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Abstract 

A novel method to generate synthetic household load profiles with a sample time of 5 minutes is presented. The 

method is entirely based on a dataset of measured electricity consumption over 5 consecutive years of 115 

dwellings and does not require any other type of information such as household appliances in use or surveys on 

inhabitants’ daily activities. It is shown that the collection of all synthesized signals resembles a typical seasonal 

variation as observed in the measurement data. At the same time, the individual load signals differ significantly 

from each other and therefore enable a realistic dispersion of a residential area. None of the synthesized signals is 

present as such in the measurement data, but all of them lie within the variability observed. A variety of different 

load signals of variable length can be generated which makes the method particularly interesting for large scale 

simulations of energy systems including large residential areas.  

Keywords: load profile generator, synthetic load profile, smart grid, grid simulation 

1. Introduction 

Model-based development methods are state of the art in many engineering disciplines, especially also in power- 

and solar energy systems. Detailed mathematical models of various components in modern renewable energy 

systems enable sophisticated planning, design, and operation of future multi-energy grids (Martínez Ceseña et al. 

2020). The significance of simulation results not only depends on the accuracy of the models, but also to a large 

extent on the numerical data used to feed the simulation. In this paper, the focus is on power- and energy flow 

simulation models for medium- to large geographic regions involving many individual consumers.  

One particular requirement in such a situation is to feed the simulation with realistic electricity consumption data 

of individual households. For some cases, aggregating the load of a region to a single load profile (Meier et al. 

1999) is a reasonable choice, for example when the interest lies in the characteristics of the transmission system. 

In other cases, load profiles of individual facilities have to be considered, for example when analyzing the load 

flow at lower grid voltage levels such as the 400V lines in Europe. This is getting even more important against 

the background of increasing shares of distributed solar generators at individual households, associated electricity 

storage devices and new consumer loads such as electric vehicles since the load variability increases (Schinke and 

Hirsch 2019). 

Although the availability of measured individual household load profiles has kept increasing over the years, there 

is a need for synthetic load profile generators, which are able to reproduce realistic, original load traces in large 

numbers. Furthermore, a strong requirement is also the temporal resolution of the data. Only fast enough sampling 

rates enable the accurate consideration of energy management systems (Kirchsteiger and Steinmaurer 2020). In 

this paper, an algorithm to generate synthetic load profiles with a 5-minute sample time will be presented. 

The problem of synthetic load data generation was considered in the literature before. Richardson et al. (2010) 

describe an algorithm to generate active and reactive electrical load data with a 1-minute sample time. The method 

relies on modeling the activities of occupants which are linked to specific appliances. Those activities, for example 

cooking or ironing, were gathered as part of a survey, where participants were asked what they do for how long 

on a typical weekend-day and weekday. This type of information is frequently called time use data (TUD). The 

model was validated using measurement data from 22 dwellings. 

In Baetens et al. (2012) a statistical model based on similar principles as in Richardson et al. (2010) was extended 

with thermal demands. The combined load model was used to represent 33 dwellings in the IEEE 34 radial 

distribution node test feeder, designed specifically to represent residential areas.  
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In Good et al. (2015), a demand-driven load model for both electrical and thermal demands is constructed with 

the aim to correctly represent the diversity observed in real dwellings and the coincidence observed within groups 

of buildings at the same time. Also in this work, the modeling of the electrical load relies in parts on the work of 

Richardson et al. (2010). For the thermal loads, the electrical analogy of R-C type of networks is used. 

In Yamaguchi et al. (2019) various known approaches from literature for load generation were reviewed, re-

implemented and compared against each other. A categorization of algorithms is provided, including the category 

of “empirical data-based time-dependent switch-on probability models”. Three other categories identified all rely 

on TUD. 

Lombardi et al. (2019) propose a TUD based method specifically to generate load profiles of remote areas. The 

model is available as open-source program coded in Python. 

