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Abstract 

Solar trackers have been widely used in photovoltaic plants due to the increase in their capacity factor. However, 

the operation of tracker systems still has challenges, mainly related to failures during operation. The mechanical 

failures on trackers significantly impact the PV generation and, consequently, have a non-negligible impact on 

the economic return. The data on trackers’ failures in operation situations is rare. The present paper will use a 

statistical method for daily failure detection from the relation between PV power output and plane-of-array (POA) 

irradiances. This methodology extracts features from data curves and classifies the days according to them. The 

accuracy obtained showed that new methods, such as those presented in this paper, may perform better in 

identifying tracking system failures. 
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1. Introduction 

 
Solar trackers have been widely used in photovoltaic (PV) plants due to the increase in their capacity factor. 

Despite this, the presence of trackers introduces uncertainties in the PV plant’s performance because the tracking 

system is a piece of moving equipment. Then, the mechanical failures on trackers have a significant impact on the 

PV generation and, consequently, a non-negligible impact on the economic return of the plant. Therefore, studying 

trackers’ failures during the operation is crucial. Nevertheless, the data on trackers’ failures in operation situations 

is rare, and the literature on this subject use accelerated tests or others laboratories procedures to understand the 

phenomenon (Elerath, 2011; Elerath et al., 2011). In this sense, this study aims to develop a methodology for 

detecting days that the tracking system is stuck in a fixed position in a PV plant, in other words, days that it is not 

tracking the sun. Based on the Ruth and Muller (2018) publication, the present paper will use a statistical method 

for failure detection from the relation between the daily time series of the PV output power and plane‐of‐array 

(POA) irradiances for a given day. 

2. Methods and Materials 

 
Bazovsky (2004) defines failures as an intended period when a device or system does not adequately perform its 

purpose under operating conditions. From this definition, the main objective of a solar tracker is to increase power 

production by tracking the sun throughout the day. Thus, even if the tracking system can get stuck all day, if this 

does not significatively affect the energy production (as is best seen in subsection 3.3), it cannot be considered a 

failure. Thus, the criterion for determining failures in a tracker is the energy production associated with the 

photovoltaic system. Moreover, concerning the length of the time considered, it is intuitive to realize that slight 

deviations in the sun’s tracking throughout the day do not generate significant losses in power production. In this 

sense, it is appropriate to consider the day as the scale of the time considered for the failure analysis. Therefore, 

this work will focus on daily failures.  

The main idea of daily tacker failure detection is based on the relation between the time series of PV output power 
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and plane-of-array (POA) irradiance (Ruth and Muller, 2018). As shown in Fig. 1, when the tracker functions as 

expected, the power curve has a shape similar to the POA curve for a system tracking the sun. On the other hand, 

when the tracker is stuck, the power curve is similar to the POA curve for a fixed collector (Fig. 2). 

 

Fig. 1: Daily time series of PV output power and POA irradiances for a solar PV system with a dual-axis tracker, at site 2 in Desert 

Knowledge Australia Solar Centre, in Alice Springs, Central Australia, on August 19th, 2012. The solid red line represents the 

measured power; the dashed blue line is the dual-axis POA; the green dotted line the fixed-tilt POA. Note that when the tracker is 

working, the power curve is similar to the POA curve for a tracking collector. 

 

 

Fig. 2: Daily time series of PV output power and POA irradiances for a solar PV system with a dual-axis tracker, at site 2 in Desert 

Knowledge Australia Solar Centre, in Alice Springs, Central Australia, on August 29th, 2012. The solid red line represents the 

measured power; the dashed blue line is the dual-axis POA; the green dotted line the fixed-tilt POA. Note that when the tracker 

was stuck, the power curve was similar to the POA curve for a fixed collector. 
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3.1. Methodology 

 
Plane-of-array (POA) irradiance is the total irradiance arriving at the collector plane (a tilted PV panel, for 

instance). This collector can be in a fixed position or moving from a tracking system. Usually, we obtain POA 

irradiance from local measurements of global (G), beam (𝐺𝑏), and diffuse (𝐺𝑑) irradiances in the horizontal plane. 

