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1. Introduction 

The state-of-the-art modelling of solar collectors as described in the European Standard EN 12975-2 
(EN 12975, 2006) is based on equations describing the thermal behaviour of the collectors by characterising 
the physical phenomena, e.g. transmission of irradiance through transparent covers, absorption of irradiance 
on the absorber, temperature dependent heat losses and others. This approach leads to so called collector 
parameters that describe these phenomena, e.g. the conversion factor 0 or the heat loss coefficients a1 and 
a2.  

For more complex systems it is not always possible to describe the thermal performance with parameters 
having a direct “physical” meaning. In these cases often artificial neural network (ANN) modelling is 
successfully applied. There are several significant reasons why ANNs are such a powerful tool for modelling 
dynamic systems (Yang, 2008): 

1. ANNs have a powerful ability to recognize accurately the inherent relationship between any set of 
input and output without a physical model or even without information about the internal behaviour, 
and yet the ANN results do account for all the physics relating the output to the input. This ability is 
essential independent of the complexity of the underlying relation such as nonlinearity, multiple 
variables and parameters. This essential ability is known as pattern recognition as the result of 
learning process. 

2. The methodology is inherently fault tolerant, due to the large number of processing units in the 
network undergoing massive parallel data processing. 

3. The learning ability of ANNs gives the methodology the ability to adapt to changes in the 
parameters. This ability enables the ANN to deal also with time-dependent dynamic modelling. 

Although the state-of-the-art approach in collector modelling and testing fits most of the collector types very 
well there are some collector designs (e.g. “Sydney” tubes using heat pipes and “water-in-glass” collectors) 
which cannot be modelled with the same accuracy than conventional collectors like flat plate or standard 
evacuated tubular collectors. The ANN approach could be an appropriate alternative.  

To compare the different approaches of modelling investigations for a conventional flat plate collector and 
an evacuated tubular collector have been carried out based on performance measurements according to the 
European Standard EN 12975. The investigations include the parameter identification (training), the 
comparisons between measured and modelled collector output and the simulated yearly collector yield for a 
solar domestic hot water system for both models. All ANNs described in the present paper were performed 
under the MATLAB (MathWorks, 2010) environment using the Neural Network Toolbox (MathWorks, 
2010b). To carry out the simulation the neural network has been implemented in TRNSYS (2004). 

The paper describes in detail the different approaches of modelling and the results of the described 
comparisons. 



2. Application of ANN in the field of solar thermal energy 

ANNs have been widely and successfully applied in various fields of mathematics, medicine, engineering, 
economics, meteorology, etc. Comprehensive overviews of applications of ANNs for thermal engineering 
and especially renewable energy systems are presented in Kalogriou (2000, 2001), Kalogriou et al. (2010) 
and Kwang-Tzu (2008). Following is a list of the most relevant works in the field of ANN related to the 
study described in the present paper: 

The paper of Roberto et al. (2010) deals with the development of methods for non steady state test 
procedures of solar thermal collectors. The goal is to infer the collector performance for steady-state 
conditions in terms of the efficiency curve when only data from measurements under transient conditions are 
available. The authors used a Grey-box Identification Model and a Dynamic Adaptive Linear Neural network 
model. 

In the study of Sözen et al. (2008) an approach based on ANNs was developed to determine the efficiency of 
flat plate solar thermal collectors. As input data the collector temperature, date, time, solar radiation, 
declination angle, azimuth angle and tilt angle were used.  

Kalogriou (2006) used different ANNs for the prediction of the collector parameters describing the 
instantaneous efficiency, the incidence angle modifier coefficients at longitudinal and transverse directions, 
the collector time constant, the collector stagnation temperature and the collector heat capacity. As inputs of 
the ANN model the collector dimension, collector constructional characteristics and collector performance 
characteristics are used. This approach is proposed as a useful instrument for engineers to obtain the 
performance parameters of new collector designs without the need to perform tests. Of course the final 
product would have to be tested in the normal way according to the standards.  

In the work of Lecoeuche and Lalot (2005) an application of ANNs was presented to predict the in-situ daily 
performance of solar air collectors. Output of the ANN is the outlet temperature of the collector, and inputs 
to the network are the solar radiation and the thermal heat loss coefficients. It was assumed that the inlet 
temperature and the mass flow rate of the fluid are constant. 

Farkas and Géczy-Víg (2003) developed for three different kinds of solar thermal collectors (air and water 
collectors and a latent heat storage collector) ANN models to predict the outlet temperature of the solar 
collectors based on to the inlet temperature, the ambient temperature and the global solar radiation. 