Pflugradt and Muntwyler (2017) describe an approach to load modeling which depends on first modeling the 

individual psychological desires of inhabitants, for example hunger, sleepiness, entertainment. This in turn relates 

to activities which the persons consider to fulfill their desires, such as eat, cook a meal, sleep, take a nap, or watch 

TV. The method does not rely on data and follows a truly bottom-up approach. The model is made freely available 

by the authors. 

In Paatero and Lund (2006) datasets from 702 dwellings over 1 year and 1082 dwellings over 143 days were 

utilized to construct new profiles on an hourly basis. The synthesized data embeds a seasonal, hourly and social 

variability factor which are all derived from the datasets.  

Gruber et al. (2014) calculate load profiles based on a wide range of individual household appliances and utilizing 

a probabilistic approach. Each appliance is assigned a specific load pattern, the synthesized data has a sample time 

of 15 minutes.  

To conclude on the literature research, most load data models follow a so-called bottom-up approach where 

modeling starts by defining the individual appliances in the houses and daily patterns of the inhabitants. Those 

choices are typically supported by large-scale public surveys where persons are asked to note which appliance 

they are using at which time of the day. Overall, a rather large amount of additional information is required to 

parameterize the models. Moreover, the surveys typically only reflect a fragment of the whole variety in usage of 

home appliances. Only few methods such as Paatero and Lund (2006) are known where bottom-up models are 

also making use of measurement data (household load data timeseries), which decreases the amount of additional 

information required.  

The contribution and novelty of the present paper is as follows. We are presenting a novel method to synthesize 

individual household electrical load data with a sample time of 5 minutes, which is a finer resolution than known 

methods from the literature, and a requirement for accurate optimization-based load management algorithms. The 

proposed method works without the use of any other additional information except a collection of historic load 

data profiles. Specifically, no information on household appliances and inhabitants’ behavior is required. The 

individual profiles generated have a variation as observed in the training dataset. When large amounts of 

synthesized profiles are combined, the sum resembles the typical seasonal variability observed in real data. A 

variety of dwelling types in the training dataset, for example with and without photovoltaic system, battery storage, 

heat pump heating, ensures a realistic dispersion of synthesized data. 

2. Problem Formulation 

The problem considered is to develop an algorithm, which allows to construct new, original electrical load profiles 

with a high sample time. The new profiles should be different than all profiles in the training dataset, but at the 

same time, their combination has to agree with the combined training dataset. The problem is separated into two 

subproblems: (1) Data analysis: Find and extract the relevant statistical properties from the training dataset. In 

this step, the total daily energy (TDE) consumed is considered, which is known to exhibit a seasonal variation that 

has to be captured by the algorithm. (2) Data synthesis: use the discovered statistical properties to synthesize new 

data of household load consumption TDE. As part of this step, the new TDE profiles have to be merged with high 

resolution data to obtain the required 5 minute sample time signals.  
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3. Measurement Data 

The data used in the present paper has been collected over five years by owners of photovoltaic systems with 

battery storage in the region of Upper Austria in the course of the accompanying research of a funding programme. 

The measurement data was received from the hybrid inverters which, in order to control the battery power in 

accordance with the consumption, are always equipped with an energy meter. This metering device is installed 

directly next to the meter of the power supply company such that both measure precisely the same values. Most 

inverters provide the power values in mean values with a temporal resolution of 5 minutes, however up to 15 

minutes resolution was accepted. The various power measurement channels are shown in Fig. 1, though only PL 

has been used in this analysis. The size of the households differed between two-person households to farmhouses 

where three generations are living, however single-family homes presented the largest proportion. The age and 

number of residents was diverse as well. The range varied from singles and young couples over families with 3 

generations to older couples. In total, 191 houses monitored over 5 years resulted in 348.766 available days of 

load traces for analysis. 

   

Fig. 1: Measurement data configuration 

During this extensive period of measurement some issues regarding data quality arose. Aside from simply missing 

values, false values represented a major concern. Fortunately, most of the false values could be traced back to 

miscalculations in the raw data obtained from some inverters. These errors appear only in a limited time range. 

