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Abstract: This paper introduces a global Solar Combisystem model that could estimate system performances 
for any kind of climate and any kind of building, only from a short experimental data set. The aim of this 
study is to improve the “Short Cycle System Performance Test” (SCSPT) that is being developed at the 
French National Solar Energy Institute (INES) and that shows relevant results but its performance prediction 
is limited to only one environment (climate and building). This improvement would lead to a complete and 
reliable method to characterize SCS performances. The proposed model is based on standard equations 
conjugated with Artificial Neural Networks (ANN). It shows results very close to TRNSYS simulations of 
three detailed SCS models. 
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1. Background 

1.1. Solar Combisystems: performances and market curbs 

Solar Combisystems (SCS) are solar thermal systems which provide energy for DHW and space heating 
demand of a building. To meet those demands, SCS use both solar energy (through solar collectors) and 
auxiliary energy (from one or more auxiliary heat generators: gas boiler, electric resistance…). They deal 
with several hydraulic loops, heat storage(s), and controller(s) (that can sometimes be advanced) to manage 
energy sources and meet energy demand. This aspect plays an important role to reduce auxiliary energy 
consumption as much as possible. 

SCS can be very efficient at reducing primary energy consumption of a house. According to on-site 
monitoring projects realized in France, some combisystems has already saved up to 500 kWh.m-2 collector 
over a year in France (Papillon et al., 2007). However, good performances of SCS are only met for very 
precise conditions. Unfortunately, there is no common test method nowadays to predict SCS performances. 
This penalizes the SCS market because there is no reliable information to help potential users to choose 
between products and to guarantee good performances of a SCS when installed. There is a real need for the 
SCS market to have a reliable test method that would be able to predict and characterize annual 
performances of systems. 

Developing such a test is difficult because SCS performances are very sensitive, mainly to two points: 

• Firstly, even though every component of a system is efficient, a little mistake in design, installation or 
even controllers programming can make the combisystem behave differently as it was supposed to. Its 
performances could be then deeply reduced. Therefore, a reliable SCS test should be done on the 
complete system, as it is installed in a real house, to take into account actual design, installation and 
control aspects in the performance evaluations; 

• Secondly, combisystem performances strongly depend on climatic conditions and energy demand. 
Therefore, a complete methodology should be able to predict SCS performances for any “environment” 
(characterized in this paper by a kind of thermal efficiency of building, a kind of climate and a collector 
area that defines the solar resource). 

1.2. The current SCSPT method 

Some laboratory tests are currently being developed to evaluate SCS performances. One of them, the SCSPT 
(Short Cycle System Performance Test), uses a “Global approach” (i.e. it tests the whole system on a test 
bench). 



The SCSPT consists in installing the complete system on a semi-virtual test bench (i.e. that links a real 
thermal system with a virtual environment) and to apply a specific 12 days sequence that closely matches an 
annual weather cycle of one precise climate to make the SCS behave as it usually does over a year (Albaric 
et al., 2008). The auxiliary energy consumption of the tested SCS is recorded during the test. The “12 days” 
sequence allows approximating its annual consumption (and then its annual performance) with a simple 
extrapolation of the results (multiplication by a factor 365/12). 

This method has shown relevant results (Albaric et al., 2010; Mette et al., 2010). Performances estimations 
are quite accurate but they are limited. The application of one test of this kind allows the evaluation of 
auxiliary energy consumption for only one environment (the climate and the type of building used as virtual 
environment) and for the sizing of the SCS during the test sequence. This is not enough to characterize the 
performances of the tested system for any kind of environment, for instance with the FSC method proposed 
by Letz (Letz et al., 2009), from only one test. 

1.3. The envisaged improvement of the SCSPT method 

The current SCSPT method extracts only one information from a 12 days sequence whereas there would be 
much more to learn about each tested SCS, analyzing their inputs and outputs recorded during the test. To 
further develop this “Global approach”, identifying a kind of dynamical global model of the whole tested 
combisystem would let it be simulated with different external conditions. Its performances would be thus 
evaluated in a more complete way. 
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Fig. 1: Goal of the envisaged SCSPT method improvement 

In this paper, an artificial neural network based model is built to demonstrate the feasibility of this 
improvement. 

2. The proposed “Gray Box” model to learn SCS behaviors 

2.1. General description 

The global SCS model must evaluate the powers managed by the system (outputs) functions of external 
variables, independent of the system (inputs). Those variables are described in Table 1. 



