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Abstract 

The performance monitoring of PV plants is essential to ensure their correct operation, detect faults, and maximise 

their output. To be able to decide whether a plant is operating within normal parameters, a reference is needed, 

which indicates the PV performance that the plant should have under certain weather conditions. Weather data 

and historical monitoring data from times when the PV plant was operating correctly can be used to train machine 

learning models, which can provide the reference PV performance. In this research, a random forest regression 

machine learning algorithm is used to train models which predict the electrical power that is measured by 19 PV 

inverters and the PV main electricity meter. Several random forest models utilising different parts of the available 

weather data were trained. Their prediction performance was evaluated for five different time resolutions and 

three different PV module orientations. The results indicate that random forest regression is a suitable tool to 

predict the performance of PV plants. 

Keywords: photovoltaic, performance monitoring, performance prediction, machine learning, random forest 

regression 

 

1. Introduction 

There are several methods and tools to calculate the performance of PV plants (Tozzi and Ho Jo, 2017; Umar et 

al., 2018). The science behind PV technology and its relation to weather data, geometrical parameters (e.g., 

orientation), and the surroundings (e.g., shading) is well-known (Mayer and Gróf, 2021). Even though a PV plant 

might have been planned in detail in a sophisticated PV simulation tool, usually, the PV plant owner does not 

have access to detailed planning information. It is common that the owner only receives a report indicating the 

expected PV performance for a year with average weather conditions. Such reports might be useful to evaluate 

whether the magnitude of the monthly PV production is in the correct range or not, but they are useless for 

monitoring the correct plant operation on an hour-to-hour or at least day-to-day basis. For monitoring a correct 

plant operation or its health status, there are various methods and algorithms (Pillai and Rajasekar, 2018), some 

even facilitating machine learning algorithms (Chen et al., 2018; Yao et al., 2021). 

One relatively simple yet powerful machine learning algorithm is “random forest”. It can be used for classification 

and regression (Breiman, 2001). While it can excel at predicting data within the range of the data they were trained 

with, it fails when tasked to extrapolate beyond its trained scope (Breiman, 2001; Hastie et al., 2017). 

Extrapolation should generally not be required to predict the nominal PV electricity production at a given location 

as long as the training data includes weather that can typically be expected during a year. Thus, random forest 

models could be useful for fulfilling this prediction task. 

In this paper, we evaluate the prediction performance a random forest regressor machine learning algorithm can 

achieve when predicting PV electricity generation at particular weather conditions. Instead of calculating the 

reference PV performance out of detailed plant configuration information, it is derived from historical data from 

when the plant was operating correctly. Thus, the PV plant owner does not need a detailed model of the system 

and simulation tool to simulate it but only sufficient monitoring data of the plant and weather data.  

The data source used in this research is from the energy monitoring system of TU Wien’s (Plus-)Plus-Energy 

Office High-Rise Building. It is a highly energy-efficient building developed according to a net-zero energy 

concept. Within this concept, the primary energy source is a PV plant, which is integrated into the building’s 
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façade and mounted on its roof (Schöberl et al., 2014). 

Fig. 1 shows the basic configuration of the building’s PV plant. This graph summarises the information presented 

in (David et al., 2023). It illustrates the different PV sub-surfaces Ai connected to one inverter Ij and their PV 

module type. The stated surface sizes are the sum of the aperture sizes of the modules, and the stated power values 

are the sum of the modules’ maximum power values at standard test conditions. The plant consists of four different 

parts: (i) southwest roof, (ii) southwest façade, (iii) southeast PV insulating glass, and (iv) southeast façade. Each 

illustrated combined surface is connected to one inverter – the only exception is inverter I1, which is connected to 

the southwest-oriented surface A0 and the southeast-oriented surface A1. As indicated by Fig. 1, the plant’s PV 

modules have one of these three orientations: (i) towards the southwest with a 15° inclination, (ii) towards the 

southwest with a 90° inclination, and (iii) towards the southeast with a 90° inclination. 

 

Fig. 1: Overview of the (Plus-)Plus-Energy Office High-Rise Building’s PV plant at TU Wien 

2. Method 

This research aims to evaluate whether random forest regression is a suitable tool to predict the nominal 

performance of PV plants under certain weather conditions. For this purpose, historical weather data and PV 

monitoring data is needed from times when the PV plant operated as intended. This data must be split into a 

training and a test dataset – the training dataset for the training of the random forest models and the test dataset to 

evaluate their performance. This section shows how the monitoring data from the (Plus-)Plus-Energy Office High-

Rise Building was processed and used to train and evaluate random forest models. 