Datasets with more than 20 % of missing or false data have been removed from the evaluations, resulting in a 

dataset containing 115 households for further analysis as described below. 

4. Methods 

In this section the analysis of the total daily energy (TDE) profiles to derive at the characteristic values required 

for synthesis of new TDE profiles is described. The new TDE profiles are then used to construct high resolution 

load profiles. 

 

4.1 Analysis of TDE profiles 

From the dataset as described in chapter 3, 𝑛ℎ = 115 power consumption traces with a sample time of Δ𝑇 = 5 

minutes are available which will be denoted with 𝑃(ℎ, 𝑘) with the discrete time index 𝑘 = 𝑛 ∆𝑇, 𝑛 ∈ ℕ and ℎ 

denoting the household index, ℎ = {1,2, … 𝑛ℎ}. From this, the TDE is derived for every household by simply 

summing up 𝑃(ℎ, 𝑘) for single days. The TDE is denoted as 𝐸𝑇𝐷(ℎ, 𝑑) where 𝑑 is again a discrete time index and 

represents the day of the year, 𝑑 = 1, 2, 𝑛𝑑. (For simplicity of exposition we are assuming only years with 365 

days, i.e., without leap days.) The TDE signals are then normalized by subtracting the mean and dividing by the 

standard deviation to arrive at zero mean, unit variance signals denoted with 𝐸𝑇𝐷𝑁(ℎ, 𝑑). From those normalized 

signals, a seasonal variability signal 𝑠𝑉 is derived by taking the mean value across all years and households, and 

applying a moving average filter of window length 40. This length was empirically found to result in a good trade-

off between sufficient data smoothing and preserving the main characteristics in the data. The seasonal variability 

𝑠𝑉 is shown graphically in Fig. 2: the bold line represents the filtered signal while the thinner line is the mean 

value without any filtering. 

The main algorithm for TDE characterization performs the following operations for every household ℎ separately: 
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• Compute the individual deviation from a household from the seasonal variability, 𝑒1 = 𝑠𝑉 − 𝐸𝑇𝐷𝑁, and 

take the average 𝑒̅1 with respect to all available years of data. 

• Remove the outliers from 𝑒̅1, based on the 25th (𝑞25) and 75th (𝑞75) quantile. A datapoint is classified as 

outlier if it is larger than 𝑞75 + 1.5(𝑞75 − 𝑞25) or smaller than 𝑞25 − 1.5(𝑞75 − 𝑞25). The signal without 

outliers is called 𝑒̅1𝑂𝑅. 

• Filter the signal 𝑒1̅𝑂𝑅with a moving average filter of window length 14 to obtain 𝑒̅1𝑂𝑅𝐹 . 

• Compute the second level deviation from the typical household seasonal deviation, 𝑒2 = 𝑒̅1𝑂𝑅𝐹 − 𝑒̅1𝑂𝑅 

• Fit a normal distribution 𝒩(𝜇, 𝜎) to the signal 𝑒2 to obtain the two characteristic parameters 𝜇 

(expectation) and 𝜎 (standard variation). 

The moving average filter length was again found empirically to provide a reasonable data smoothing. Note that 

by performing the computations for all households, 𝑛ℎ different values 𝜇(ℎ) and 𝜎(ℎ) are obtained. In a final 

step, two Burr distributions are fitted to those data. The probability density function (PDF) of the Burr distribution 

is given by (eq. 1) and depends on the three characteristic parameters 𝛼, 𝑐, 𝜅. 

 (eq. 1) 

As a result of the TDE profile analysis, two sets of those characteristic values were obtained, for the distribution 

𝑓𝐵(𝜇) of 𝜇(ℎ) and 𝑓𝐵(𝜎) of 𝜎(ℎ). The main reason for choosing a Burr distribution was that it provides the closest 

fit to the data among all the tested PDFs available (The Mathworks Inc., 2021), see also Fig. 6. 