Eq. 1 shows the relation between G, 𝐺𝑏, and 𝐺𝑑, involving the azimuth angle 𝜃𝑍. If one of these horizontal 

irradiances isn’t available, we can determine the missing irradiance from the other two. The eq. 2 shows how to 

calculate POA from G, 𝐺𝑏, and 𝐺𝑑, where 𝛽 is the collector tilt angle, and  is the albedo (fraction of irradiance 

reflected by the ground). The angle  is the incidence angle between the sun rays and the collector normal line.  

has a different expression for collectors fixed installed and for collectors with solar trackers. Tab. 1 presents the 

incidence and collector tilt angles for fixed and dual-axis systems (Rabl, 1985). It is necessary local latitude , 

declination  and hour  angles of the sun, azimuth   and inclination  angles of the collector for eq.2. The 

expressions of these angles and their references can be found in Rabl (1985).  

 

𝐺 = 𝐺𝑏 cos 𝜃𝑍 + 𝐺𝑑          (eq. 1) 

 

𝑃𝑂𝐴 = 𝐺𝑏 ×  cos 𝜃 + 1
2⁄ × 𝐺𝑑 × (1 + cos 𝛽) +  1 2⁄ × 0.2 × 𝐺(1 − cos 𝛽)          (eq. 2) 

 

Tab. 1: Cosine of incidence angle value for a tilted fixed collector, and a collector with dual axis tracker   

 Tilted Fixed Collector Collector with dual 

axis tracker 

Cosine of incidence angle 𝜃 

cos 𝛿 cos   cos 𝛽 cos 𝜔
+  sin 𝛿 sin   cos 𝛽
+ cos 𝛿 sin   sin 𝛽 sin 𝜔 
+ cos 𝛿 cos  sin   sin 𝛽 cos 𝜔
− sin 𝛿 cos  sin 𝛽 cos   

 

1 
 

Collector tilt angle 𝛽 Collector fixed tilt angle Zenith angle 𝜃𝑍  

Source: Rabl (1985). 

 

In this context, the present methodology extracts three features from POA and output power curves aiming to 

identify daily tracker failures. First of all, the curves are normalized by their maximum values of the day. This 

normalization allows comparing two variables with different units: irradiance and power. The first feature is the 

Pearson correlation between the output power and the tracked collector POA irradiance, which reveals if the 

tracker is working as expected for a given day. The next step is comparing the output power with a fixed collector 

POA irradiance. For this comparison, the methodology sets a range of possible tracker stuck positions, calculates 

the Pearson correlation between the correspondent POA irradiance and power curves, and chooses the position 

with the most significant value. This procedure is necessary because there is no information about the precise 

stuck position. The third feature is also related to a fault in the tracking system. It involves the error curve, i.e., 

the curve resulting from the element-wise difference between the normalized series of output power and tracked 

POA irradiance. The error curve has a characteristic shape for stuck tracker days, as shown in Fig. 3. So, the 

feature extracted is the Pearson correlation between the real error curve (using real output power time series) and 

the theoretical error curve. This theoretical curve uses the modelled power instead of the actual power output. In 

this step, the stuck position is found for the second feature and is used to calculate the theoretical power from eq. 

3 (Abd El-Aal et al., 2006; Navarte and Lorenzo, 2008). The nominal generator power 𝑃𝑁𝑂𝑀 , the efficiency  the 

power temperature loss coefficient , and the coefficient K are constants in eq.3; and ambient temperature 𝑇𝐴𝑀𝐵 , 

and POA irradiance are inputs of the model. The PV module datasheet informs the  value, and 0.03 is a good 
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approximation for K (Fuentes et al., 2007).  The trust region reflective non-linear least squares method calculates 

the coefficient value  that best fits the data (Li, 1993). 