The (Plus-)Plus-Energy Office High-Rise Building is equipped with an extensive building energy monitoring 

system, which logs data from energy meters (electricity and thermal energy for heating and cooling), operational 

data (sensor data, setpoints and control signals), and weather data (external air temperature, global radiation, wind 

speed, …) in a 5-minute interval. One of the systems’ electricity meters is the PV main meter, which meters the 

electricity production of the entire PV plant fed into the building’s low-voltage main distribution. The electricity 

production of each of the 19 inverters is metered separately by integrated electricity meters. As every single meter 

from the 19 integrated ones and the PV main meter can be seen as the meter of a separate PV plant, they are treated 
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as such – each meter is used to train and evaluate a separate random forest model. 

Since the integrated meters were initially not part of the building energy monitoring system, the data processed in 

this research is from when they were connected to the system, i.e., after January 2017. The monitoring data from 

the following two years was used for the training and the performance evaluation of the random forest models: 

• Year 1: 04.02.2017 00:00 – 04.02.2018 00:00 

• Year 2: 04.02.2018 00:00 – 04.02.2019 00:00 

As the data from year 1 has several gaps with sizes ranging from a few days up to almost two weeks, and as year 

2 is practically without gaps, year 2 was chosen as the training dataset and year 1 as the test dataset. All of the 

following processing steps described in this section were applied to both datasets. 

Since inverters I3 and I14 had some failures during year 2, and as the goal of this method is to train random forests 

to predict the nominal PV performance that the inverters should have, their data was excluded from this research. 

The PV main meter is also affected by the failures of those two inverters, but as they are only parts of the entire 

plant, their impact was expected to be less significant. 

For each meter, the time series of the load profile of the PV electricity generation is derived by calculating the 

first-order difference quotient of the time series of the respective meter’s counter. The random forest models were 

trained to predict these load profiles as the target variables. 

Since the models are intended to predict PV electricity generation under given weather conditions, the time series 

of some of the measured weather parameters are the predictor variables (short: predictors). Tab. 1 illustrates the 

weather parameters that were used in the training of the random forest models. 

Tab. 1: Parameters provided by the (Plus-)Plus-Energy Office High-Rise Building’s weather station that are used as predictors in 

the random forest models 

Measurement Unit 
Letter in the name of a random forest model if the model 

utilises this measurement for its predictions 

(Global horizontal) irradiance W/m² i 

(Air) temperature °C t 

Relative humidity (of the air) % h 

Illuminance on the north vertical surface lx n 

Illuminance on the east vertical surface lx e 

Illuminance on the south vertical surface lx s 

Illuminance on the west vertical surface lx w 

 

Besides the weather parameters presented in Tab. 1, some further predictors were calculated out of time stamp 

information – Tab. 2 shows two time indicators that were used as predictors: 

• The indicator “Sinus of the year” encodes the time of the year in the form of a sinus curve, which is fitted 

to the times when the solstices and equinoxes occur during a year. At the time of the summer solstice, 

this indicator is 1; at the time of the winter solstice, it is -1; and at the time of the equinoxes, it is 0. 

• The indicator “Sinus of the day” encodes the time of the day in the form of a sinus curve, which is fitted 

to the times when noon and midnight occur during a day. At noon, this indicator is 1; at midnight, it is -

1; and at 6 AM and 6 PM, it is 0. 

Tab. 2: Time indicators calculated out of time stamp information that are used as predictors in the random forest models 

Time indicator Unit 
Letter in the name of a random forest model if the model 

utilises this indicator for its predictions 

Sinus of the year - y 

Sinus of the day - d 

 

One crucial part of developing machine learning models is the model selection. The goal is to train models that 

can accurately predict the target variables. To do that, they have to grasp the underlying connections between the 

predictors and the target variables based on the provided training datasets. When providing machine learning 
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algorithms with too many predictors, there is the danger of overfitting the models to the respective training dataset. 