The objective of the work of Kalogirou et al. (1999) was to train an ANN to predict the useful energy 
extracted from solar domestic hot water systems and the temperature rise of the stored water with minimum 
of input data. Physical characteristics of the system, such as collector area, storage type, and capacity, mean 
storage tank heat loss coefficient, and weather conditions, such as solar irradiation at collector aperture, mean 
ambient air temperature and mean cold water temperature, were use as input data. 

3. State-of-the-art collector testing 

At present two different standardised methods are available for the determination of the collector 
performance: 

1. The so called steady-state method (e.g. EN 12975, 2006 or ISO9806, 1995) and 

2. The quasi-dynamic method (EN 12975, 2006) 

Although the steady state method is still part of the European and ISO Standards it is considered out-dated by 
the authors because transient behaviour of the collector cannot be characterised and no distinction between 
diffuse and beam irradiance is considered which is important especially for concentrating collectors. 
Therefore the quasi-dynamic test method is considered being state-of-the-art and described briefly in the 
following. 



3.1. Collector model 
The used collector model of the quasi-dynamic test procedure is shown in equation 1. Equations 2 and 3 
describe the incidence angle modifier for isotropic collectors (e.g. flat plate collector) and biaxial collectors 
(e.g. evacuated tubular collectors). 
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To describe Kb( l, t) the following angles of incidence ( l and t) are used: 0°, 20°, 40°, 50°, 60°, 70° and 
90°. 

3.2. Test procedure 
The collector is mounted under a fixed tilt angle facing the equator and operated with a fixed mass flow rate 
as specified by the manufacturer. Altogether four different inlet temperatures are chosen for the test, equally 
spread over the range of operation. Usually the lowest inlet temperature is close to ambient temperature and 
the highest inlet temperature is approximately 100 °C. To determine the conversion factor 0 a day with clear 
sky is needed, all other days may have partly overcast sky conditions. 

All quantities shown in equations 1 to 3 are either measured or calculated over the whole day to serve as 
input data for the parameter identification. 

4. State-of-the-art parameter identification 

Determination of parameters in a model by adjusting them to measured data is a well established procedure. 
The basic approach is usually the same for all models (Press et. al., 1992). A merit function is designed that 
measures the agreement between the measured data and the output of the model calculated with a particular 
choice of parameters. The merit function is conventionally arranged so that small values represent close 
agreement between the measured data and the output of the model. The parameters of the model are then 
adjusted to achieve a minimum in the merit function, yielding best fit parameters. The adjustment process is 
thus a problem in minimization in many directions and can be performed using different methods. Some 
methods are briefly described in the following: 

4.1. Multi linear regression (MLR) 
The MLR is a non iterative fast matrix method. Linear does only mean that the model is written as a sum of 
terms with the parameters pm as a multiplier in front of the terms (equation 4). 

),(),()(),,( 32,1332211321 xxxhpxxgpxpxxxy f      (eq. 4) 

The sub models f(x1), g(x2,x3) and h(x1,x2,x3) in each term can be non-linear. 

Suppose fitting N data points (x1,i, x2,i, x3,i , yi), i = 1,…, N, to a model that has m adjustable parameters pj, 
j = 1,…, m. The model predicts a functional relationship between measured independent and dependent 
variables (equation 5). 
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The dependence on the parameters is indicated on the right hand side. These functions can be minimized 
using the least-square fit (see equation 6). 



2

1
1321 ])...;,,([

N

i
mppxxxyiyMin      (eq. 6) 

To perform the matrix operations needed for the minimization process typically spread sheet programs are 
used. 

4.2. Dynamic parameter identification 
Iterative parameter identification methods use the same approach as in the previous section, namely to define 
a merit function and to determine the best fit parameters by its minimization using the least-square fit. With 
non-linear dependence, however, the minimization must be performed iteratively.  

For this study the DF program (Spirkl, 1994) was used as reference parameter identification tool. The DF 
program uses the Levenberg-Marquardt algorithm for the parameter identification process. This is a well 
known algorithm documented in Press et al., 1992 

5. Artificial neural networks (ANN) 

The human brain is a highly complex, nonlinear and parallel information-processing system with the 
capability to organize its structural constituents, known as neurons, so as to perform certain computations 
like for example pattern recognition and perception many times faster than any digital computer. The basic 
principles believed to be used in the human brain are so-called neural networks. 

