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Abstract 
This work presents a new approach to obtain the energy distribution in a flat absorber of a linear parabolic 
concentrator. The bright distribution of incident light (I(�)) with angular aperture (�s) is determined by the 

beam rays with angle (� � �s). The angle (�) between the axis of the beam reflected in the parabolic surface 

and the parabola axis defines the relative position of the ray in the reflector. It is proposed a graphical 
representation for the (�-�) relation, associated with the positions (y) in the absorber (isolines). The 
diagrammatic representation allows visualizing which positions (y) in the absorber are total or partially 
illuminated by the parabolic reflector. Simulations of energy distribution in the absorber were implemented 
using different sun bright distributions. The illumination percentage along the absorber is also presented. 
Comparison with results of other models available in the literature shows a good agreement.  

1. Introduction 

The issue of light distribution in an absorber of a concentrator collector has been oftentimes treated in the 
scientific works in analytical form [4, 6, 7] or using ray tracing approach [2, 8]. The current progress in the 
concentrator technology used by both photovoltaic (multijunction cells) and thermal (SEGS) systems has 
revitalized its importance, especially in what refers to the optimization of concentrators design. This work, 
based in [5] shows a new approach to obtain the energy distribution in a flat absorber.  
 
The bright distribution and geometrical equations are treated, at first, separately. The procedure allows using 
any bright distribution model and also experimental bright distributions. It also permits to perform analysis 
about the contributions of the segments of the parabola surface to the absorber illumination. 
 
The proposed procedure incorporates all solar disc information to produce the radiation profile in the 
concentrator absorber region.  A diagrammatic representation of the solution has been elaborated in order to 
facilitate both model comprehension and visualization of radiations profiles, considering deviations from the 
ideal condition. 
 
The solar radiation that enters in the concentrator aperture is characterized by a conic beam of rays whose 
angular half aperture is equal to (�s) and its bright distribution is determined by the beam ray intensity (I), 
which depends on the angle (�) within the angular aperture. The angle (�s) depends on the apparent sun 
width.  
 
The ray energy intensity (I) in a determined point (y) of the absorber depends on the angles (�) and (�). The 
angle (�) is defined between the cone central ray which is reflected by the parabola surface and the 
concentrator axis (Fig. 1). The angle (�) is then associated to the beam that reflects with an angle (�) and 
reaches the absorber in a determined point (y). 
 
The model was developed to a linear focal parabolic concentrator and a flat absorber located in the focal 
region. Cylindrical concentrators deviate rays which are at the transversal surface to the concentrator axis. 
For this reason, only the projection of the rays in the transverse plane is analyzed. Under this condition, it is 
enough to consider a flat cone with half-angle aperture of (�s). 
Geometries similar to the parabolic concentrator can be analyzed with the same model, with the single 
condition that the incident rays at the aperture perform only one reflection before reaching the absorber. 



2. Development 

The incident radiation in a parabolic cavity can be represented by a ray package (+�s , -�s) symmetrically 

distributed around a central ray. Analyzing the parabola´s plan, each ray from the package is identified by an 
angle (�), formed by the ray and its beam axis. In the surface of the parabolic cavity it is defined the angle 
(�), as the angle between the reflected beam axis and the axis of the parabola (Fig. 1), P1 and P2 are points 
where the ray reaches the parabola’s surface. The flat absorber has an infinity length and width (W); and it is 
perpendicular to the parabola axis that contains its focus (F). 

 

 

Fig. 1 – Parabola angles configuration in the focal plane. 

 

In Fig. 1 it was arbitrated that (�) is positive for rays situated on the left of the beam and negative for rays on 
the right of the beam. The angles (�) are considered positive on the right of the parabola and negative on the 
left. The values of (y) are positive on the right of the focus and negative on the left. 
 
The relationship between the point (y) where the ray reaches the focal plane and the angles (�) and (�) is 
given by (eq. 1). 
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   (eq. 1)  

r is the distance between the focal point and a point in the reflecting surface reached by a specific beam. 
The eq. 1 leads to the same equation described by [3] that presents the total image length in the focal plane 
formed by a parabola with a rim angle (�r), a rim radius (rr) and illuminated by a solar cone with a half solar 
angle (�s) (eq. 2). 
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        (eq. 2) 

As mentioned before, the position (y) in the absorber will be reached by rays defined by an angle (�) which 
belongs to a beam that was reflected by the parabola surface producing an angle (�) with its axis. The angle 
(�) defines the beam intersection point to the parabola. The angle (�) defines a particular ray of this beam 
that reaches the point (y). A practical representation, shown in Fig. 2, allows visualizing the behavior of the 
rays that reach a point (y). The positions (y) are represented in the form of isolines.  



 

Fig. 2 – Set of values (� – �) that reaches the absorber in a point (y = constant) that it´s used as every 
curve parameter. 

