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Abstract 

This study presents a comparative study on one-month solar radiation datasets for solar energy analysis in 

Trondheim. Such datasets differ among the sources (i.e., satellite observations, reanalysis, weather stations), the 

radiative parameters (i.e., global horizontal irradiance, diffuse horizontal irradiance, and direct normal irradiance), 

and the time resolutions (i.e., one-minute, one-hour). The plane of array irradiance amounts impinging on a 

photovoltaic panel are determined through the decomposition and transposition models implemented in the pvlib-

python tool or measured with a pyranometer oriented as the photovoltaic panels. Then, the photovoltaic energy 

production is quantified and validated against experimental data and the accuracy of the estimation is evaluated 

with the Mean Biased Error (MBE) and the Root Mean Squared Error (RMSE). Data about photovoltaic energy 

generation are collected from the Zero Emission Building (ZEB) Test Cell Laboratory, in Trondheim (Norway). 

The main research goal is to determine which dataset can better estimate photovoltaic energy production in the 

chosen location. Datasets providing direct measures of the plane of array irradiance or direct normal and diffuse 

horizontal irradiance amounts allow to reduce the length of the model chain. In particular, the dataset with the 

hourly plane of array irradiance observations from the ZEB Test Cell Laboratory permits quantifying the hourly 

energy generation from photovoltaics with the highest accuracy (MBE is 3.97 Wh, RMSE is 45.60 Wh). The 

results demonstrated how the datasets based on observations are more accurate than the datasets based on satellite 

imaging or numerical reanalysis.  

Keywords: Photovoltaic, Solar energy, Simulations, Monitoring, High latitudes. 

1. Introduction 

In the era of the energy transition towards a low-carbon society, it is necessary, among the others, to boost the 

exploitation of renewable energy sources (RES), to improve the energy efficiency of building stock towards 

energy positive districts, and to promote sustainable development actions (e.g., decarbonisation, greenification). 

In that regard, the deployment of RES and high energy efficiency measures can potentially contribute to 90% of 

the required greenhouse gas emissions (GHG) reductions (International Renewable Energy Agency, 2022). 

The solar and wind energy represent the main drivers of the low-carbon energy transition. In particular, the solar 

photovoltaic (PV) showed the highest growth rate (average annual increase of 36% in the past 30 years) among 

the RES (International Energy Agency, 2021a). PV is expected to account for 13% of the power production by 

2030 compared with the current 1.7% (International Renewable Energy Agency, 2022), and to cover up to 33% 

of the total global energy needs by 2050 (International Energy Agency, 2021b). 

Within this framework, new opportunities for solar energy production are actively investigated in Norway to 

counterbalance the growing energy demand which is currently satisfied by hydropower and wind power. In 

Norway, the solar energy showed the greatest growth throughout the last five years and the installed solar power 

has increased from 3 MW (2015) to 140 MW (2020) (Fig. 1) (Energy Facts Norway, 2021). The misconception 

that the level of irradiation is much lower in the Nordics than in the Continental Europe partially contributed to 

such a delay in the exploitation of solar energy (Formolli et al., 2021). However, there are some advantages in 

installing PV systems at high latitudes like the high efficiency due to the low temperatures and the significant 
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amount of solar energy which is reflected by the snow covering the ground (Dubey et al., 2013).  

 

Fig 1: Development in installed capacity for solar power in Norway (Energy Facts Norway, 2021). 

To boost more the solar energy penetration in Norway, it is necessary to design highly effective PV and to 

implement a model chain to accurately simulate their energy generation. Although the high number of overcast 

days (particularly in the wintertime) makes difficult to estimate the global irradiation impinging on PV, recent 

advancements in solar irradiance model chain enables more precise calculations methods (Yang, 2022). 

Decomposition models exploiting one-minute radiation datasets have been implemented to evaluate instantaneous 

effects such as the cloud and albedo enhancement, while some hourly transposition models appear to be equally 

applicable to one-minute data (Gueymard, 2017). 