Tab. 1: Variables involved with the proposed global SCS model 

 Variables Description Unit 

aT  Ambient temperature [°C] 

bG  Beam solar radiation on a horizontal plane [W.m-2] 

dG  Diffuse radiation on a horizontal plane [W.m-2] 

Sθ  Solar zenith angle [°] 

Sγ  Solar azimuth angle [°] 

DHWm�  DHW draw-off [kg.hr-1] 

Inputs 

tapT  Tap water temperature [°C] 

auxQ�  Auxiliary power consume [W] 

outcollQ ,
�  Power supply by collectors [W] 

emQ�  Power received by heat emitters [W] 

Outputs 

dhwQ�  Power of DHW demand [W] 

collT  Mean collectors temperature [°C] 

emT  Mean emitters temperature [°C] 

roomT  Room temperature [°C] 

States 

stoT  Mean storage tank temperature [°C] 

 

A state space representation is chosen to form the dynamic aspect of the model. Considering the different 
temperatures generally controlled by a SCS when functioning, it seems relevant to call mean temperatures of 
the system’s main elements as the dynamic states of the model (Table 1). This is all the more interesting 
since those temperatures can be evaluated by some equations. Finally, the relationship to identify from test 
data is the link between outputs on the one hand and inputs/states of the system on the other hand, which 
represent the real characteristic behavior of each SCS. This part to be identified must be non-linear in order 
to be able to face every system’s behaviors. 

To sum things up, the proposed model is made up of two main parts (also represented on Figure 2): 

• The “White Box” part acts as a linear dynamical state feedback, supplying elements temperatures 
evaluation through known equations, according to external variables and energy flows within the 
combisystem. 

• The “Black Box” part is a static non linear model that evaluates powers involve when the SCS is 
working according to external inputs and internal states of the system. 
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Fig. 2: Architecture of the “Gray Box” model proposed to model SCS behavior from SCSPT experimental results 

This way, the global SCS model forms a “Block oriented Slate-Gray” model according to Ljung (Ljung, 
2010). This shape of model has shown good results in different scientific field. 

2.2 The “White Box” part 

The “White Box” part contains equations of combisystem elements: auxiliary energy system, storage tank, 
solar collectors, heat emitters and building. In order to eventually propose this method as a future normative 
test, equations are principally based on several standards and need almost only characteristic parameters of 
the system. 

So far, this part has been built to model SCS using gas boiler as auxiliary energy system and radiators as heat 
emitters but the “Gray Box” architecture seems flexible enough to be adapted to other elements (like heating 
floor for instance) for the next steps of this work. 

The mean collectors temperature is evaluated by the collector model described in (Perers, 1997). This model 
is based on the well-known “Hottel-Whillier-Bliss” equation for flat plate solar collectors that is adapted to 
characterize almost every kind of collectors, except ICS collectors. It has been widely used for standards (EN 
12975-2, 2006; ASHRAE 93-86, 1986). It is also used during the SCSPT test as part of the virtual 
environment. 

The radiator model used to evaluate the mean temperature of the heat emitter is based on standard 
parameters, calculated with (EN 442-2, 1996). This model is also used during the SCSPT test as part of the 
virtual environment. 

The building model used to react with the global SCS model is the one defined in the international standard 
(ISO 13790, 2008). Every heat transfer coefficients and the internal capacity can be calculated out of 
architectural and physical parameters of the building. So far, parameters used are calculated to have three 
building models similar to the IEA SHC Task32 reference ones (Heimrath and Haller, 2007): SFH30, SFH60 
and SFH100 (i.e. buildings with space heating loads respectively of 30kWh.m-2, 60kWh.m-2 and 100kWh.m-2 
over a year for Zurich climate). This model is also used during the SCSPT test as part of the virtual 
environment. 

The storage tank is one of the proper parts of a combisystem. Unlike elements presented above, this part is 
not modeled during the SCSPT. The goal of this model is to give information about the energy stored in the 
tank. Since there is not enough variables and parameters available to have a detailed storage tank model, 
equations come down to a simple energy balance, completed by a heat capacitance Csto and a heat loss 
parameter (UA)sto to be roughly estimated (Equation 1). 
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The equation above-mentioned needs an estimation of Qaux,out, the power supplied by the auxiliary system. 
That is why a gas boiler model is also employed in the “White Box” part. The one currently used is taken 
from the French thermal regulation for building (RT2005, 2006). It evaluates the energy losses of the boiler 
according to the heat demanded with a simple second-order polynomial. Parameters of the polynomial are 
calculated with characteristic powers and losses of the boiler, determined by standards - like the (EN677, 
1998) for instance. 