The angle (�) is represented in the vertical axis of Fig. 2 and the angle (�) is represented in the horizontal 
axis on the same figure. The values of (�) vary since (0) up to the rim angle (�r), the values of (�) vary from 
zero up to the sun half aperture (�s). The traced graphs are the geometrical place of the pair (� – �) that 
reaches the point (y) in the absorber (isolines). The parameter that corresponds to each isoline is exactly the 
place (y) reached by rays (� – �). For each value of the angle (�) there is a unique value of (�) that reaches 
the point (y) in the absorber. 
 
The diagram of the Fig. 2 was plotted for a parabola with aperture of 1.64m and focal distance of 1m which 
results in ym = 0.0076m (W = 0.0152 m). A set of 10 isolines referred to values of y, varying from 0 to ym, is 
plotted in steps of 0.1 ym. The graph shows one side of the parabola (� > 0, right side) and points (y) in the 
right side of focus (F). These points are reached by rays with angle (� > 0), defined as counterclockwise with 
respect to the beam axis (left side). The diagram for angles (� < 0) is gotten using symmetry to the axis 
represented by the line (� = 0). 
 
The vertical line shown in the graph of Fig.2, indicates the maximum half angle of the beam (�s = 0.267 deg). 
This line defines two regions in the graph. In the left (abscissa, � � �s) the (y) isolines that do not cross the 
line (� = �s) represent portions of the absorber which receive incident beam contributions on the entire 
parabola. 
 
The isolines that cross the line (� = �s) represent a region that receives partial contribution of the parabola. In 
the Fig. 2 and for y = 0.6 ym; the angle (�lim, ya) separates the region of the parabola that contributes to 
illuminating the point (ya) with (� > �lim, ya) from the region that does not contribute (� < �lim, ya). All points 
located on the left of the abscissa (� > �s) receive partial illumination from the parabola. 
 
Both partial and total illumination region in the absorber can be identified in the following way: the points in 

the absorber that receive total illumination from the parabola are in the interval (0 � y � yb); the point yb can 

be calculated using eq. 3. 
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(f) is the parabola focal length. This position in the absorber is defined by the isoline tangent to the vertical 

line (�s = 0.267 deg) in (� =0), for the parabola used in the example (f = 1), yb = 0.606ym. 

 
The illuminated upper limit region of the absorber is defined by the value (ym) equals to W/2 (absorber half 
length) and corresponds to the intersection of the vertical line (�s) with the isoline (ym) (eq. 2). This absorber 
region is illuminated by the extreme rays that reach the concentrator rim. The absorber region between the 



points (yb) and (ym) is partially illuminated by the incident rays in the parabola and arises, in all cases, and 
independently of the bright distribution of incident radiation, a descending illumination profile. This is also 
valid, for example, for a uniform bright profile. 

 

The previous considerations can be visualized in (Fig. 3). The absorber region located between the focus and 
(yb) receives contributions from entire parabolic surface. The absorber region (y � yb) represented by the 
isolines that cross the vertical line (�s = 0.267 deg) receives rays that reaches only a part of the parabola. For 
instance, the interval (ya – ym), distant from the parabola focus (detached region) is illuminated only by the 
rays from the region (pa – pr) in the parabola surface. 

  

 

Fig. 3 – Details of focal region illumination. 

 

The graphs in the Fig. 4 show, in an entire form, all the parabolic surface since –�r until �r, representing the 
total absorber extension since –ym (-W/2) until ym (W/2), where ym (W/2) is a half part of the maximum 
absorber length, calculated with the eq. 2. 
 

 

Fig. 4 – Parabola entire graph. 



In a general form, the isolines in Fig. 4 that fit totally inside the two vertical lines, which indicate the solar 
cone limit (–�s to �s ), represent the absorber points reached by all rays from the solar beam. However, the 
isolines that cross these vertical lines represent absorber points (region between yb and ym (W/2) in Fig. 3) 
partially reached by the solar beam. The isolines out of the region delimited by the referred lines represent 
the points in the absorber not illuminated by the solar beam (region beyond ym). 

 

2.1 Determination of the energy distribution in the absorber  

 

The incident energy in the point (y) is accounted as the contributions of all reflected rays in the band of the 
angle (�) that have bright intensity I(�). (�) is the associated to (�) for the parameter (y). This relation is 
shown in the eq. 4. 
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The radiation intensity I(y) reaching a determined point (y) will be, therefore, the addition of all parabola 
contribution, represented by eq. 5. 
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The I(�(�,y)) term is the radiation intensity variation inside the solar beam, in which (�) representing the 
function � = �(�,y). Any theoretical or experimental bright distribution can be used, for example, the 
proposed in [1] or [10]. 
The cos(�+�(�,y)) term represents the cosine of the angle formed by the ray and the absorber normal (Fig. 1). 
� = �(�,y) is the function already described (eq. 4). 
� represents the mirror reflectivity, and unitary value was used in the simulations. 
 