The present study focuses on the investigation of the influence of different solar radiation datasets on PV energy 

simulation. One-month solar radiation datasets for Trondheim location are retrieved from various sources (i.e., 

satellite observations, weather station) and then used as input parameters in the pvlib-python package (Holmgren 

et al., 2018) to estimate the plane of array irradiance (POA). The comparative analysis of the results against 

experimental data permits to preliminary identify the most adequate datasets to be used in PV energy analysis. In 

this context, this study is part of a wider research which aims at developing a model chain for prediction of energy 

generation from PV to be applied to high latitudes. 

The paper is structured as follows: the section of materials and methods (section 2) defines the workflow, the 

exploited datasets, the tools, the accuracy indicators, and the case study; the section of results and discussion 

(section 3) provides an overview of the outcomes, discuss the PV analysis capability of the datasets, and outlines 

the study limitations. The study concludes with a summary of the most relevant findings and the implications for 

future advancements in model chain development and application at high latitudes (section 4). 

2. Materials and methods 

2.1. Workflow 

The workflow is structured in four steps: (i) decomposition modelling, (ii) transposition modelling, (iii) PV energy 

assessment, and (iv) experimental validation (Fig. 2). In the first step, the global horizontal irradiation (GHI) is 

input to quantify the diffuse horizontal irradiation (DHI) and the direct normal irradiation (DNI) as outputs. The 

DNI and the DHI are considered as inputs in the second step. In the second step, the DHI and DNI are transposed 

from the horizontal plane to a tilted surface, and the POA is calculated. The tilted surface is defined according to 

the geometry properties of the PV panel (i.e., tilt angle, azimuth angle). Then, the amounts of POA are used to 

estimate PV energy generation. Finally, the modelled PV energy generation is validated against experimental data 

from the Zero Emission Building (ZEB) Test Cell Laboratory located at the Norwegian University of Science and 

Technology (NTNU) Gløshaugen Campus in Trondheim, Norway (Latitude 63.4305° N). 

The model chain described in the workflow is flexible and its length (i.e., the number of steps) can change 

depending on the input. For example, if a dataset providing the DNI and DHI values is selected, the step about 

decomposition modelling is skipped, and the model chain is shortened. Thus, the full-length model chain starts 
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from step one and it includes decomposition, transposition, and energy modelling, while the shortest possible 

model chain has POA as input and it starts from step three. 

 

Fig. 2: Overview of the workflow followed in this study. The workflow is structured in four steps: (i) decomposition modelling, (ii) 

transposition modelling, (iii) PV energy assessment, and (iv) experimental validation. 

2.2. Datasets 

Weather datasets used in this work refer to Trondheim. The climate of Trondheim is classified as continental sub-

artic climate (Dfc) in Köppen Geiger classification (Fig. 3) and it is moderately continental, with cold winters and 

mild summers. The analyses are carried out for the month of October 2021. The selected one-month datasets are 

characterized by a time resolution ranging from one minute to one hour depending on the source.  

 

Fig. 3: The Köppen climate classification. Modified from “Köppen climate types of Norway” by Adam Peterson. 

An overview of the used datasets and their principal properties (i.e., data type, time resolution, spatial resolution, 

parameters) is presented in Tab. 1. The month of October has been selected to assess the viability of the datasets 

to estimate the PV generation outputs during days characterized by overcast sky conditions. Before calculating 

the accuracy indicators (see sub-section 2.4), the datasets are resampled hourly, daily, and monthly. 

Among the datasets provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), the 5th 

generation of numerical reanalysis (ERA5-Land) is selected. ERA5-Land consists of a version of ERA5 which is 

specifically developed for land applications. According to the different field of applications, the spatial resolution 

of ERA5-Land (9 km) is greater than the one of ERA5 (around 30 km). Data cover a time horizon ranging from 

January 1950 to present, and concern the main variables related to temperature, lakes, snow, soil water, radiation 

and heat, evaporation, wind, pressure, and precipitation. The variables retrieved from the Copernicus Climate 
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Data Store for the time domain of this work (October 2021) are the surface solar radiation downwards 

(corresponding to the global horizontal irradiation), both the temperature and the dewpoint temperature at two 

meters from the ground, and the surface pressure. In particular, the accumulated radiation values of ERA5-Land 

are transformed to hourly values by subtracting the previous values within each forecast horizon. 