To find out which predictors are useful for predicting the target variables and avoid overfitting, several models 

utilising different combinations of predictors must be trained. Their prediction performance is then evaluated by 

providing them with the test dataset. The decision of which model is best for the task at hand is then made based 

on the evaluation results (Hastie et al., 2017). 

All the predictors in Tab. 1 and Tab. 2 have been assigned a single unique letter. In this paper, the designation of 

the developed random forest models is a combination of the letters of the predictors that each respective model 

utilises. For instance, if the model designation is “nesw”, the model uses all four illuminance measurements from 

the weather data, and if the model designation is “ithydnesw”, the model utilises all of the predictors presented in 

Tab. 1 and Tab. 2. The following eight model configurations were investigated in this research: ithyd, ithydnesw, 

itydnesw, itynesw, itnesw, inesw, tnesw, and nesw. 

All of the models are set up as random forest regressors “sklearn.ensemble.RandomForestRegressor” from the 

Python package “scikit-learn 0.22.1” (Pedregosa et al. 2011) in the standard configuration with 100 estimator 

trees. As randomness is one of the key aspects of random forests, the models were repeatedly trained with the 

training dataset (100 repetitions). Their prediction performance at each repetition was evaluated with the test 

dataset. For each of the eight researched model configurations and each of the eighteen load profiles (PV main 

meter and all inverter meters except I3 and I14), a random forest regressor was set up by providing it with the 

respective load profile from the training dataset as target and the corresponding utilised predictors. 

The prediction performances of all models were evaluated by providing the models with the predictors from the 

test dataset in order for them to predict the respective load profile. Each predicted load profile was then compared 

with the actual load profile in the test dataset. This was done by calculating the R² score and the deviation of the 

cumulated predicted load profile from the cumulated actual load (short: deviation). 

With 𝑛 as the number of values in the time series of the load profile, 𝑦̂𝑖 as the ith value of the predicted load profile, 

𝑦𝑖  as the ith value of the actual load profile, and 𝑦̅ as the mean of the actual load profile, the R² score is calculated 

as shown in eq. 1, and the deviation is calculated as shown in eq. 2: 

𝑅2(𝑦, 𝑦̂) = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅)
2𝑛

𝑖=1

   (eq. 1) 

𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑦, 𝑦̂) =
(∑ 𝑦̂𝑖

𝑛
𝑖=1 )−(∑ 𝑦𝑖

𝑛
𝑖=1 )

∑ 𝑦𝑖
𝑛
𝑖=1

  (eq. 2) 

While the R² score indicates of how well the course of the predicted load profile matches the course of the actual 

load profile, the deviation indicates the overall error that can be expected when predicting a whole year. 

All of the steps described in this section were repeated for five different time resolutions: 5 min, 10 min, 15 min, 

30 min, and 60 min. To accomplish this, the original energy monitoring data with a time resolution of 5 min was 

simply resampled to the other four time resolutions by utilising the method “pandas.DataFrame.resample” from 

the Python package “pandas 1.0.1” (McKinney, 2010) and calling its function “mean()”. 

As calculating PV electricity generation out of weather data is a problem with geometric transformations and 

strong linear dependencies, multiple linear regression should also be able to predict the eighteen load profiles 

accurately. Thus, a multiple linear regressor model utilizing the same predictors was also set up and examined for 

each of the eight investigated random forest model configurations. Due to the nature of multiple linear regression, 

their predicted PV electricity generation could be negative. To counteract this effect, negative values were always 

set to zero. The designation of the multiple linear regression models is identical to that of the random forest models 

but extended by the prefix “LR-“. 

3. Results 

Even though in this research, the training and evaluation of regressor models were always conducted with the 

same training dataset and test dataset, the results from all repetitions, all time resolutions, and all model 

configurations are too numerous to be presented in detail. Thus, the results had to be condensed by grouping and 

averaging. To avoid that averaging of the achieved deviations cancels out the signs of the deviations, their average 
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is computed out of the absolute deviations. 

Tab. 3 gives an overview of the average prediction performance (R² score and absolute deviation) that the eight 

different random forest model configurations achieved after being provided with data from the five different time 

resolutions. As the prediction results of the different load profiles of the inverters were quite similar if the 

orientation of their PV modules was the same, the results were grouped and averaged according to the PV module 

orientation. Since inverter I1 is connected to PV modules with different orientations and as the PV main meter 

measures the sum of the load profiles of all inverters, they are displayed separately. 