For numerical computing, all equations described in this section are calculated with an explicit discretization 
scheme. 

2.3. The “Black Box” part 

The “Black Box” part is a pure numerical model. It learns the characteristic behavior of the tested SCS by 
identifying its parameters from a test data analysis. A specific model must be adapted to face non-linear 
behaviors of combisystems. 

Artificial Neural Networks (ANNs) are widely appealed to different research projects nowadays, even in 
solar energy field because, as Kalogirou highlights (Kalogirou, 2001), they can learn from examples, are 
fault tolerant and are able to deal with non-linear problems. Therefore, ANNs are adapted in the “Black Box” 
part. 

A mathematical neuron is presented on Figure 3. 
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Fig. 3: Representation of an artificial neuron 

Neuron inputs xi come from other neurons outputs or model inputs. Those signals are transmitted to the 
neuron through connections called “synapses”. Synaptic weights �i are linked to each connection. There are 
several ways to combine neuron inputs with their corresponding synaptic weights. In this model, a simple 
linear combination, as described in Equation 2, is used. The result of this combination � is the argument of a 
transfer function � (taken as a sigmoid for every neuron in this paper). The outcome y is the activation of the 
neuron. 
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 (eq. 2) 

ANNs are built linking neurons together and with the model inputs and outputs. When presenting a training 
data set, an optimization algorithm searches the best synaptic weights set to minimize a cost function. For 



this work, the cost function is the sum of squared error over the training sequence, to be minimized by the 
Levenberg-Marquardt algorithm (Marquardt, 1963), completed by Bayesian regularization (Mackay, 1992). 

An important inputs and outputs pre-processing step helps both the training procedure and the capacity of the 
“Gray Box” model to simulate correctly the SCS behavior for any environment. It consists in creating 
regressions of raw temperatures and heat flows in order to have reduced criterions of the interaction between 
the system, the building and the climate, at the bounds of the ANN. The network would simulate more easily 
the system’s behavior in different loads and climatic conditions. 

The inputs regression vector is presented in Equation 3. 
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The net input solar irradiation on collectors plane Qsol,net (i.e. that takes into account Tcoll and collectors 
optical and thermal losses) is divided by a reference irradiation Gref (taken as 1000W.m-2). The heat delivered 
by radiators to building rooms Qsh is divided by the nominal power of radiators (which depends on the 
thermal quality of the building and the climate). The room temperature is compared with both the room 
temperature set-point Tset,room and the ambient temperature Ta. Difference between Tset,room and design 
ambient temperature Ta,d is used to weight those comparisons. The mean storage tank temperature is 
compared with the DHW set point temperature Tset,dhw. Since there are no obvious limits to this comparison, 
it is only divided by 100 to reduce the variation of this criterion. 

The nominal power of the boiler Qaux,nom, the reference solar radiation and the nominal power of radiators are 
used to compose the outputs regression vector, presented by Equation 4. 
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To have a first evaluation of this approach, the DHW demand Qdhw is supposed to be fulfilled. So this “Gray 
Box” output is not considered at the bounds of the ANN to make its learning easier in a first place. 

Finally the global structure of the neural network chosen to be part of the “Black Box” is presented on Figure 
4. It is composed of one output layer and one hidden layer, for which the right complexity (number of 
neurons) has to be tested from several trainings to match the SCS behavior as best as possible. 
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Fig. 4: Representation of the neural network considered in the “Black Box” part 

For a given network complexity, the optimization algorithm to train neural network from a data set is also 
applied several times with different initial weights using the Nguyen-Widrow method (Nguyen and Widrow, 
1990) to enhance the ANN trainings. In this paper, the best “Gray Box” model is selected thanks to TRNSYS 
simulation comparisons, according to the process described below. 

3. Validation of this approach 

3.1. Protocol 

To validate this approach, three detailed combisystems models (called SSC1, SSC2 and SSC3 below) are 
used within TRNSYS. Training data sets for neural network are calculated from a simulation of the “12 
days” sequence. Trained “Gray Box” models are then used to do the 27 annual simulations presented in 
Table 2, corresponding to 3 climates, 3 buildings and 3 collector areas (defined as A1, A2 and A3 below, to 
be chosen according to the volume of the storage tank and usual sizing considerations). Annual results of 
these simulations are then compared to the corresponding TRNSYS simulations ones. The scheme of this 
process is represented on Figure 5. 