Tab. 1: Characteristics of the datasets used in this study. 

Data source Data type Timestep Spatial resolution Parameters 

ERA5-land Reanalysis 1 hour 9 km GHI 

CAMS Satellite data 1 minute 3-5 km 
DHI, DNI, 

GHI 

Sentralbygg Monitored data 1 minute point 
DHI, DNI, 

GHI 

Test Cell Lab Monitored data 5 minutes point GHI 

Test Cell Lab Monitored data 1 hour point GTI 

Test Cell Lab Monitored data 1 hour point 
PV energy 

generation 

The Copernicus Atmosphere Monitoring Service (CAMS) Solar Radiation service combines output from the 

CAMS global forecast system on aerosol and ozone with detailed cloud information directly from geostationary 

satellites. The CAMS Solar Radiation service provides, among the others, historical values (2004 to present) of 

GHI, DHI, and DNI (both overcast and clear sky conditions) with a time resolution of 1 minute. Such irradiance 

parameters were retrieved for October 2021.  

Alongside reanalysis and satellite observation, the amounts of solar irradiance are also measured through sensors 

installed in various facilities at the NTNU Gløshaugen campus. In particular, the hourly values of GHI and POA 

are collected through two pyranometers installed on the rooftop of the Test Cell Lab, while the DHI and the DNI 

are measured through a sun tracker located at the top of the tower of the Sentralbygg. The sun tracker follows the 

sun path over the horizon to orient the pyrheliometer in the same direction of the sunrays as well as to keep in the 

shadow the pyranometer which measures the DHI. The system is completed by an unshaded pyranometer which 

monitors the GHI. Different time resolutions are associated to these datasets, ranging from 1 minute (DNI and 

DHI) to 1 hour (POA). The GHI values are recorded every 5 minutes. 

Finally, the energy generation from the PV panels installed on the rooftop of the Test Cell Lab is monitored with 

a time resolution of 1 hour. This timeseries is compared to the simulated ones which result from the different solar 

irradiance datasets. 

2.3. Tools 

The PV energy generation output is calculated using the pvlib-python package, an open-source and community-

supported tool that simulates the performance of PV systems. The tool allows managing the whole model chain 

from the irradiance decomposition to the transposition process, and to the PV energy simulation. In particular, 

pvlib-python includes methods like the Perez model that are well established for hourly irradiance decomposition 

methods, and some one-minute decomposition methods (Yang, 2022). These models differ for the accuracy and 

for the predictors which are needed to estimate the diffuse fraction. In this study, the Engerer4 model is exploited 

to decompose the GHI into DNI and DHI. The model has been implemented by Bright and Engerer (Bright and 

Engerer, 2019) who updated the Engerer2 model by recalculating the parameters with datasets from 75 different 

stations worldwide.  

Regarding the transposition models, the Perez anisotropic model is used since is the one exploited almost 

universally in building performance simulation, although other options are available in the pvlib-python package 

(e.g., the isotropic model (Loutzenhiser et al., 2007), the Hay-Davies model (Hay, 1993), and the Reindl model 

(Reindl et al., 1990)). The Perez model splits the diffuse irradiance into different components (i.e., isotropic, 

circumsolar, horizontal brightening band) and then estimate the amount of irradiance achieving the PV modules. 

The solar position (i.e., solar azimuth, solar zenith, apparent solar time) is one of the Perez model’s input 

parameters, and it is estimated with the ephemeris function from the pvlib-python package. 