Haykin (1999) defines a neural network as a massively parallel distributed processor made up of simple 
processing units (so called neurons), which have a natural propensity for storing experimental knowledge 
and making it available for use. Artificial neural networks resemble the brain with regard to two aspects:  
(a) the knowledge is acquired by the neural network from its environment through a learning process, and  
(b) interneuron connections strengths, known as (synaptic) weights, are used to store the acquired 
knowledge.  

According to Haykin (1999) the massively parallel distributed structure and its ability to learn are the two 
information-processing capabilities that make it possibly for neural networks to solve complex problems. 
Artificial neural networks (ANNs) are computational models which are inspired by biological neural 
networks and attempt to mimic the information processing system of the human brain.  

 
Fig. 1: Basic neural network unit (neuron, node) (McCulloch and Pitts, 1943) 

The following description is taken from Yu (2002). The basic building block and the fundamental processing 
element of an artificial neural network is a neuron (also called basic node or unit). According to the 
fundamental work of McCulloch and Pitts (1943) Fig. 1 illustrates how information (input) is processed 
through a single neuron. Basically the neuron receives signal inputs from other sources. The inputs can either 
be outputs of other neurons or they can be external inputs. The inputs {xi: 1  i  n} are weighted by 
parameters {wki: 1  i  n} which are called (synaptic) weights or inter-neuron connection strengths. The 
parameter bk is called the bias (also called threshold value) and it is used to model the threshold. The 



weighted inputs are combined and summed up in a special way depending on the used network input 
combination method (net function). The output of the neuron is related to the input via linear or non-linear 
transformation which is called the activation function of the neuron. 

In a neural network multiple units (neurons) are interconnected in a particular arrangement or configuration. 
The network usually consists of an input layer, one or more hidden layers and an output layer. Fig. 2 presents 
an example of typical neural network architecture.  

 

 

 

 

 

Fig. 2: Typical neural network architecture 

As already mentioned one main characteristic of ANNs is their ability to learn and store information. 
Therefore a so called learning or training process is necessary. In the learning mode the input is presented to 
the network along with the desired output. Through certain training algorithms the values of weight 
coefficient between processing neurons are adjusted in such a way that the network attempts to produce the 
desired output. When the training reaches a satisfactory level the network holds the weights constant. Now 
the weights contain meaningful and important information, whereas before training they are random and 
have no meaning. After the successful training step the trained ANN model can be used to predict the output 
parameters as a function of the input parameters. 

5.1. Modelling the solar collectors with ANNs 
In the present work a NARX model (Nonlinear AutoRegressive model with eXogenous inputs) was used for 
modelling the thermal behaviour of two different collectors (flat plate collector and evacuated tubular 
collector with CPC reflector). The NARX-type model is a recurrent dynamic network which is commonly 
used in time-series modelling and modelling of nonlinear dynamic systems. In recurrent dynamic networks 
the output depends in general not only on the current input to the network but also on the current and/or 
previous inputs, outputs, or stages of the network. The standard NARX architecture is shown in Fig. 3.  

 

 

 

 

  
           a)             b) 

Fig. 3: NARX network architecture: a) parallel mode (closed feedback loop)     b) series-parallel mode (open feedback loop) 

The equation defining the NARX model (parallel mode) is shown in (eq. 7), where the value of the 
dependent output y(t) is regressed on previous values of the output and on previous values of the (exogenous) 
input.  

1 ,..., , 1 , ...,y t f y t y t d x t x t d            (eq. 7)  

In the equation x(t) and y(t) denote the input and output of the network at the discrete time t. Parameter d 
represents the number of the time-delays (memory delays), which can be seen as the input-memory and 
output-memory order. The time-delays are used to store previous values of the x(t) and y(t) sequences. 

For efficient training often a series-parallel architecture (open feedback loop) of the NARX network as 



shown in Fig. 3b is preferred. This enables that during the training process the real (measured) output can be 
used instead of feeding back the estimated output. The main advantage of this approach is that the input to 
the network is more accurate. Another advantage is that series-parallel NARX network has a purely feed 
forward architecture, and static back-propagation can be used for training. As soon as the (open loop) 
training process is successful finished the feedback loop is closed (Fig. 3a).  

5.2. Neural network model for modelling the flat plate collector 
The selected architecture of the ANN used in this study to model the collector output of flat plate collectors 
is schematically illustrated in Fig. 4. 

