
Digital Representation of Heating Systems
for Fault Detection Purposes

Matthias Georgii1, Christoph Schmelzer1, Christian Sauer1, Janybek Orozaliev1, and Klaus
Vajen1

1 University of Kassel, Institute of Thermal Engineering, Kassel (Germany)

Abstract
A concept for a graph based digital representation of heating systems is presented. It explicitly defines various
relations between the components and data points. Thus, it allows a semantic description of the heating system
and available data points which can be used for automated fault detection. Implementation of analysis algorithms
can get complex considering the multitudes of options regarding different system configurations and measurement
equipment. The semantic description enables a computer to make automatic conclusions, and thus can reduce this
effort. Simultaneously, the concept also may reduce the effort to find and apply analysis algorithms for a specific
system, since it allows for automated comparison between needed and available components along with their
relations.

Keywords: function control, fault detection and diagnosis, FDD, Digital Twin

1. Introduction
Heating systems are getting more complex to achieve high efficiencies and high fractions of renewable energy.
At the same time, they are often individually planned and assembled at each site, with individual parameterization
of controller settings. This may lead to faults in planning, installation, and operation phases. Automated fault
detection and diagnosis (FDD) can help to ensure the intended behaviour and efficiency of the system. While
currently many sensor and signal data can be logged, the automated analysis of the data is less common. Often,
data is just visualized and interpreted by an expert. This might have two causes.

Firstly, there is little or no information about validated detection algorithms publicly available. For instance, VDI
2169 (VDI, 2012) mainly describes rather rough concepts of detection ways than directly applicable algorithms.
However, when implemented in the simple form, they will rise lots of false alarms, making them practically
unusable.

Secondly, it is challenging to automatically select applicable detection algorithms and link available data to their
inputs. These tasks of selecting and linking require meta information, which often is not stored at all, or just in an
inconsistent, heterogenous way, which impedes easy access by machines (see fig. 1). In single monitoring projects,
an expert uses his meta information knowledge to select the algorithms that should be executed, and to manually
assign suitable data to their inputs. This approach would lead to high effort for greater numbers of monitored
systems. For an automated analysis of many different systems, each heating system has to be represented digitally
in a way that allows the automatic application of detection algorithms. One possibility is to use predefined blocks
of components, as done in the Methodiqa project (Ohnewein et al., 2016). This works well when small parts like
components or a group of nearby components are considered, and a limited number of detection paths. However,
the block representation approach might get complex, if interactions of larger parts of the system or the whole
system are to be considered, and more different sets of available data points and correspondingly different ways
of deriving information have to be checked.

We therefore suggest a graph representation which explicitly states relations between the components or
subsystems of the system and offers more flexibility.

International Solar Energy Society EuroSun2022 Proceedings

© 2022. The Authors. Published by International Solar Energy Society
Selection and/or peer review under responsibility of Scientiic Committee
doi:10.18086/eurosun.2022.16.04 Available at http://proceedings.ises.org

Fig. 1: Selecting applicable evaluation algorithms and linking them to recorded data requires meta information which often is not

available in a consistent, machine-readable manner.

2. Graph representation
Depending on the intention, different views on a heating system are important.

• Geometry and Topology: distances and dimensions of subsystems and components, or their spatial
adjacency or inclusion, e.g. lengths of pipes

• Function: what is the function of which subsystem, functional grouping of subsystems, what are intended
interactions, e.g. supply pipe delivering heat from boiler to storage

• Control: which interactions between subsystems are actively controlled by which controller, and which
of their signals are used for which control task, e.g. storage bottom temperature used as input for
operating the solar circuit via a temperature hysteresis control

• Recorded data structure: identification, availability, and logical grouping of data points, in order to find
the meaning of each time series of data

• Abstraction level of system components: for instance, an air-to-water heat pump might also be regarded
as a general heat pump or heat generator or energy converter

Thus, those aspects should preferably be included in the graph representation. For FDD, geometry is the least
important aspect and only needed in some specific evaluations, which is why it is omitted here. The function of a
subsystems can also be considered in many respects. Since the purpose of a heating system is to generate heat and
provide it to different consumers, it is useful to describe the function with respect to both the energy flow and the
fluid flow that may transport the energy.