Finally, the POA is used to estimate the energy amount generated by the PV panels. The energy generated by PV 
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modules is calculated with a simple equation from the EN 15316- 4-3:2017 standard: 

𝐸𝑒𝑙,𝑜𝑢𝑡 =
𝐸𝑠𝑜𝑙,𝑝𝑣 ∙ 𝑃𝑝𝑘 ∙ 𝑓𝑝𝑒𝑟𝑓

𝐼𝑟𝑒𝑓

 

where 𝐸𝑠𝑜𝑙,𝑝𝑣 is the solar irradiation impinging on the system expressed in Wh/m2, 𝑃𝑝𝑘 is the system peak power 

in kW at reference conditions (𝐼𝑟𝑒𝑓= 1 kW/m2).  

The system performance factor, 𝑓𝑝𝑒𝑟𝑓, accounts for losses due to soiling (𝜑𝑠𝑜𝑖𝑙) and temperature (𝜑𝑡𝑒𝑚𝑝), as well 

as to the specific array’s configuration (𝜑𝑎𝑟𝑟𝑎𝑦) and the inverter’s efficiency (𝜂𝑖𝑛𝑣). It is calculated according to 

the Norwegian technical guideline SN-NSPEK 3031: 

𝑓𝑝𝑒𝑟𝑓 = 𝐼𝐴𝑀 ∙ (1 −
𝜑𝑠𝑜𝑖𝑙

100
) ∙ (1 −

𝜑𝑡𝑒𝑚𝑝

100
) ∙ (1 −

𝜑𝑎𝑟𝑟𝑎𝑦

100
) ∙

𝜂𝑖𝑛𝑣

100
 

where IAM is the Incident Angle Modifier. The 𝜂𝑖𝑛𝑣 equals 96%, while the IAM, is defined based on the empirical 

values proposed in the standard for the Trondheim location and the selected months. In particular, the IAM is 

0.96, the 𝜑𝑠𝑜𝑖𝑙 ranges between 2% and 5%, and the 𝜑𝑎𝑟𝑟𝑎𝑦  is 5.5%. Finally, the 𝜑𝑡𝑒𝑚𝑝 depends on the cell’s 

temperature (𝑇𝑐𝑒𝑙𝑙), and it is estimated as: 

𝜑𝑡𝑒𝑚𝑝 = 𝛼𝑡𝑒𝑚𝑝 ∙ (𝑇𝑐𝑒𝑙𝑙 − 25°C) 

where 𝛼𝑡𝑒𝑚𝑝 is a temperature coefficient and equals 0.40% per Celsius degree. 

2.4. Accuracy indicators for PV output timeseries and data quality filter 

To compare the capability of the different solar radiation datasets to estimate PV energy generation with overcast 

sky conditions, the Mean Bias Error (MBE) and the Root Mean Square Error (RMSE) are used. The two 

coefficients are defined as it follows: 

𝑀𝐵𝐸 =
1

𝑁
∙ ∑ (�̅�𝑖 − 𝑥𝑖)

𝑁

𝑖=1
 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∙ ∑ (�̅�𝑖 − 𝑥𝑖)

2
𝑁

𝑖=1
 

where the �̅�𝑖  and the 𝑥𝑖  are the simulated and the measured photovoltaic energy generation amounts, respectively. 

A data quality filter (DQF) is applied to the measurements by excluding periods where the solar elevation is lower 

than 5 degrees. In fact, when solar elevation is lower than 5 degrees, the incidence angle of the solar beams on the 

sensor is very high, and thus, it can result in less accurate measurements. Evaluation metrics are calculated before 

and after the DQF is applied. 

2.5. Case study 

The ZEB Test Cell Laboratory (Fig. 4) consists of a large- and full-scale test cell building facility used, among 

the others, for outdoor natural climate testing of building materials, components, building management strategies 

and structure elements. This research facility is equipped with three different PV panels which are integrated in 

the rooftop. The three PV panels are made, respectively, of monocrystalline, polycrystalline, and amorphous solar 

cells and their energy production is monitored with a one-hour time resolution. Data from the polycristalline 

silicon (poly-Si) modules are used in the experimental validation of the model chain implemented in this study. 

The polycrystalline silicon modules are the 260PE series from REC. Each module is 1.65 m2 and has 60 cells and 

3 bypass diodes. The rated power is 260 Wp per module and the rated efficiency is 15.8%. Four modules, with a 

total power of 1040 Wp, are installed on the roof with a tilt and an azimuth angles of 40° abd 180°, respectively. 