Tab. 3: Average prediction performance that the random forest models achieved at 100 repetitions 

T
im

e
 r

e
so

lu
ti

o
n

 

Random 

forest 

model 

R² score Absolute deviation 

Mean of 

Inverter 

I1 

PV main 

meter 

(sum of 

all 

inverters) 

Mean of 

Inverter 

I1 

PV main 

meter 

(sum of 

all 

inverters) 

South- 

west 

roof 

inverters 

South- 

west 

façade 

inverters 

South- 

east 

façade 

inverters 

South- 

west 

roof 

inverters 

South- 

west 

façade 

inverters 

South- 

east 

façade 

inverters 

0
5
 m

in
 

ithyd 0.910 0.684 0.699 0.832 0.923 1.12% 6.96% 0.99% 0.06% 0.17% 

ithydnesw 0.934 0.908 0.935 0.927 0.944 1.58% 0.37% 2.07% 2.18% 2.24% 

itydnesw 0.933 0.908 0.934 0.926 0.944 2.38% 0.78% 2.40% 2.85% 2.59% 

itynesw 0.932 0.907 0.932 0.923 0.943 2.46% 0.79% 2.65% 3.19% 2.85% 

itnesw 0.926 0.905 0.932 0.918 0.941 2.65% 0.61% 2.44% 2.96% 2.57% 

inesw 0.923 0.904 0.932 0.921 0.940 4.17% 0.57% 2.71% 2.37% 3.11% 

tnesw 0.921 0.899 0.929 0.914 0.938 2.22% 1.46% 2.45% 3.09% 2.62% 

nesw 0.916 0.897 0.928 0.914 0.936 3.53% 1.35% 2.67% 2.35% 3.05% 

1
0
 m

in
 

ithyd 0.943 0.754 0.788 0.882 0.957 0.33% 5.53% 0.75% 0.83% 0.76% 

ithydnesw 0.957 0.935 0.956 0.950 0.968 1.23% 0.54% 1.59% 1.69% 1.83% 

itydnesw 0.956 0.935 0.955 0.949 0.967 1.83% 0.39% 1.80% 2.15% 2.05% 

itynesw 0.955 0.934 0.954 0.948 0.967 1.89% 0.38% 1.95% 2.27% 2.15% 

itnesw 0.953 0.933 0.954 0.945 0.967 1.97% 0.37% 1.79% 2.04% 1.92% 

inesw 0.949 0.932 0.953 0.946 0.965 4.01% 0.34% 2.24% 1.86% 2.71% 

tnesw 0.950 0.931 0.953 0.943 0.966 1.16% 0.35% 1.72% 1.89% 1.71% 

nesw 0.947 0.930 0.952 0.943 0.964 2.92% 0.64% 2.10% 1.57% 2.45% 

1
5
 m

in
 

ithyd 0.958 0.792 0.827 0.909 0.969 0.19% 4.97% 0.75% 1.18% 1.22% 

ithydnesw 0.969 0.953 0.970 0.965 0.977 1.31% 0.50% 1.08% 1.45% 1.90% 

itydnesw 0.969 0.952 0.969 0.964 0.977 1.75% 0.31% 1.21% 1.84% 1.97% 

itynesw 0.969 0.952 0.969 0.963 0.976 1.75% 0.29% 1.27% 1.88% 1.97% 

itnesw 0.967 0.951 0.968 0.961 0.976 1.78% 0.34% 1.25% 1.89% 1.81% 

inesw 0.965 0.950 0.966 0.961 0.975 3.82% 0.38% 2.03% 1.97% 2.61% 

tnesw 0.965 0.950 0.968 0.960 0.977 0.49% 0.31% 1.18% 1.61% 1.53% 

nesw 0.964 0.949 0.966 0.960 0.975 2.42% 0.60% 1.91% 1.58% 2.26% 

3
0
 m

in
 

ithyd 0.978 0.854 0.891 0.945 0.982 0.56% 4.71% 0.65% 1.55% 1.55% 

ithydnesw 0.986 0.976 0.984 0.981 0.987 1.20% 0.68% 1.11% 1.21% 1.87% 

itydnesw 0.986 0.976 0.984 0.981 0.987 1.40% 0.56% 1.15% 1.38% 1.89% 

itynesw 0.986 0.976 0.984 0.981 0.987 1.35% 0.53% 1.20% 1.38% 1.88% 

itnesw 0.985 0.974 0.983 0.980 0.987 1.41% 0.47% 1.13% 1.47% 1.64% 

inesw 0.981 0.973 0.981 0.978 0.986 3.89% 0.29% 2.09% 1.78% 2.40% 

tnesw 0.984 0.974 0.983 0.978 0.988 0.06% 0.48% 1.07% 1.26% 1.29% 

nesw 0.982 0.973 0.980 0.976 0.986 2.29% 0.38% 2.00% 1.51% 2.01% 

6
0
 m

in
 

ithyd 0.987 0.891 0.932 0.969 0.987 0.94% 4.15% 0.70% 1.15% 1.66% 

ithydnesw 0.992 0.985 0.990 0.987 0.991 1.37% 0.57% 1.09% 1.34% 1.86% 

itydnesw 0.992 0.985 0.990 0.988 0.992 1.48% 0.49% 1.03% 1.42% 1.82% 

itynesw 0.992 0.985 0.990 0.988 0.992 1.47% 0.48% 1.05% 1.42% 1.81% 

itnesw 0.992 0.984 0.989 0.987 0.992 1.41% 0.29% 1.01% 1.52% 1.69% 

inesw 0.988 0.982 0.987 0.985 0.990 3.64% 0.59% 1.93% 1.87% 2.40% 

tnesw 0.991 0.983 0.989 0.986 0.992 0.06% 0.34% 0.95% 1.23% 1.43% 

nesw 0.988 0.982 0.987 0.985 0.990 2.05% 0.64% 1.86% 1.45% 2.13% 
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As seen in Tab. 3, the average prediction performance is generally relatively high. Almost all models achieve on 