 

4.2 Synthesis of new TDE profiles 

The algorithm for synthesis of a new TDE profile follows the steps listed below 

• Draw a pair of random values (𝜇∗, 𝜎∗) from the distribution 𝑓𝐵(𝜇) and from 𝑓𝐵(𝜎) 

• Construct a normal distribution 𝒩(𝜇∗, 𝜎∗) and draw a random sequence 𝑟 of length 365 from it. This 

sequence is a substitute for 𝑒2 with embedded statistical properties of the training dataset. 

• Synthesize a new TDE sequence 𝐸𝑇𝐷𝑁
𝑆 = 𝑠𝑉 − 𝑒̅1𝑂𝑅𝐹(ℎ∗) − 𝑟 by choosing a deviation 𝑒̅1𝑂𝑅𝐹  from a 

specific (random) household ℎ = ℎ∗ as seed.  

• Undo the normalization by multiplying with a standard deviation within the limits as observed in 

𝐸𝑇𝐷(ℎ∗, 𝑑) and adding a mean value within the limits as observed in 𝐸𝑇𝐷(ℎ∗, 𝑑) to obtain the sequence 

𝐸𝑇𝐷
𝑆 . 

When this algorithm is used multiple times, an entirely new dataset of individual TDE sequences is constructed, 

from which in turn a seasonal variability can be computed in the same was as described above for the initial 

measurement dataset. The seasonal variability of such a new dataset is shown in Fig. 2 where again the bold red 

line is the result of a moving average filter applied to the thin red line.  

 

4.3 Synthesis of new high resolution load profiles 

A synthesized TDE signal 𝐸𝑇𝐷
𝑆  from the algorithm in section 4.2 describes the total daily energy consumption for 

a (virtually constructed) household, from which power signals with a sample time Δ𝑇 will be constructed next. 

To do so, for every single day 𝑑 = 𝑑∗ in the sequence 𝐸𝑇𝐷
𝑆 , a day 𝑑 = 𝑑′ with a similar TDE is looked up in the 

original load dataset 𝐸(ℎ∗, 𝑑). The variable ℎ∗ denotes the seed as used in the algorithm in section 4.2. The check 

for similarity is done by searching for similar TDE values within a ±5 % interval and randomly choosing one of 

the candidates within this interval. In case the similarity search is not successful, the closest match is chosen and 

the data scaled to obtain the desired TDE. Then, the consumption profile of that day 𝑑′ is used as power 

consumption on the day 𝑑∗ in the new sequence. 
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5. Results and Discussion 

As described in the Methods section, a seasonal variability 𝑠𝑉 is computed for the original measurement dataset 

and for a newly generated synthetic dataset. The two profiles are compared against each other in Fig. 2 where the 

bold lines are filtered versions of the tinner lines. The results shown in the figure were constructed with 𝑛ℎ = 115 

households for both datasets. In general, a very good agreement between the two profiles is observed indicating 

that the synthesized load profiles resemble the statistical properties of the measurement dataset. It is of interest to 

note that the signals are slightly higher at the end of December compared to the beginning of January which 

reflects the general trend of increased electricity consumption of the society as a whole. 

As far as the individual TDE profiles are concerned, Fig. 3 shows two examples of 𝐸𝑇𝐷 for two different houses 

(ℎ = 1 for the top and ℎ = 35 for the bottom panel) from the measurement dataset on the left. On the right side, 

two synthetic profiles 𝐸𝑇𝐷
𝑆  based on the very same houses are shown. That is, in the 3rd step of the synthesis 

algorithm stated above, ℎ∗ is 1 in the top panel and 35 in the bottom panel. Even if both signals (top left and top 

right) are based on the same sequence 𝑒̅1𝑂𝑅𝐹(1) they are significantly different from each other as can be seen in 

the figure. The same statement can be made for the bottom two sub-figures based on 𝑒1̅𝑂𝑅𝐹(35) and in fact for all 

𝑛ℎ = 115 dwellings considered. 