The three solar panels are connected to a micro-converter/inverter system from SolarEdge enabling each module 

to always operate at the best possible conditions. The benefit of the micro-converter system is to prevent the whole 

string output to be reduced if a single module is shaded. 
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Fig. 4: Test Cell Lab facility at NTNU Gløshaugen campus. Pictures from: www.sintef.no. 

3. Results and discussion 

3.1. PV simulation over different time resolutions 

Outcomes from the model chain described in section 2 are reported in the scatter plots in the Fig. 5 and Fig. 6. In 

particular, the observed PV outputs are showed against the modelled PV outputs which derives from: 

• POA measured in the Test Cell Lab (gti_tc),  

• DNI and DHI monitored in the Sentralbygg (dni/dhi_sb), 

• GHI recorded in the Test Cell Lab (ghi_tc), 

• DNI and DHI retrieved from CAMS (dni/dhi_cams), 

• GHI calculated by ERA5-Land (ghi_era). 

It is worth to highlight that the whole dataset is considered in the graphs in Fig. 5, while only the values satisfying 

the DQF requirements are considered in the graphs in Fig. 6. Hence, the length of the datasets is reduced from 

300 to 224 datapoints. 

 

 

Fig. 5: Hourly observed PV energy production and modelled PV energy production during October 2021, before data quality 

filter. The yellow color indicates a high datapoint density, while the blue color represents a low datapoint density. 
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Fig. 6: Hourly observed PV energy production and modelled PV energy production during October 2021, after data quality filter. 

The yellow color indicates a high datapoint density, while the blue color represents a low datapoint density. 

The plot of the results enables some preliminary considerations. Firstly, the monitored POA, DHI, and DNI values 

can estimate the energy generated by PV better than the others. Secondly, datasets from satellite observations are 

good as the datasets from Era5-Land reanalysis in PV simulation. 

The accuracy indicators calculated for the five datasets confirmed such observations (Tab. 2). Before the DQF is 

applied, the model chain exploiting data of POA from the Test Cell Lab shows an MBE of 1.70 Wh and a RMSE 

of 25.50 Wh. These are the accuracy indicators corresponding to the best performance, while the worst results are 

obtained when satellite observations (MBE is 15.97 Wh, RMSE is 55.09 Wh) and numerical reanalysis are 

used (MBE is 11.95 Wh, RMSE is 83.50 Wh).  

Tab. 2: Accuracy indicators calculated for the hourly datasets exploited in this study. 

 gti_tc dni/dhi_sb ghi_tc dni/dhi_cams ghi_era 

MBE [Wh] 1.70 5.70 6.26 15.97 11.95 

RMSE [Wh] 25.50 28.96 42.10 55.09 83.50 

MBE (DQF) 

[Wh] 
3.97 16.61 12.87 37.48 23.71 

RMSE (DQF) 

[Wh] 
45.60 51.02 67.34 91.21 139.28 

The application of the DQF leads to a general worsening of the PV simulation capability of the datasets. Although 

with a different magnitude, all the indicators are increased. In particular, the MBE calculated for the gti_tc is 

increased up to 3.97 Wh, while the RMSE is 45.60 Wh. The highest drop in the estimation performance is observed 

for dni/dhi_cams whose accuracy indicators are more than doubled (MBE is 37.48 Wh, RMSE is 91.21 Wh). 

Alongside these, the DNI and DHI values measured in the Sentralbygg (MBE is 16.61 Wh, RMSE is 51.02 Wh) 

calculated the PV energy generation better than the GHI values monitored in the Test Cell Lab (MBE is 12.87 

Wh, RMSE is 67.34 Wh). 

When it comes to the daily PV energy generation, the comparison between the measured values and the model 

outputs are reported in Fig. 7 and Fig. 8. It is worth to highlight that in this case the DQF causes the reduction of 

the observed amounts (i.e., amount of energy generated by the PV panel) and not the number of observations (i.e., 
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number of recorded elements). As observed in the plots depicting the hourly values (see Fig. 5 and Fig. 6), the 

measured quantities better approximate the PV energy production. 