2.1. Energy flow graph
The energy flow graph describes the energy flows from heat generators to heat consumers. It already contains the
basic structure and main components of a heating system. An energy flow graph that just contains heat generators,
storages and sinks is illustrated in fig. 2. However, since a component, e.g. a storage, can have several ports at
which energy is transferred, those ports have to be included as nodes as well in order to have nodes that uniquely
identify a specific energy flow. An example of such an extended energy flow diagram is shown in fig. 3. It
additionally contains the solar heat exchanger (which does not alter the energy flow in first approximation) and
“logical” components (“XORDistributor”, “Adder”) that explicitly distribute or merge energy flows, ensuring that

M. Georgii et. al. / EuroSun 2022 / ISES Conference Proceedings (2021)

there is only one incoming and one outgoing edge at each port node. This prevents ambiguities how to interpret
several incoming/outgoing edges at a node. Of course, each component still needs an individual node representing
the component, in order to describe, to which component an energy port belongs. The component node has the
type of the component. Such a component node also indicates that energy flow (and/or state variables of associated
medium flow) is significantly altered by conversion, merging, distributing, etc. For instance, a
SolarThermalCollectorField node will convert irradiance into thermal energy of a heat medium, which are two
different types of energy. Furthermore, such a conversion is known to have significant losses that cannot be
ignored. Likewise, a distribution node indicates that energy flow of an incoming edge in general does not equal
the energy flow of an outgoing node. Moreover, the temperatures of the incoming energy flows will be mixed,
thus potentially being changed significantly. A heat exchanger node might not alter the magnitude of an energy
flow significantly, but primary and secondary temperatures will differ. The magnitude of the energy flow and
state variables of the assoiciated fluid flow may be propagated along an energy flow path, but propagation is never
allowed across component nodes. The propagated value may be used as estimator for the case of ideal energy
transfer, i.e. neglecting heat losses of the pipes. With this propagation mechanism, algorithms can increase the
chance of the availability of needed data if propagated values are allowed. Please note that pipes were not included
explicitly as component nodes here. For the case of long pipes whose heat losses and temperature drops are never
to be ignored, their explicit inclusion as a component node indicates that no forwarding of energy flow and state
variables must be made.

Fig. 2: A (too) simple energy flow graph (right) of a solar thermal combi system (left). Different node colors and shapes indicate

different types of nodes. It carries too little information about system structure and allows for ambiguities.

Fig. 3: Extended version of the energy flow graph in fig. 2, with port nodes and additional components. Energy demand for

circulation is here included in MyDHW.

M. Georgii et. al. / EuroSun 2022 / ISES Conference Proceedings (2021)

The energy flow graph can be created easily by hand with help of predefined subgraphs for the respective
components. Only the links between the ports, i.e. the edges between gray boxes in fig. 3., have to be added. The
creation and linking process might be automated to a higher degree if existing data about components and piping
can be imported from BIM (Building Information Modeling) data in future.

While the energy flow graph is still simple, it already carries much information about the system. Thus, it can be
used to describe a system on a basic level.

2.2. Medium flow graph
However, if details of medium flows get important, e.g. in order to trace return flows, a medium flow graph has
to be specified. The medium flow graph describes possible flows of different media, e.g. the flow of water in a
circuit. To make nodes in a medium flow graph identifiable, further relations and nodes are needed. This is
explained for an external heat exchanger subgraph, shown in fig. 4. In order to relate a node to a component, a
specific “belongsTo” relation is needed. Contrary to the energy flow graph in fig. 3, the fluid flow cannot be
simply directed to a “HX” component node. Otherwise, this would have to be done for both primary and secondary
fluid flows. This would effectively connect both fluid circuits to a single connected circuit. Additionally, a relation
stating whether a node is on the primary or secondary side is needed. For further refinement, edges in the fluid
flow are differentiated into “fluidTransfer” edges (dark blue in fig. 4) and “fluidProcess” edges (light blue in fig.
4). This differentiation adopts the role of the component nodes in the energy flow graph fig. 3. Along
“fluidTransfer” edges, state variables may be propagated (as estimators for the case of ideal transfer), while
propagation along “fluidProcess” edges is not allowed. In the latter kind of edges, it is indicated that state variables
of the fluid change significantly. Thus, nodes at the beginning of a fluidProcess edge represent the state before a
significant process (e.g. temperature rise of the fluid), and nodes at the target of fluidProcess edges the state after
the process, accordingly.

To unify the graph structures, also the energy flow graph fig. 2 can be modified to contain “energyTransfer” and
“energyProcess” edges, such that the permission for value propagation is likewise indicated by the type of the
edge and not via the existence of a component node within the energy flow. The component node then is not
located within the energy flow, but attached to energyNodes via a “belongsTo” relation.

Similar subgraphes like fig. 3 can be defined for other components like boilers, heat pumps, distributors, etc.

These can be used to quickly create graphs of a system. Thus, only “fluidTransfer” edges between FluidNodes of
those subgraphs would have to be added.

Fig. 4: Subgraph for a heat exchanger. Several nodes and relations are needed to identify nodes in a fluid/medium flow graph.