To determine the local concentration in each point (y), it was used the flux concentration definition (Cflux) 
described by [9],  as being the ratio between the flux in the absorber (Iabsorber) (that is equal to I(y)) and the 
flux at the aperture (Iaperture) (eq. 6). 
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      (eq. 6) 

Iaperture was considered as being the sum of contributions of each ray defined by (�) inside the solar beam 

(eq. 7), were I(�)  represents the solar beam radiation intensity or bright function. 
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3. Results 

Using the described model, it was obtained the energy distribution in a flat absorber of a parabolic cavity 
with a focal length of 1m, aperture of 1.64 m and rim angle of 44.5 deg.  

The Fig. 5 shows the concentration distribution, in which, the optical deviation was not considered and the 
reflectivity coefficient is equal to one. 

 

Fig. 5 – Energy distribution along by absorber. 

 

The distribution shown in Fig. 5 (blue) was obtained using the bright distribution presented by [10]; the red 
graph represents the average concentration attained, 104.8 suns, that is a value equivalent to the calculated 
using eq. 8 [3]. 

 

 

 

     (eq. 8) 

It can be verified that the maximum concentration reached is 179.8 suns (point C(y=0) in Fig. 5); the energy 
is distributed up to the maximum length (ym), which is defined by the reflection of rays at the edge of the 
parabola. Its value is 0.0076m (ym point, Fig. 5), providing a total image length of 0.015m, as calculated 
using the eq. 2. 

 

The local concentration in the absorber center (C(y=0)) can be determined using the eq. 9. 
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It depends on the bright distribution model (I(�)) and its numerical integration. 
For the constant bright distribution (eq. 10) 
C � y= 0��214 .5 . � . sin��r �  

       (eq. 10) 
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For the bright distribution presented in [10] (eq. 11) 

C � y= 0��257 .3 . � . sin��r �  

     (eq. 11) 

 

For the bright distribution presented in [1] (eq. 12) 

C � y= 0��248.3 . � . sin��r �  

    (eq. 12) 

 

Any bright can be used to get the maximum concentration in the absorber center. 

The illumination of the absorber using four bright distributions is shown in the Fig. 6. The same parabola 
characteristics described before was used. The blue graph (Rabl) was performed using the bright distribution 
presented by [10]. The green (Constant) uses the constant bright distribution, the red (Gaussian) was 
obtained using a Gaussian bright distribution and the cyan (Abetti) uses the bright distribution presented by 
[1]. The entire absorber is shown.  

  

 

 

Fig. 6 – Energy distribution using four different bright distributions, showing the entire absorber. 

  

It can be verified that Abetti and Gaussian are very similar. The distribution indicated as Rabl provides 
higher values of energy in the central region of the absorber and it will be considered as a referential to the 
following comparisons. For the maximum concentration (absorber centre), the constant distribution produced 
a value 15% less than the Rabl, the Gaussian got 2.3% less and Abetti got 3.4% less. For the mean quadratic 
error, the constant distribution presented 18.5 suns, the Gausian presented 9.4 suns and Abetti has 6.8 suns of 
deviation from Rabl distribution. 

 



 

Fig. 7 – Illumination percentage of each point of the absorber. 

 

The Fig. 7 shows illumination percentage of each point of absorber gotten using any bright distribution; it 
detaches the three important regions commented before, the region between the focus (y = 0) and (yb)  
reached, as described, by all rays from the solar beam that reflects in all parabolic surface, with 100% 
illumination. The region between (yb) and (ym) presents illumination decreasing almost proportionally with 
the distance from (yb) to (ym). The region after (ym) got 0% illumination. 

 

Results of simulation of energy distribution using the proposed model is compared with results obtained 
using Evans' model [4] (Fig. 8). For this comparison it is used a parabola with a rim angle of (60 deg) and 
focal length (1m). The solar bright distribution was considered constant in the simulations. In Fig. 8 the 
abscissa axis has been expressed by a dimensionless variable y/f. The green curve represents the Evans´s 
model and the blue the proposed model.  

 

 

Fig. 8 – Comparison to the Evans´s model [5], it was used the constant bright distribution. 

 

It can be observed that the two distributions are equivalent; the maximum value obtained was 185 suns in 
both models. The average value obtained from the graphs was 90.6 suns. The mean value calculated from the 
eq. 7 is very similar (91.3 suns). 

 



4. Conclusions 

 

It was presented in this paper an alternative and exact solution to obtain the energy distribution in a flat 
absorber of a linear parabolic collector. 
 
A space (� – �) was defined to allow visualizing the concentrator geometrical behavior for any bright 
distribution incident in the collector aperture. A function � = �(�,y) or its inverse � = �(�,y) was developed, 
where (y) is represented by isolines in the space (� – �). 
 
The described procedure is general; it can be applied with any reflector surface geometry since it has only 
one reflection. It also permits to analyze and visualize the bright distribution effect over the energy 
distribution profile. The simplicity of the solution also allows considerations of optical deviation and 
misalignment´s effects over the image in the focal region. The implementation of these conditions, different 
from the ideal case, is being conducted and will be presented in a future work. 
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