 

𝑃 = 𝜂 𝑃𝑁𝑂𝑀
𝑃𝑂𝐴

1000
{1 −  𝛽[(𝑇𝐴 + 𝐾 × 𝑃𝑂𝐴) − 25]}          (eq. 3) 

 

 

Fig. 3: Error Curves for a solar PV system with a dual-axis tracker failure at site 2 in Desert Knowledge Australia Solar Centre, in 

Alice Springs, Central Australia, on August 29th, 2012. These curves result from the element-wise difference between normalized 

series of power and normalized tracked POA. The solid red line represents the error curve obtained using the actual power 

output; the dashed magenta line is obtained using modelled output power. 

 

The features used in the model are functioning correlation, fixed correlation, and error curve correlation. So, the 

method selects the days from the dataset and calculates these three features for each day. An interval value must 

be determined for a feature to classify a day as tracker functioning or tracker stuck. Since all features are Pearson 

correlations, we assume an interval that ends at one and begins at one minus 15% of the standard deviation of the 

corresponding feature series. So, the classification of days inside these ranges are tracker functioning, or tracker 

stuck: in the functioning correlation method, set as functioned; in the fixed or error curve correlations methods, 

selected as failed. 

 

3.2. Observational Data 

 
The sample data analysed in this work is from a 26.5kW photovoltaic system (Fig. 4) at the Desert Knowledge 

Australia Solar Centre (DKASC-2), site 2 in Alice Springs, Central Australia, at a longitude of 133.87°W and 

latitude of 23.76°S (DKA, n.d.). Between August 24th, 2010 to December 1st, 2012, a dual-axis tracker was 

working at the site. The lifetime of the tracking device totals 830 days. In addition, there are also some records of 

the maintenance staff during this period. The DKASC-2 data contain G, 𝐺𝑑 and active power output, with a 

timestep of 5 minutes. The coefficients   and K from eq. 3 for DKASC-2 are in Tab. 2. 
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Tab. 2: The coefficients   and K from eq. 3 for DKASC-2. 

    K 

0.75 0.0045 °𝐶−1 0.03 °𝐶 𝑊−1𝑚2 

  

 

 

Fig. 4: The dual-axis tracker 26.5kW photovoltaic system of site 2 of the Desert Knowledge Australia Solar Centre (DKASC-2), in 

Alice Springs, Central Australia, working between August 24th,2010 to December 1st, 2012. Source: DKA. 

 

 

3.3. Visual Inspection 

 

The 830 days of the dual-axis tracker lifetime have visually been analyzed to identify failures aiming to validate 

the methodology explained in subsection 3.2. The days have been classified into function, failures, undetermined 

and missing. Curves like the left in Fig.1 are classified as ‘function’; curves like the right in Fig.1 as ‘failure’. The 

days when the maintenance staff identifies periods in which the tracker is stuck are set as failure days too. For 

instance, the tracker was stuck in a fixed position from March 22th, 2012, to May 30th, 2012, due to a porous clamp 

housing (DKA, n.d.). ‘Missing’ are days when power or irradiances daily series have less than half the expected 

sample data. Finally, as shown in Fig. 5, ‘undetermined’ are days when it is impossible to know whether the 

tracker is working. On the undetermined days, whether the tracker is working does not affect the daily power 

generation because many other problems could occur; then, it cannot be classified as ‘failure’. On the other hand, 

it is impossible to ensure that the tracking system functioned as expected. In other words, in the absence of 

maintenance notes, on undetermined days (usually cloudy days), the tracker is in a simultaneous functionally and 

failure state due to visual inspection method limitation, and, it is not possible to ensure ‘function’ or ‘failure’ class 

to that day. 
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Fig. 5: Daily time series of PV output power and POA irradiances for DKASC-2 on July 12th, 2011. The solid red line represents 

the measured power; the dashed blue line is the dual-axis POA; the green dotted line the fixed-tilt POA. These days are classified 

as undetermined because visual inspection cannot determine the failure. 

