Simon 2006) it can be guaranteed that the Kalman Filter is a mathematically 
optimal estimator for linear systems in the sense that the covariance of the state estimation error is minimized. 

4.2. Adsorption Model Adaption 

The concept of the Kalman Filter is applied to the problem of determining the current state of charge of a sorption 
storage system. Here, we are considering a fixed-bed sorption storage using zeolite as sorption material as it was 
presented and mathematically modelled in Daborer-Prado, N., et.al. (2020). This model forms the basis for the 
model development required for the Kalman Filter. We are considering the 1-node model (the entire longitudinal 
direction of the storage is considered as one element with one lumped parameter for the water load) which uses as 
internal states to describe the dynamics 

𝑥 = [𝑥 𝑥 𝑇 𝑇 ]   (eq. 5) 

where 𝑥  is the water load of the sorptive material, 𝑥  is the water load of the gas flowing through the storage, 𝑇  is 
the temperature of the sorptive material, and 𝑇  is the temperature on the storage exterior. The model inputs are 

𝑢 = [𝑚 𝑥 𝑇 ]   (eq. 6) 

where 𝑚  is the mass flow of the gas through the storage, 𝑥  is the absolute humidity of the gas flow with 
respect to dry air, and 𝑇  is the temperature of the inflow gas. For details of the model development, we refer to 
the paper Daborer-Prado, N., et.al. (2020). The mathematical model to be used in the design phase of the Kalman 
Filter differs from the described simulation model. One central difference is the way how the water load 𝑥  is 
treated: in the simulation model a spatial differential equation describes its behaviour with respect to the 
longitudinal direction, while temporal differential equations describe the outcome of the outflow water load 𝑥  
at the point where gas leaves the storage, depending on the other state variables 𝑥. A standard Kalman Filter 
requires a system of ordinary differential equations, therefore model adaptations were made in the following way.  

A data-driven state space model of second order was developed which approximatively provides the quantity 𝑥  
as output and uses the quantities (𝑥 , 𝑇 ) as input. To estimate this model, data sequences at various stationary 
choices of the inputs 𝑢 were generated using the simulation model. The estimated model obtained fit-values (a 
measure of the coincidence of model output and data sequences) of more than 90% on all datasets. This model 
contains two new state variables 𝑥  and 𝑥 . The overall mathematical model for the Kalman Filter combines those 
two states with the ones from the simulation model described above to the augmented state vector 
 

𝑥 = [𝑥 𝑥 𝑥 𝑇 𝑇 ]   (eq. 7) 

 
Further assumptions were made in the development process of the Kalman Filter 

 The input 𝑥  was assumed to be constant throughout an experiment 

 The input 𝑇  was assumed to be constant throughout an experiment 

 The states 𝑇  and 𝑇  are assumed to be accessible through measurement on the device 

Altogether, the mathematical model can be described in the general form of a continuous time nonlinear state-space 
model with the state 𝑥  and the input 𝑚 : 
 

�̇� = 𝑓(𝑥 , 𝑚 )  (eq. 8) 

 
B. Zettl et. al. / EuroSun 2022 / ISES Conference Proceedings (2021)



 

 
As a next step, the model needs to be transferred into discrete-time. For this purpose, a simple Euler approximation 
with a sample time Δ𝑇 is utilized and given in the general formulation:  
 

𝑥 = 𝑥 + Δ𝑇 𝑓(𝑥 , 𝑢 )  (eq. 9) 

 
Note that this model is non-linear since the dynamics of the original simulation model are also nonlinear. 
Therefore, a standard linear Kalman Filter is not applicable and the extension of an extended Kalman Filter (EKF), 
see e.g. (Grewal and Andrews 2001) capable of dealing with nonlinearities could be used instead. A natural 
approach would also be to linearize the model around one stationary operating point and assume “small” deviations 
from this point during operation. There is, however, no stationary operating point in the considered application 
since the load 𝑥  will continue to rise (in adsorption mode) even if all the input quantities are fixed to constant 
values inside the operating conditions. Therefore, an EKF was developed and implemented in the MATLAB® 
/SimulinkTM environment using the built-in EKF functionality. The general overview of the system can be seen in 
Figure 11. 
 

 
Fig. 11: Overview of the MATLAB® /SimulinkTM simulation model 

To demonstrate the quality of the state estimation, a simulation where the input was chosen to 𝑚 = 300 kg/h and 
the sorption material had an initial humidity of 𝑥 (𝑡 = 0) = 0.1 was performed. The results are graphically shown 
in Figure 12, where the blue lines represent the quantities derived from the simulation model and the red lines are 
the state estimates from the EKF. Since the initialization of the EKF does not match precisely the initial conditions 
of the simulation model (which is a realistic assumption), there are minor deviations between the two lines in the 
beginning of the experiment. This is an expected behaviour of virtually any Kalman Filter application unless initial 
states are perfectly known. As the experiment continues, the lines begin to coincide, especially the two 
temperatures shown in the bottom two panels. This is because those temperatures are directly measured and the 
tuning of the EKF was done in such a way that the errors introduced in those measurements are assumed to be 
small in comparison to the errors introduced in the modelling of the states 𝑥  and 𝑥 . In other words, the 
measurement covariance was chosen much smaller than the covariance of the additive process noise affecting the 
model states. With respect to the actual variable of interest, the water load 𝑥 , shown in the top panel, the EKF can 
reproduce its trajectory in a sufficient way and only introduces a minor offset.   
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Fig. 12: Comparison of the EKF-estimated states with the simulation model 

5. Summary 

In order to develop a new State-of-Charge (SOC) sensor, the concept of a virtual sensor concept was applied, 
combining physical measurements, adsorption model, and system simulation. 

 Calibration data is used to exhibit the material relative permittivity dependence to the material humidity.  

 In the 200 kHz frequency range, material water content is the dominant factor that influences the relative 
permittivity of 13X-BF zeolite, other materials like zeolite 4A show little changes likewise.  

 In the 2 MHz frequency range, a pronounced influence of both, temperature and humidity was measured.  

 The Kalman-filter is suitable to repress sensor failures by estimating the material characteristics based on 
a modified adsorption model. The model allows the fast in-line prediction of the future material humidity 
load based on the current state, sensor signals and the modified adsorption model.  

 A system simulation will be used to integrate the virtual sensor into a SOC determination of the entire 
storage system.  
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