average R² scores around or above 0.9 and absolute deviations well below 3%. It can be observed that with lower 

time resolutions (larger time intervals), the prediction performance increases: At a time resolution of 60 min, the 

R² score almost always reaches values around 0.99, and the majority of absolute deviations stays below 1.5%. The 

load profiles of the southwest roof inverters and the PV main meter generally achieved the best prediction 

performance – even in the case of the model “ithyd”, which has the poorest overall performance. The results 

indicate that the reason for it being the poorest is the absence of the illuminance values in the model’s predictor 

variables. 

The order of the random forest models in Tab. 3 is the order in which the model configurations were executed. 

While the model “ithyd” utilises the weather parameters usually found in weather data and the time indicators that 

can easily be calculated, the model “ithydnesw” is the same but extended by information about the illuminance 

on the vertical surfaces of the four cardinal directions. As these illuminance measurements are usually not part of 

the data provided by weather stations, the initial intention of this work was to develop random forest models 

without them. But as the prediction performance increased significantly when utilising the illuminance 

measurements, they were kept as predictors for all following models. 

Since “ithydnesw” is the largest model configuration, utilising all predictors, it was assumed that it might be 

overfitted to the training dataset. To find out whether this is true and to detect another model configuration with a 

better prediction performance, the model was scaled down by leaving out some of the predictors. Although there 

are slight variations in the prediction performance, the following smaller models generally performed slightly 

worse than the full model “ithyndesw” – but their performance was still the same magnitude. This observation is 

also valid for the smallest model configuration “nesw”, which exclusively uses the illuminance measurements as 

predictors. Since none of the models performs better than “ithydnesw”, and its prediction performance is generally 

quite high, it appears that the model is not overfitted. 

All models that utilise the illuminance measurements can generally be recommended for predicting load profiles 

– they achieve high performances over all of the investigated PV module orientations. As the high performances 

are achieved even though there are no direct illuminance measurements of the southeast and the southwest 

orientation, it is assumed that the load profiles of PV modules with orientations in the four cardinal directions 

north, east, south, and west will also be predicted accurately by those models. 

The results indicate that the random forest model “ithyd” only achieves good prediction results if the load profile 

correlates with the global horizontal irradiance. In this research setting, this is only the case for the load profiles 

from the southwest roof inverters and the PV main meter. 

Even though the load profile of the PV main meter is impacted by the failures of the inverters I3 and I14, all random 

forest regressors still achieved a remarkably high R² score and relatively low absolute deviation. This indicates 

that their impact on the load profile of the PV main meter is indeed not too significant. Nevertheless, it is assumed 

that the random forest models would have performed even better if there were no inverter failures. 