 

 

Fig. 7: Daily observed photovoltaic energy production and modelled photovoltaic energy production during October 2021, before 

the application of the data quality filter. The yellow color indicates a high datapoint density, while the blue color represents a low 

datapoint density. 

 

 

Fig. 8: Daily observed photovoltaic energy production and modelled photovoltaic energy production during October 2021, after 

the application of the data quality filter. The yellow color indicates a high datapoint density, while the blue color represents a low 

datapoint density. 

The solar radiation datasets with POA amounts from the Test Cell Lab is the one with the lowest accuracy 

indicators (Tab. 3). In particular, the MBE of the gti_tc ranges from 40.77 Wh (before DQF) to 28.70 Wh (after 

DQF), while the RMSE is 107.58 Wh (before DQF) and 115.63 Wh (after DQF). Again, the worst performance 
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is observed for datasets derived from satellite observations and numerical analysis. 

Tab. 3: Accuracy indicators calculated for the daily datasets exploited in this study. 

 gti_tc dni/dhi_sb ghi_tc dni/dhi_cams ghi_era 

MBE [Wh] 40.77 136.38 147.05 165.95 268.69 

RMSE [Wh] 107.58  182.50 396.89 673.84 669.93 

MBE (DQF) 

[Wh] 

28.70  120.02 93.00  111.55  164.49 

RMSE (DQF) 

[Wh] 

115.63  166.29  306.37  577.11  592.72 

Regarding the PV simulation over the whole month, the residues between the modelled and the monitored PV 

energy production values are presented (Table 4). Residues are expressed as a percentage, and they are defined as 

the difference between the model output and the observed value. The energy from the PV panel equals 23,954 Wh 

before the application of the DQF and 20,160 Wh after the DQF. The comparation of the residues confirm the 

gti_tc as the best dataset to estimate PV energy generation, while the ghi_tc turns out to be worse than datasets 

from satellite observations if DQF is not applied. 

Tab. 4: Residues calculated between the observed and calculated monthly photovoltaic energy generation. 

 gti_tc dni/dhi_sb ghi_tc dni/dhi_cams ghi_era 

Before DQF [Wh] 5.01% 15.01% 16.18% 33.98% 26.36% 

After DQF [Wh] 3.78% 14.08% 11.27% 28.52% 18.67% 

3.2. Discussion 

High-resolution datasets based on satellite imaging methods (i.e., CAMS) are found to be more accurate than one-

hour datasets based on numerical weather prediction and assimilation methods (i.e., ERA5-Land global reanalysis) 

in Trondheim. A similar result was observed by Kenny and Fiedler (Kenny and Fiedler, 2022) in 30 locations in 

Germany. However, diffuse, and direct irradiance values which are measured by weather stations are generally 

preferable to those derived from satellite observations due to the lower error associated to the monitoring 

equipment, even if the two components are rarely measured (Manni et al., 2023). In fact, pyranometers measuring 

GHI are commonly used in solar monitoring campaign due to their lower investment costs if compared to the sun 

tracker equipment. 

Based on the preliminary outcomes from this work, the length of the model chain determines the accuracy of the 

modelled PV energy generation more than the time resolution of the datasets. When variables measured by 

weather stations are considered, the one-hour POA dataset outperforms the one-minute dataset with monitored 

DNI and DHI values; it performs better than the GHI dataset having a time resolution of five minutes. 

Finally, the following recommendations are carried out from this study:  

• When available, solar radiation data from weather stations should be prioritized despite of their time 

resolution. 

• DHI and DNI values from monitoring campaign or satellite imaging methods should be used instead of 

GHI datasets to reduce the length of the model chain. 

• Measuring POA is also a valid option since it combines the short model chain to the low costs of the 

monitoring sensor (i.e., pyranometer). 