 

Fig. 2: Seasonal variability of the total daily energy for the measured data (black) and synthesized data (red) 

 

  

Fig. 3: TDE profiles of two dwellings (measured, left) and synthetic profiles (right) 

In Fig. 4, two high resolution electrical load profiles are shown over a timespan of one year. While the top panel 

displays measured data, the bottom panel shows the result when applying the synthesis strategy described in 

section 4.3. Again, both signals rely on the same seed 𝑒̅1𝑂𝑅𝐹(ℎ). A closer look at the signals, focusing on the 
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month March in Fig. 5, reveals that the synthesized signal at the bottom follows a similar and realistic pattern of 

nighttime consumption and daytime peaks as the measured data. 

To motivate the computations done in steps 3 and 4 of the analysis algorithm stated in section 4.1, consider first 

the graph shown in Fig. 6 on the left which displays the autocorrelation function of the second level deviations 𝑒2 

for the first 20 households. The general shape is close to a white noise random signal with a significant peak only 

at zero lag. This indicates that there is no more information to be extracted from the data and a probability density 

function can be fitted as done in step 5 of the algorithm. A detailed look at the autocorrelation functions reveals 

peaks at lags of 7, 14, and 21 which is in correspondence with the well-known fact of a weekly dependence of the 

load profiles. Those peaks are, however, below a threshold level of 0.2. The right graphic in Fig. 6 shows the 

histograms of the parameters 𝜇 and 𝜎 estimated in the final step of the analysis algorithm. The red lines are 

showing the PDF of the Burr distribution fitted to the histograms. The PDF 𝑓𝐵(𝜇) is given by the parameters 𝛼 =

0.5, 𝑐 = 280, 𝜅 = 1.36 and the PDF 𝑓𝐵(𝜎) by 𝛼 = 0.33, 𝑐 = 12.9, 𝜅 = 0.48. 

 

 

Fig. 4: Power signals 𝑷(𝒉 = 𝟏, 𝒌) (measured, top) and synthesized power signal (bottom) 

 

Fig. 5: Detail of Fig. 4 focusing on March: measurement (top), synthesized data (bottom) 
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Fig. 6: Second level deviations 𝒆𝟐 (left) and fitted Burr distributions on 𝝁(𝒉) and 𝝈(𝒉) (right) 

6. Conclusion 

A method to generate synthetic load profiles with a sample time of 5 minutes was presented. The method relies 

on a measurement dataset of 115 households over 5 years. It was shown that the synthesized datafiles as a whole 

possess a comparable seasonal variability as the original data while the individual traces are sufficiently diverse. 

Also on a smaller timescale, the synthesized data has similar patterns as the measurement data, for example day-

night consumption changes.  

The proposed method for generation of load profiles is well suited for defining individual load profiles of large 

residential areas in large-scale energy system simulation models. It is also well suited to generate load profiles 

over an extended time horizon of multiple years since the statistically learned seasonal variation inherently grows 

over time reflecting the general rise in energy consumption. 

The generated load data are, however, not particularly suited for training load prediction algorithms. This is 

because as stated in section 4.3, on a short timeframe, the new and the original signal are identical, although it is 

a-priori unknown at which point in time this will be the case. A prediction algorithm could learn the patterns of 

this short timeframes in the data and correctly forecast them when they are recognized. Such a prediction would 

be impossible in a real-time environment using measurement data.  

7. Acknowledgments 

This project is financed by research subsidies granted by the government of Upper Austria. This project is funded 

by EU-European Regional Development Fund (ERDF) and Federal Province of Upper Austria Investments in 

Growth and Jobs (IGJ) under the research grant number WI-2020-701794/12-Cz. The work was also supported 

by the government of Upper Austria in the project Methodenentwicklung zur Energieflussoptimierung 

(Development of Methods for Optimization of Energy Flows)”. Research Grant Wi-2017-450841/17.   

8. References 

Baetens, R., De Coninck, R., Van Roy, J., Verbruggen, B., Driesen, J., Helsen, L., Saelens, D., 2012. Assessing 

electrical bottlenecks at feeder level for residential net zero-energy buildings by integrated system simulation. 