Tab. 4 gives an overview of the prediction performance that multiple linear regression models achieve when 

provided with the same data as the random forest models. Even though all of the eight model configurations were 

evaluated in this research, only the three most distinctive cases are displayed in Tab. 4: a model utilizing all data 

except the illuminance (ithyd), the full model (ithydnesw), and a model using only the illuminance (nesw). All 

other models that are not explicitly displayed showed results that lay between the results of “ithydnesw” and 

“nesw”. Generally, the results exhibited a pattern similar to the results of the random forests: “ithyd” is the model 

with the worst and “ithydnesw” is the model with the best prediction performance. 

When comparing the results of the multiple linear regression models (Tab. 4) with the results of the corresponding 

random forest models (Tab. 3), it becomes obvious that the prediction performance of the random forests exceeded 

the prediction performance of the multiple linear regressions: The R² score was generally always higher and, in 

most cases, the absolute deviation was smaller. That seems to be because none of the provided predictors directly 

correlates with PV electricity generation. We expect the multiple linear regression models to achieve much better 

prediction performances when the irradiation or illuminance for the exact surface orientation of the PV modules 

is provided as a predictor. 
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Tab. 4: Prediction performance that the multiple linear regression models achieved 

T
im

e
 r

e
so

lu
ti

o
n

 

Multiple 

linear 

regression 

model 

R² score Absolute deviation 

Mean of 

Inverter 

I1 

PV main 

meter 

(sum of 

all 

inverters) 

Mean of 

Inverter 

I1 

PV main 

meter 

(sum of 

all 

inverters) 

South- 

west 

roof 

inverters 

South- 

west 

façade 

inverters 

South- 

east 

façade 

inverters 

South- 

west 

roof 

inverters 

South- 

west 

façade 

inverters 

South- 

east 

façade 

inverters 

5
 m

in
 LR-ithyd 0.884 0.546 0.510 0.750 0.865 1.73% 19.22% 5.15% 4.73% 3.17% 

LR-ithydnesw 0.898 0.825 0.872 0.855 0.907 0.44% 14.52% 3.37% 3.06% 2.43% 

LR-nesw 0.882 0.768 0.823 0.850 0.888 1.76% 7.10% 2.27% 0.54% 1.22% 

1
0
 m

in
 LR-ithyd 0.921 0.566 0.532 0.786 0.899 0.72% 18.73% 5.06% 4.21% 2.46% 

LR-ithydnesw 0.938 0.870 0.908 0.895 0.947 0.95% 13.43% 2.54% 1.76% 1.28% 

LR-nesw 0.929 0.816 0.859 0.891 0.932 2.05% 7.00% 2.75% 1.04% 1.54% 

1
5
 m

in
 LR-ithyd 0.938 0.576 0.543 0.802 0.910 0.32% 18.53% 5.09% 4.19% 2.26% 

LR-ithydnesw 0.957 0.894 0.925 0.913 0.960 1.58% 13.01% 2.21% 1.37% 0.91% 

LR-nesw 0.951 0.841 0.876 0.909 0.946 2.18% 7.11% 2.97% 1.11% 1.66% 

3
0
 m

in
 LR-ithyd 0.956 0.590 0.556 0.821 0.922 0.29% 18.36% 5.10% 4.18% 2.11% 

LR-ithydnesw 0.976 0.921 0.945 0.934 0.973 2.09% 12.77% 1.96% 1.12% 0.63% 

LR-nesw 0.972 0.866 0.894 0.930 0.960 2.19% 7.18% 3.25% 0.96% 1.78% 

6
0
 m

in
 LR-ithyd 0.962 0.600 0.563 0.833 0.927 0.40% 18.22% 5.12% 4.23% 2.02% 

LR-ithydnesw 0.983 0.934 0.955 0.946 0.979 2.35% 12.73% 1.91% 1.11% 0.53% 

LR-nesw 0.980 0.878 0.902 0.941 0.965 1.94% 7.14% 3.45% 0.89% 1.83% 

 

These results indicate that when only data from surfaces with a different orientation than the PV modules is 

available as predictors, the random forest regressors significantly outperform the multiple linear regression.  