2.3. Data point identification
The graphs fig. 3 and fig. 4 still miss a connection to available data points, i.e. to actual data of recorded time
series of measurement values or logged signals, e.g. the outlet temperature of the heat exchanger at secondary
side. Moreover, data points can refer to parameters like storage volume, collector size, etc. In order to assign data
points to a fluid, energy or component node, corresponding relations to data point nodes can be defined (compare
fig. 5). To simplify data point identification, relative standard data point names can be linked to the data point
nodes. For instance, each FluidNode can have data points with associated standard names like “Temperature” or

M. Georgii et. al. / EuroSun 2022 / ISES Conference Proceedings (2021)

“VolumetricFlowRate”, and each EnergyNode or ComponentNode likewise, allowing to also define standard
component parameters. Each standard data point node can then be linked to another “providing” data point node
that represents an existing data point that actually can provide data (time series of recorded values or parameter
values). It is linked to the system specific unique identifier of that data point. The separation allows to link several
standard name data point nodes to a single providing data point, and to explicitly differentiate between a defined
and an actually available data point. Furthermore, it is possible to link standard data points to equivalence groups
which can store which data points are considered equivalent, independently of the existence of a providing data
point. The equivalence groups can be used to later automatically link all contained data points to a providing data
point when it is added to the graph.

Fig. 5: Data point linking to a node. Actual data can be linked to different nodes with different standard data point names. The

gray relations additionally indicate the relation of the “HeatGenerator” and the “FluidNode”.

2.4. Component Abstraction levels
From perspective of algorithm authors, it is very useful to request existence of components at different abstraction
levels. As described above, it might be sufficient to request a component to be a heat generator, or it might be
necessary to require a more specific component like condensing gas boiler because the algorithm uses assumptions
or characteristics that are only valid for the more specific component type. For instance, to calculate any coverage
ratios, one needs to adress the considered (specific) heat generator as well as “all other heat generators” or “heat
consumers” independent of their specific type. By integrating such class hierarchy relations of components into
the graph, it is possible to adapt the abstraction level of each (component) node in the request. An example is
shown in fig. 6. The graph structure also allows to define several class hierarchies (with other abstraction class
nodes) in parallel and thus does not enforce to use a particular taxonomy.

Fig. 6: Exemplary abstraction classes graph. Edges represent the relation “is subclass of” or equivalently “is specialization of”.

3. Algorithm selection and linking
If a system is described via a graph with the relations shown in section 2, algorithms can formulate their expected
components and relations by defining a requested subgraph structure (see fig. 7). Technically, this can be achieved
by storing the system graph as set of RDF (Resource Description Framework) triplets, and defining SPARQL
(SPARQL Protocol And RDF Query Language) queries for each algorithm. SPARQL and RDF are standards

M. Georgii et. al. / EuroSun 2022 / ISES Conference Proceedings (2021)

defined by the World Wide Web Consortium W3C. It might be necessary to not only check for existence of some
relations, but also to check for non-existence of other similar relations (maybe of same type). This is also a reason
why in the energy flow graph, explicit “Adder” and “Distributor” nodes are included. In this way, the request can
allow or disallow further energy flows (besides the energy flow of interest) to arrive at a component port by simply
adding or omitting a corresponding “Adder” node to the request. Without such a node, the number of incoming
edges at a port node would have to be checked by different means, complicating the formulation of the algorithm’s
requirements.

Furthermore, algorithms might be designed to not execute on each match separately but use a collection of matches
as input for a single algorithm instance. For instance, an algorithm might want to cumulate the energies of all heat
consumers, needing a collection of all heat consumers as input for a single algorithm instance. Thus, several modes
for the process of converting matches to assignments of algorithms (=algorithm instances) must be provided.

Fig. 7: Illustration for matching an algorithm’s request graph to the system graph. Different node colors and edge styles represent

different node types and relations.

4. Conclusion and Outlook
A concept for the description of heating systems as graph for automated FDD has been presented. Advantages of
a graph description are:

• Decoupled from specific usage or software solution

• Extensible by different stakeholders, no need to model whole system at once

• Quick compilation from predefined subgraphs

• Easy individual modification and addition of relations

• Standardized file formats for data exchange

• Standardized query language for data retrieval, allowing complex relation patterns to be queried

Further details of the graph description and its usage for fault detection in heating systems will be shown in future
work.

5. References
Ohnewein, P., Tschopp, D., Schrammel, H., Gerardts, B., Poier, H., Krammer, S., Köstinger, A., Weinhappl, A.,
2016. METHODIQA: Methodik-Entwicklung zur Qualitätssicherung für Erneuerbare Wärme Systeme durch
intelligentes Betriebsmonitoring (Endbericht). AEE - Institut für Nachhaltige Technologien (AEE INTEC),
Gleisdorf.

VDI Verein Deutscher Ingenieure e.V., 2012. VDI 2169 - Functional checking and yield rating of solar thermal
systems. Beuth Verlag GmbH, Berlin.

M. Georgii et. al. / EuroSun 2022 / ISES Conference Proceedings (2021)