 

 

3.4. Model Performance Metrics 

 

In the model performance analysis, the undetermined and missing days will be excluded from the control dataset 

because they do not assure if the tracker is functional or not, as explained in subsection 3.3. The present work uses 

confusion matrix and accuracy as model performance metrics (Costa et al., 2007). These metrics use the numbers 

of true and false positives (TP and TF, respectively) and true and false negatives (TN and FN, respectively). In 

this sense, the positive in the methodology using functioning correlation is identified as functional tracker days, 

while the method using fixed or error curve correlations is to identify tracker failure days. Tab. 3 shows the 

principle of a confusion matrix, and eq. 4 presents the formula for accuracy.   

 

Tab. 3: Confusion Matrix. 

 Predicted Class 

True Class Positive Negative 

Positive True positive (TP) False negative (FN) 

Negative False positive (FP) True negative (TN) 

 

 

𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
          (eq. 4) 
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3. Results and Discussion 

 

Tab. 4 shows the accuracies for each method. Remember that the missing and undetermined days are excluded 

from the control dataset for the accuracy calculation. The error curve correlation presents the best result in 

predicting the target, followed by fixed correlation and functioning correlation. In this sense, the methods that 

directly use the correlation between power and POA curves have the worst performances, while the process that 

uses an intermediate step (the error curve) has the best accuracy. This procedure differs from what Ruth and 

Muller (2018) found in their work. In Ruth and Muller’s work, they used functioning and fixed correlations and 

achieved good results. Perhaps, this difference is because the present work uses sample data of a dual-axis tracker, 

not a single-axis. Then, the result suggests that using other features and methods can increase the models’ 

performance.  

 

Tab. 4: Confusion Matrix for DKASC-2 Error Curve Correlation series. Undetermined and missing days have been excluded from 

the control dataset. 

Method Accuracy 

Functioning Correlation 0.49 

Fixed Correlation 0.80 

Error Curve Correlation 0.90 

 

Fig. 6, Fig. 7 and Fig. 8 show the functional, fixed, and error curve correlations series, the classification obtained 

by visual inspection in each one, and their respective classification thresholds. Note that there is a kind of 

information complementarity, i.e., when a day is not set as a ‘failure’ day in the methods of error curve or fixed, 

it is because it is supposed to be classified as a ‘function’ day. Tab. 5, Tab. 6 and Tab. 7 present the confusion 

matrices. 

 

Fig. 6:  Functional Correlation series for DKASC-2. The solid green line represents the correlation values; the magenta dots are 

the functional days identified in the visual inspection; the blue dashed lines represent the lower and upper range limits of detection 

of functioning days.  
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Tab. 5: Confusion Matrix for DKASC-2 Functional Correlation series. Undetermined and missing days have been excluded from 

the control dataset. 

 Predicted Class 

True Class Positive Negative 

Positive 17 324 

Negative 0 294 

 

 

Fig. 7:  Fixed Correlation series for DKASC-2. The solid green line represents the correlation values; the red dots are the failure 

days identified in the visual inspection; the blue dashed lines represent the lower and upper range limits of detection of failure 

days.  

 

Tab. 6: Confusion Matrix for DKASC-2 Fixed Correlation series. Undetermined and missing days have been excluded from the 

control dataset. 

 Predicted Class 

True Class Positive Negative 

Positive 167 127 

Negative 0 341 
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Fig. 8:  Error Curve Correlation series for DKASC-2. The solid green line represents the correlation values; the red dots are the 

failure days identified in the visual inspection; the blue dashed lines represent the lower and upper range limits of detection of 

failure days.  

 

Tab. 7: Confusion Matrix for DKASC-2 Error Curve Correlation series. Undetermined and missing days have been excluded from 

the control dataset. 

 Predicted Class 

True Class Positive Negative 

Positive 228 66 

Negative 0 341 

 

4. Conclusions  

 

The work extracts features for each day of data from DKASC-2. The objective was to identify daily failures and 

regular working days by three features: functioning correlation, fixed correlation and error curve correlation. 

Different from Ruth and Muller (2018) paper, the results show that the error curve had the best accuracy, which 

indicates that developing more methods could increase detection performance. Furthermore, the three methods 

have a kind of complementarity of information that needs further studies. 
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