A detailed inspection of the prediction results of single repetitions of the random forest models shows that the 

average prediction performances presented in Tab. 3 correctly depict the performances to be expected in the 

different cases. Fig. 2 and Fig. 3 show the performance of three selected random forest models during one of the 

repetitions for a time resolution of 5 min. The prediction performance of the best multiple linear regression model 

(LR-ithydnesw) is also displayed in both figures. Since no averaging is involved, the deviation in Fig. 3 is 

presented as it is – i.e., it is not the absolute deviation as in Tab. 3 and Tab. 4. 

When comparing the results presented in Fig. 2 and Fig. 3 with those in Tab. 3, it becomes obvious that the 

averaged results are very close to the results of one specific case. Thus, they are a reasonable way to represent the 

performance expected from the random forest regressors in the different cases. 

 

Fig. 2: Prediction performance (R² score) that was achieved by three selected random forest models in the case of a 5 min time 

resolution during one of the repetitions and prediction performance achieved by the best multiple linear regression model 
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Alike in Tab. 3, the performance of the models “ithydnesw” and “nesw” is remarkably high in Fig. 2: Regardless 

of the PV module orientation, the R² score lies between 0.9 and 0.95 for almost every load profile, and the absolute 

deviations are below 3% in most of the cases. Contrary to that, the model “ithyd” only performs well in the cases 

of the PV main meter and the southwest roof inverters. In the case of the façade inverters, its performance is 

significantly worse. 

The best multiple linear regression model, “LR-ithydnesw”, never outperforms the random forest models 

“ithydnesw” and “nesw”. Except for the southwest roof inverters, this is also the case for the random forest model 

“ithyd”. 

The depiction of the real deviation in Fig. 3 instead of the absolute deviation allows for additional observations: 

While the models “ithydnesw” and “nesw” generally underestimate the PV electricity production, the model 

“ithyd” generally overestimates it. As an underestimation could be explained due to the fact that the training 

dataset is from the year after the year that was used for the test dataset – the difference could (at least partially) be 

explained by the degradation of the PV modules. Further, in the case of the PV main meter, the difference most 

certainly is also caused by the failures of inverters I3 and I14 during 2018. 

At the moment, there is no obvious, plausible explanation for the overestimation of the PV electricity production 

by “ithyd” – maybe it is simply an expression of its poor prediction performance in some cases. 

 

Fig. 3: Prediction performance (deviation of cumulated predicted load profile from the cumulated actual load profile) that was 

achieved by three selected random forest models in the case of a 5 min time resolution during one of the repetitions and prediction 

performance achieved by the best multiple linear regression model 

All the results presented in Tab. 3, Tab. 4, Fig. 2, and Fig. 3 focussed on the performance indicators R² score and 

deviation of the cumulated predicted load profile from the cumulated actual load profile. To illustrate the 

underlying data and show which prediction accuracy can be expected during a day, Fig. 4 and Fig. 5 show 

comparisons of the time series of the predicted and actual load profiles. The presented time series are from the 

timespan 04.02.2017 00:00 - 09.02.2017 00:00, which is the very beginning of the test dataset. Again, the random 

forest models “ithydnesw”, “ithyd”, and “nesw” and the best multiple linear regression model “LR-ithydnesw” 

are shown in both depictions. The shown load profiles are only the profiles of inverter 7, one of the southeast 

façade inverters. This inverter was chosen on purpose, as in the case of the façade inverters, the model “ithyd” 

achieved a relatively poor prediction performance while the other models achieved a relatively high prediction 

performance. While Fig. 4 illustrates the case of a 5 min time resolution, Fig. 5 presents the case of a 60 min time 

resolution. 

As seen in Fig. 4, the models “ithydnesw” and “nesw” could accurately predict the course of the actual load profile 

in the case of a 5 min time resolution. The predictions replicated the course of the PV electricity generation during 

a cloudy day (detail 1), its relatively smooth course during a sunny day (detail 2), and its more complex course on 

a sunny day with some clouds (detail 3). 
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These two random forest regressor models could accurately replicate the skewness of the daily course (caused by 

the southeast orientation of the inverter’s PV modules) is remarkable – especially when considering the fact that 

none of the predictors directly correlates with the direct irradiation on a southeast-oriented surface. The random 

forest regressors appear to be able to infer the information needed to replicate such skewness from the predictors 

– assumedly by the irradiance measurements on the south vertical surface and the east vertical surface. 