The ANN consists of an input layer representing the input variables, an output layer corresponding to the 
output variables and one hidden layer. The inputs to the ANN are the beam and diffuse irradiance (Gb, Gd), 
the incident angle of the beam irradiance ( ), the temperature difference between the collector fluid inlet 
temperature and ambient temperature ( fl,in- amb)1 and the mass flow rate ( ). The output from the ANN is 

the collector output ( ). 

m

Q

To find the ANN with the smallest deviation between measured and calculated collector output different 
configurations for the ANN were used. By trial and error the number of neurons in the hidden layer is chosen 
as 5 and the number of the tapped time-delay d is chosen as 2. In the (open loop) training procedure, the 
weighting coefficients are adjusted using the Levenberg–Marquardt algorithm.  

 
   a)      b) 

Fig. 4: Structure of the ANN for modelling the collector:  a) parallel mode    b) series-parallel mode (open feedback loop) 

 

5.3. Neural network model for modelling the evacuated tubular collector 
Here, instead of the incident angle of the beam irradiance ( ) the incident angle of the beam irradiance in 
longitudinal plane ( l) and in transversal plane ( t) were used as inputs. All other inputs and outputs of the 
ANN for modelling the evacuated tubular collector were the same already described in 4.2. 

By trial and error the number of neurons in the hidden layer is chosen as 4 and the number of the time-delay 
d is chosen as 2. The same training algorithm as for the flat plate collector was used. 

For both type of collectors the (open loop) training of the ANN model was carried out by using measured 
input-output data which were acquired under quasi-dynamic conditions according to the test procedure 
described in the European Standard EN 12975-2 (EN 12975, 2006) at the Research and Testing Centre for 
Thermal Solar Systems (TZS) of ITW, University of Stuttgart.  

                                                 
1 Investigations not presented in this paper have shown that the term ( fl,in- amb) has to be used as input 
instead of using fl,in and amb as separate inputs. This approach enables the ANN to deal also with collector 
inlet ambient temperatures that were not used during the training process. 



6. Comparison of measured and calculated collector output 

For this study two solar collectors, one flat plate collector and one evacuated tubular collector with CPC 
reflector were tested according to section 3. State-of-the-art parameter identification was performed using the 
method described in section 4.2 and compared to the results using an artificial network (ANN) as described 
in section 5.2 and 5.3 respectively. This section compares the results obtained by the two approaches on the 
basis of measured and calculated collector output data. The figure of merit for the comparison is the 
difference in transferred energy Q ([ Q] = J), calculated as the sum of absolute error for each time step i as 
defined in equation 8.  

N

i
measicali QQQ

1
,,     (eq. 8)  

6.1. Flat plate collector 
The investigation was carried out on a flat plate collector with an aperture area of 2.17 m² with a Cu-Cu 
absorber. The absorber sheet with a thickness of 0.2 mm is connected to the riser tubes (10 in parallel) and 
manifolds using ultrasonic welding. The absorber uses a selective coating. Mineral wool with a thickness of 
60 mm is used as backside thermal insulation. Tab. 1 shows the collector parameters determined using the 
state-of-the-art collector test method. 

Tab. 1: Collector parameter describing the thermal performance of the flat plate collector under investigation 

0 b0 Kd 
a1 

W m-² K-1 
a2 

W m-² K-2 
ceff 

J m-² K-1 

0.815 0.119 0.948 3.577 0.019 12870 

Fig. 5 shows the comparison of the measured and calculated collector output for the state-of-the-art and the 
ANN modelling for the used test sequence at ( fl,m - amb)  0 K under clear sky conditions 
(Qmeas = 43374 kJ). The state-of-the-art model shows a very good agreement between measured and 
calculated collector output. The difference in the transferred energy is 436 kJ (1 %). At certain angles of 
incidence the calculated collector output shows slight differences to the measured output. The main reason is 
the incidence angle modifier model, which has to be used during the state-of-the-art testing and which does 
not perfectly fit flat plate collectors. 

The ANN model shows an even better agreement, since it is not restricted to limited number of parameters. 
The difference in transferred energy is 184 kJ (0.4 %). 