3.3. Limitations of the study 

In this section, the limitations of the study are outlined and commented. Firstly, the selected time interval is only 

one-month so the results are affected by the specific weather conditions and by the specific selected period of the 

year. In fact, datasets that perform badly in the overcast conditions in October 2021 (i.e., the analysis period) 
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might perform better during those months which show prevalently clear sky conditions (i.e., July, August). 

However, this study allows carrying out some preliminary considerations about the accuracy of the investigated 

model chains.  

Secondly, October 2021 was mostly characterized by overcast sky conditions in Trondheim that affect the validity 

of the results. However, most of the numerical model and datasets are able to model PV energy generation during 

clear sky days, while simulating overcast sky conditions is more challenging.  

Thirdly, the use of a single decomposition and transposition model can limit the reliability of the results. In fact, 

the use of a more effective combination of decomposition and transposition models could led to lower accuracy 

indicators for those datasets containing data about GHI or DNI and DHI. On the contrary the use of a different 

energy model for the simulation of the PV system would have had a less remarkable impact on the results since it 

is applied to all the datasets. Despite of that, the use of decomposition and transposition models and the longer 

model chain imply a low accuracy of the results. 

4. Conclusive remarks 

A comparative analysis of different solar radiation datasets and their capability of simulating PV is carried out. 

One-month solar radiation datasets from satellite observations, numerical reanalysis and weather stations are used 

as input parameters in the model chain combining the Engerer4 decomposition model and the Perez transposition 

model with the energy model described in sub-section 2.3. Outputs are compared against experimental data 

collected from the PV panel installed on the roof of the Test Cell Lab. The achievements from this study contribute 

to determine suitable irradiance dataset to be exploited in the model chain for the prediction of mono-facial PV 

energy generation at high latitudes as Trondheim.  

The main findings are summarized in the following bullets: 

• The POA data collected every hour in Test Cell Lab permit to estimate the hourly PV energy generation 

with the highest accuracy after the application of the data quality control filter (MBE is 2.65 Wh, RMSE 

is 39.78 Wh). 

• Accuracy indicators calculated for the datasets based on observations are lower than the ones calculated 

for datasets based on satellite imaging or numerical reanalysis. 

• Daily and monthly aggregation of the hourly datasets confirmed the POA data to better simulate the daily 

and monthly energy produced by the investigated PV panel. 

Further insights into the model chain and solar radiation datasets are necessary. This includes: 

• Assessing the capability of solar radiation datasets to estimate PV production over a wider time horizon 

such as one or more years instead of a single month. 

• Performing a sensitivity analysis on different combinations of decomposition and transposition models 

to identify the most effective model chain at high latitude locations. 

• Reiterate the comparative analysis for different PV panel technologies such as bi-facial PV systems 

which require a more accurate evaluation of the diffuse fraction. 

• Validating the implemented model chain with experimental data from different high-latitude locations 

and different PV systems. 
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Nomenclature  

Acronyms 

RES  Renewable Energy Sources 

GHG  Greenhouse Gas 

PV  Photovoltaic 

NTNU Norwegian University of Science and Technology 

ECMWF European Centre for Medium-Range Weather Forecasts 
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ERA5-Land ECMWF 5th generation reanalysis for land application 

CAMS  Copernicus Atmosphere Monitoring Service 

DQF   Data Quality Filter 

Variables 

GHI  Global Horizontal Irradiance [Wh] 

DHI  Direct Horizontal Irradiance [Wh] 

DNI  Direct Normal Irradiance [Wh] 

POA  Plane of Array Irradiance [Wh] 

MBE   Mean Bias Error [Wh] 

RMSE  Root Mean Square Error [Wh] 

E  Energy [Wh] 

fperf   Temperature-dependent losses for semi-integrated panels and other configurations 

P  Power [kW] 

Iref   Reference conditions for the investigated PV panel [kW/m2] 

N  Number of elements in the series 

�̅�𝑖    i-th calculated values  

𝑥𝑖  i-th observations 

Subscripts 

el   Electricity  

out   Output 

sol   Solar 

pv   Photovoltaic 

pk   Peak 
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