 

Fig. 4: Comparison of the measured PV electricity generation of inverter 7 (southeast façade inverter) and the predictions from 

three selected random forest models and the best multiple linear regression model in the case of a 5 min time resolution (shown R² 

scores and deviations are the values of the predictions of a whole year) 

On the other hand, model “ithyd” predicted a load profile that is far off the real course of the actual load profile. 

The reason for that and the general poor prediction performance of “ithyd” seems to be that the information hidden 

in the “ithyd” training data is insufficient for the random forest model to correctly grasp the underlying 

connections between the predictors and the load profiles. It appears that the random forest regressors are simply 
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not able to reproduce the necessary geometric transformations out of weather data which only includes 

irradiation/irradiance values for one single surface orientation. 

The load profile predicted by the multiple linear regression model “LR-ithydnesw” is also off the real course. It 

is generally too low during the day and too high during the night. Nonetheless, the prediction fits the actual load 

profile better than the prediction of “ithyd”. 

 

Fig. 5: Comparison of the measured PV electricity generation of inverter 7 (southeast façade inverter) and the predictions from 

three selected random forest models in the case of a 60 min time resolution (shown R² scores and deviations are the values of the 

predictions of a whole year) 

For the case of a 60 min time resolution, see Fig. 5, the prediction performance of “ithyd” improved. Its prediction 

is much closer to the actual load profile, but it is still significantly worse than the predictions of the other three 

models. A direct comparison of Fig. 4 and Fig. 5 also explains the better R² score with decreasing time resolution: 

The load profile at a 60 min time resolution has a much smoother course than the one with a 5 min time resolution. 
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4. Conclusion 

Given that the right weather data is available to be used as predictor variables, random forest regression is a 

suitable tool to accurately predict PV electricity generation. With increasing time resolution, the prediction 

performance generally gets slightly worse. The random forest regressors achieved remarkably high R² scores at a 

time resolution of 60 min. Thus, if the goal is to ensure the correct operation of the PV plant, predicting and 

comparing the PV electricity generation in a time resolution of 60 min can be recommended.  

The best prediction performance can be expected from the full model (“ithydnesw”), which utilises all available 

weather information (horizontal global irradiance, air temperature, relative air humidity, and illuminance on the 

vertical surfaces of the four cardinal directions) and time indicators (yearly sinus function fitted to the solstices 

and equinoxes, daily sinus function fitted to noon and midnight). The model without the information about the 

illuminances (“ithyd”) should only be used to predict PV electricity generation of plants where the load profile 

correlates with the global horizontal irradiance – this model cannot be recommended to predict load profiles of 

façade integrated PV modules. 

The weather data used as predictors should include the illuminance measurements on the vertical surfaces of the 

four cardinal directions, north, east, south, and west, to achieve good prediction performances for all PV module 

orientations. In the case of the weather station used in this work, these parameters were not directly measured but 

instead calculated internally in the station itself. Since most weather stations do not provide illuminance on vertical 

surfaces, it is strongly recommended to calculate it using available weather data to use it as input for random forest 

regressors. 

It is expected that if the illuminance is also calculated for all of the PV module orientations of a PV plant, multiple 

linear regression could also be generally recommended to predict PV load profiles. The downside is that at least 

the PV module orientations must be known, and the illuminance must be calculated specifically for each 

orientation. 

The random forest regressors only need measurement data and the illuminance on the vertical surfaces of the four 

cardinal directions to achieve good prediction performances. The advantage is that the random forest regressors 

do not need specific knowledge about the PV module orientation predestines them for a large-scale application. 

They could be used in online monitoring systems provided by PV inverter manufacturers. 

For such an application, the location of the PV plant must be known, and the weather data for this specific location 

must be obtained. The illuminance on the vertical surfaces of the four cardinal directions must be calculated from 

the weather data, and the sinus of the day and sinus of the year must be calculated from the time stamp information. 

After the monitoring data of the PV plant encompasses at least a whole year without uninterrupted operation, the 

full random forest regressor model (“ithydnesw”) can be trained and then used to provide the reference for PV 

performance monitoring. To account for the degradation of the PV modules, the reference profile should be scaled 

down accordingly. 
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