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

7 8 9 10 11 12 13 14 15 16 17 18

Di
ffe

re
nc

e  
ca

lcu
le

te
d -

m
ea

su
re

d 
in

 W

Co
lle

ct
or

 o
ut

pu
t  

in
 W

time of the day  in h

measured

calculated

calculated - measured

   a)      b) 

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

7 8 9 10 11 12 13 14 15 16 17 18

Di
ffe

re
nc

e  
ca

lcu
le

te
d -

m
ea

su
re

d 
in

 W

Co
lle

ct
or

 o
ut

pu
t  

in
 W

time of the day  in h

measured

calculated

calculated - measured

Fig. 5: Measured and calculated collector output flat plate collector: a) state-of-the-art collector modelling    b) ANN modelling 



Fig. 6 shows the comparison of the measured and calculated collector output for the state-of-the-art and the 
ANN modelling for the used test sequence at ( fl,m - amb)  25 K under broken clouds conditions 
(Qmeas = 19040 kJ). Again the ANN model shows the better agreement between measured and calculated 
collector output. This time the mean reason is the fact that the state-of-the-art approach uses a 1-node model, 
approximating the transient behaviour of the collector by one effective thermal capacity (ceff) at mean fluid 
temperature ( fl,m). This approach leads to over- and under prediction, respectively, in case of rapidly 
changing input values. The difference in transferred energy yields to 1160 kJ (6.1 %) with the state-of-the-art 
approach and to 477 kJ (2.5 %) by using ANN. 
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Fig. 6: Measured and calculated collector output flat plate collector: a) conventional collector modelling; b) ANN modelling 

6.2. Evacuated tubular collector 
The investigation was carried out on an evacuated tubular collector with an aperture area of 1.9 m² using 
“Sydney” tubes and a CPC reflector. The heat from the absorber is transferred to the heat transfer fluid by an 
aluminium heat transfer sheet and copper U-tube. Tab. 2 shows the collector parameters determined using 
the state-of-the-art collector test method. 

Tab. 2: Collector parameter describing the thermal performance of the evacuated tubular collector under investigation 

0 Kd 
a1 

W m-² K-1 
a2 

W m-² K-2 
ceff 

J m-² K-1 

0.872 1.026 0.986 0.006 40860 
 

Incident 
angle 0° 20° 40° 50° 60° 70° 90° 

K b( l) 1.00 0.99 0.94 0.89 0.79 0.64 0.00 

K b( t) 1.00 1.00 1.01 1.10 1.12 1.32 0.00 

In Fig. 7 the comparison of the measured and calculated collector output is shown for the state-of-the-art and 
the ANN modelling for the used test sequence at ( fl,m - amb)  0 K under clear sky conditions 
(Qmeas = 30964 kJ). Due to the more advanced incidence angle modifier model (eq. 3) used for evacuated 
tubular collectors, the state-of-the-art approach gives almost as good results as the ANN approach. The 
difference in transferred energy yields 307 kJ (1 %) (state-of-the-art) and 200 kJ (0.6 %) (ANN). 
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Fig. 7: Measured and calculated collector output evacuated tubular collector: a) conventional collector modelling; b) ANN 
modelling 

 
Fig. 8 shows the comparison of the measured and calculated collector output for the state-of-the-art and the 
ANN modelling for the used test sequence at ( fl,m - amb)  85 K under broken clouds conditions 
(Qmeas = 20075 kJ). The difference in transferred energy yields 1015 kJ (5.1 %) (state-of-the-art) and 856 kJ 
(4.3 %) (ANN), showing again a better agreement between measured and calculated collector output for the 
ANN approach. 
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Fig. 8: Measured and calculated collector output evacuated tubular collector: a) conventional collector modelling; b) ANN 
modelling 

7. Dynamic system simulation 

Section 6 shows that the ANN approach yields a slightly better agreement between measured and calculated 
collector output than the state-of-the-art approach. To be a true alternative, however, it must also be possible 
to use the ANN collector in a dynamic system simulation together with other components of a solar thermal 
system. 

To evaluate this ability a solar domestic hot water system (SDHW system) was defined and implemented in 
the simulation tool TRNSYS. Fig. 9 shows a sketch of the solar domestic hot water system and Tab. 3 the 
most relevant used system parameter. The simulations were performed for a single family house (located in 
Würzburg, Germany) occupied by 4 persons with a domestic hot water draw off of 200 l/d at 45 °C. The 
following tapping cycle was used: 80 l at 7 am, 40 l at 12 am and 80 l at 7 pm.  

To implement the ANN which was generated under the MATLAB environment the TRNSYS “TYPE 155- 
Calling MATLAB” was used. This TYPE enables the communication between the two software packages 
TRNSYS and MATLAB. The communication is realised by a so called Component Object Model (COM) 
interface which launches MATLAB at every single TRNSYS time step as a separate process. 