Applied Energy. Vol. 96, pp. 193-210. https://doi.org/10.1016/j.apenergy.2011.12.098  

Good, N., Zhang, L., Navarro-Espinosa, A., Mancarella, P., 2015. High Resolution Modelling of Multi-Energy 

Domestic Demand Profiles. Applied Energy. Vol. 137, pp. 193-210. 

https://doi.org/10.1016/j.apenergy.2014.10.028  

Gruber J.K., Jahromizadeh, S., Prodanović, M., Rakočević, V., 2014. Application-oriented modelling of domestic 

energy demand. Electrical Power and Energy Systems. Vol. 61, pp. 656-664. 

https://doi.org/10.1016/j.ijepes.2014.04.008  

Kirchsteiger H., Steinmaurer G., 2020. Optimal Energy Management of Residential Solar PV with Battery 

 
H. Kirchsteiger et. al. / EuroSun 2022 / ISES Conference Proceedings (2021)



 
Storage: Effects of Fast Load and Generation Transients. 7th International Conference on Control, Decision and 

Information Technologies, Prague, 29 June – 02 July. https://doi.org/10.1109/CoDIT49905.2020.9263853  

Lombardi, F., Balderrama, S., Quoilin, S., Colombo, E., 2019. Generating High-Resolution Multi-Energy Load 

Profiles for Remote Areas with an Open-Source Stochastic Model. Energy. Vol. 177, pp. 433-444. 

https://doi.org/10.1016/j.energy.2019.04.097  

The Mathworks Inc., Statistics and Machine Learning Toolbox, Natick, Massachusetts, United States, 2021. 

Available at: https://mathworks.com/products/statistics.html 

Martínez Ceseña, E.A., Loukarakis, E., Good, N., Mancarella, P., 2020. Integrated Electricity-Heat-Gas Systems: 

Techno-Economic Modeling, Optimization, and Application to Multienergy Districts. Proceedings of the IEEE. 

Vol. 108, no.9, pp.1392-1410. https://doi.org/10.1109/JPROC.2020.2989382  

Meier, H., Fünfgeld, C., Adam, T., Schieferdecker, B., 1999. Repräsentative VDEW-Lastprofile. VDEW 

Materialien M-32/99.  

Paatero, J.V., Lund P.D., 2006. A model for generating household electricity load profiles. International Journal 

of Energy Research. Vol. 30, no. 5, pp. 273-290. https://doi.org/10.1002/er.1136  

Pflugradt, N., Muntwyler, U., 2017. Synthesizing residential load profiles using behavior simulation. Energy 

Procedia. Vol. 122, pp. 655-660. https://doi.org/10.1016/j.egypro.2017.07.365  

Richardson, I., Thomson, M., Infield, D., Clifford, C., 2010. Domestic electricity use: A high-resolution energy 

demand model. Energy and Buildings. Vol. 42, no. 10, pp. 1878-1887. 

https://doi.org/10.1016/j.enbuild.2010.05.023  

Schinke A., Hirsch H., 2019. Impact of Electric Vehicle Charging and Photovoltaic Generation on Distribution 

System Voltage Volatility. 2019 IEEE Power & Energy Society General Meeting, Atlanta, 04-08 Aug. 

https://doi.org/10.1109/PESGM40551.2019.8973901  

Yamaguchi, Y., Yilmaz, S., Prakash, N., Firth, S.K., Shimoda, Y., 2019. A cross analysis of existing methods for 

modelling household appliance use. Journal of Building Performance Simulation. Vol. 12, no. 2, pp. 160-179. 

https://doi.org/10.1080/19401493.2018.1497087  

 

 

 

 

 

 

 

  

 
H. Kirchsteiger et. al. / EuroSun 2022 / ISES Conference Proceedings (2021)



 

 

 
H. Kirchsteiger et. al. / EuroSun 2022 / ISES Conference Proceedings (2021)