Tab. 2: Definition of the 27 (3x3x3) environments for annual simulation 

Building Climate Collector area 

SFH30 Stockholm A1 

SFH60 Zurich A2 

SFH100 Barcelona A3 
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Fig. 5: Process for the validation of the proposed approach from a detailed SCS model 

TRNSYS “12 days” and annual simulations are done with a 3 minutes time step. TRNSYS “12 days” 
simulations data are processed to train “Gray Box” model with a 30 minutes time step, which seems a good 
compromise between sufficient precision of the system’s behavior and quite smooth signals for the network. 

3.2. Results 

Figure 6, Figure 7 and Figure 8, presented below, show the comparison between the TRNSYS model results 
and the best “Gray Box” model results, for each of the three tested SCS. They represent estimations by both 
types of model of annual energy consumed by the boiler (blue stars), supplied by the collectors (green stars) 
and received by the radiators (red stars) of the tested SCS for the 27 simulations. The statistical regression 
coefficient R2 is also noticed on these figures, for each energy evaluation. 
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Fig. 6: Comparison of annual energy evaluations between the TRNSYS model of SSC1 and its “Gray Box” model selected 
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Fig. 7: Comparison of annual energy evaluations between the TRNSYS model of SSC2 and its “Gray Box” model selected 
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Fig. 8: Comparison of annual energy evaluations between the TRNSYS model of SSC3 and its “Gray Box” model selected 

This approach seems to be relevant since for the three combisystem models tested, energy estimations are 
really close to the corresponding TRNSYS calculations, within +/-10% precisions for most simulations. 
“Grey Box” models seem precise enough to characterize SCS performances. 

Globally, estimations are less accurate for Qcoll. It seems that the training sequence does not let the tested 
system activate all of its control function. Moreover, there should be more information about the heat storage 
to be more precise on how the system controls the solar loop. (Statistical regression coefficient is very low in 
this case because the energy Qcoll doesn’t vary as much as other energy from one simulation to the other. 
That makes one flawed estimate have a more important effect on R2). 

Simulations that seem a little harder to model represent environment that require few auxiliary energy and 
that have large solar resource. Actually, those environments involve mainly the Barcelona climate, which 
imply different weather conditions compared to the Zurich climate used as reference for the test sequence. 

Figures above also show that accuracy of the “Gray Box” models depends on the kind of system. SSC2's 
behavior seems easier to learn. 



This “Grey Box” modeling is very acceptable for the characterization of the three tested combisystems. 
Therefore, this study shows that the new approach is promising in order to predict thermal efficiency of 
combisystem. 

4. Conclusion and outlook 

The study presented in this paper offers a basis to get ahead with a complete method to characterize SCS that 
could lead to develop a standardization method from performance evaluation (and eventually complete the 
European norm (EN 15316-4-3, 2008) for instance) and to plan a combisystems performance labeling. 

The next step is to arrange this methodology to fit current lab tests and so to be able to evaluate combisystem 
performance in a complete and reliable way. 

This starts with developing a process to select only one “Gray Box” model trained from a test data set or to 
handle results from several ones to have a unique performance characterization. Currently, most of trained 
“Gray Box” models show good results but they don’t calculate exactly the same estimations. Moreover few 
of them can be “over-trained” (i.e. they can’t simulate the SCS behavior correctly but for the only training 
sequence). Those ones have to be sought out and put aside. 

Another important point is to consider how the tested SCS supply DHW. The current “Grey Box” model 
estimates that the demand is fulfilled but it should take into account the temperature of DHW delivered more 
precisely to have right performances evaluations. 

Moreover, the methodology has to be adapted to other kind of SCS in order to be able to characterize any 
type of SCS, considering equations for other elements like heating floor for instance, in the “White Box” 
part. 

The methodology must even be further improved by studying a different way to model the energy storage, 
that takes into account the quality of the heat stored (with a multi-nodes storage model or an exergy 
calculation for instance). Some other leads could probably also act in this way like for instance studying 
other regression vectors and optimizing the test sequence to get more information about the tested SCS 
behavior in the training data set. 
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