The ANN was implemented in the TRNSYS deck parallel to the collector. Using this approach the collector 



TYPE 132 and the ANN receive always the same input values, thus the collector yield of the collector type 
and the ANN can be compared directly. In the simulation the output of the collector TYPE 132 is used as 
input for the other types. 

 
Fig. 9: Schematic drawing of the solar domestic hot water system 

 

Tab. 3: Main system parameter for the SDHW TRNSYS simulation 

System parameters for SDHW system concepts value 

Collector area flat plate collector, m² 4.34 

Total heat store volume, l 300 

Auxiliary volume for domestic hot water preparation, l 150 

Set temperature for domestic hot water, °C 52.5 

Overall heat loss capacity rate of store, W K-1 2.5 

Total pipe length of collector loop, m 20 

Inner diameter of collector loop pipe, mm 13 

Maximum heat store temperature, °C 80 

Temperature difference collector start-up, K 10 

Temperature difference collector shut-off, K 2 

Fluid heat capacity (collector loop and hot water loop), J kg-1 K-1 4180 

Tab. 4 shows the yearly collector yield of the flat plate collector calculated using the collector TYPE 132 and 
the ANN collector model. Compared to the state-of-the art approach the collector output of the ANN within 
the dynamic system simulation is overestimated by 1.2 %. What seems to be a good agreement turns out to 
be still quite far away from the defined goal. 

The analysis of the simulation data revealed the fact that the generated ANN is not able to handle periods 
without mass flow through the collector. No flow conditions have not been part of the state-of-the-art test 
sequences and could thus not be trained and remembered by the ANN. The consequence of this “lack of 
knowledge” is the calculation of some unrealistic collector outlet temperatures. 

Tab. 4: Comparison of the yearly collector yield calculated using the collector TYPE 132 and the ANN 

 TYPE 132 
kWh a-1 

ANN 
kWh a-1 

Deviation 
% 

Yearly collector yield flat 
plate collector 

1724 1745 + 1.2 



Since the results of the TRNSYS simulation using the evacuated tubular collector shows the same effects and 
does not deliver further finding it is not presented in this paper. 

8. Conclusions 

Artificial neural networks are a powerful tool that can be used to characterize the thermal behavior of solar 
collectors. However special care has to be taken during the training process to cover all operation conditions 
that will be encountered during the future usage of the ANN. 

To use ANNs instead of the state-of-the-art collector model as a reliable tool in dynamic system simulation 
special test sequences have to be designed. These test sequences need to cover a large range of operating 
conditions, including no flow conditions. In case the system simulation shall be performed with a heat 
transfer fluids that differ from the one used for testing, also a variety of different fluids to cover different 
values of the fluids’ specific heat capacity is needed during testing. 

The investigations also showed that the determination of the ANN that fits the thermal performance of the 
collector the best depends on the expertise of the user and can be quite time consuming. Especially when 
ANNs based test method should become part of European or international standards an algorithm is needed 
which ensures a reliable and fast determination of the best ANN. 

If the above presented improvements have been made artificial neural networks can become an interesting 
alternative to the state-of-the-art collector models used today. 

9. Nomenclature 

Symbol Unit Quantity 
A m² Collector area 
a1 W m-² K-1 Heat loss coefficient 
a2 W m-² K-2 Temperature dependent heat loss coefficient 
b0 - Factor to calculate the incidence angle modifier for beam irradiance 
bk - Bias 
ceff J m-² K-1 Effective collector heat capacity 
d - Number of the time-delays 

0 - Conversion factor  
amb °C Ambient temperature 
fl,in °C Fluid inlet temperature 
fl,m °C Mean fluid temperature 
fl,out °C Fluid inlet temperature 

Gb W m-² Beam irradiance 
Gd W m-² Diffuse irradiance 
Ghem W m-² Hemispherical irradiance 
i - Index of the time step 
Kb( ) - Incidence angle modifier for beam irradiance 
Kd - Incidence angle modifier for diffuse irradiance 

 ° Incident angle of the beam irradiance 
l ° Incident angle of the beam irradiance in longitudinal plane 
t ° Incident angle of the beam irradiance in transversal plane 

m  kg s-² Mass flow rate of the heat transfer fluid 
N  Number of time steps 

calQ  J Transferred energy (calculated) 

measQ  J Transferred energy (measured) 

Q  W Collector output 
Q J Difference in transferred energy 

t s Time 
wki - Synaptic weights 
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