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Abstract

Concentrated solar power generation has the potential to partially meet the future energy demand and reduce our depen-
dence of fossil fuels. However due to the intermittent nature of this energy source, it has not been used for baseload power.
This problem can be solved by implementing an efficient, economical and reliable latent heat (LH) energy storage strat-
egy. An accurate heat transfer analysis will play an important role to make this strategy successful. This work presents
a 2D numerical model of the diffusion-natural convective controlled heat transfer during an unconstrained (solid–liquid
density difference) melting process of an encapsulated spherical thermal energy storage (TES) capsule filled with an inor-
ganic salt as the phase change material (PCM). The melting of the PCM was modeled using the finite volume numerical
procedure with a single-domain enthalpy formulation. Transient numerical simulations were performed using the CFD
software Ansys-Fluent V 12.1. A detailed parametric analysis was carried out in order to analyze the geometrical and
operational effects of the system and their influence on the charging times. The study focused on PCMs with melting point
between 300°C to 400°C and metal coating materials subjected to a uniform wall temperature from 73°C to 93°C above
the mean melting temperature of the PCM. The temperature profiles and interface positions for different Rayleigh, Stefan
and Fourier numbers are determined. Computational results of this study show that for a fixed Stefan number (Ste=0.694)
there is a significant difference in the flow fields for cases with Rayleigh number from 9.17x106 to 7.33x107.
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1. INTRODUCTION.

The use of latent heat storage devices (LHSD) is one of the most promising technique that can play a preponderant
role in solar power technologies as a strategy to enhance the effective energy management, i.e. effective thermal energy
utilization under the seasonal and intermittent nature of solar energy. This advantage could be achieved since it became
of a considerably higher energy storage density compared to sensible heat storage systems and has the capacity to capture
and release energy as latent heat of fusion at a constant temperature or over a limited temperature range corresponding
to the melting point of the phase change material. According to Dutil et al.(2010) and Medrano et al. (2010) such
devices and systems also improve the performance and reliability of the plant by satisfying peak loads and allowing
systems to work within an optimal and stable range. Based on that, an accurate heat transfer analysis for the melting
and solidification process within the phase change material is required in order to develop an optimal design and predict
operational conditions of the LHSD. The aim of the present study is to develop a numerical model of the heat transfer
during the melting process of a spherical capsule filled with sodium nitrate considering conduction, natural convection
and solid–liquid density difference.

A considerable amount of experimental, theoretical and numerical studies have been reported in the literature on the
heat transfer phenomena of melting and freezing process of PCM’s that are stored within containers of different shapes.
Grimado and Boley (1970) presented a numerical procedure of the diffusion-controlled heat transfer during the melting
process of a sphere. The outer surface was subjected to a spherically symmetric and time dependent heat flux boundary
condition. Melting rate and temperature distribution for different metals was estimated. Nicholas and Bayazitoğlu (1980)
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Amu porosity constant [kg/m3s]
cp specific heat at constant pressure [J/kg K]
Da Darcy number, defined as μλ 3/CR2(1−λ )2
Fo Fourier number defined as [αt/R2]
g gravitational aceleration [m/s2]
H sensible enthalpy [kJ/kg]
ΔH latent heat [J/kg]
k thermal conductivity [W/m K]
L latent heat of fusion [J/kg]
Pr Prandtl number of the fluid, defined as [ν/α]
Ri inner radius of the container [m]
Ro outer radius of the container [m]
Ra Rayleigh number defined as 8gβ (Tw −Tm)R3/να
S source term in momentum equation
Ste Stefan number defined as cp(Tw −Tm)/L
t time [sec]
T temperature [K]
Ti initial temperature of the PCM [K]
Tm melting temperature of the PCM [K]

Tw surface temperature of the enclosure [K]
ϑi velocity component [m/s]

Greek Symbols

α Thermal diffusivity [m2/s]
β Thermal expansion coefficient [K−1]
λ Liquid/solid fraction
ρ Density [kg/m3]
μ Dynamic viscosity [kg/m s]
ν kinenamic viscosity [m2/s]

Subscripts

l liquidus
m melting
r radial direction
s solidus
w wall

presented a numerical analysis of the effect of unequal densities on the shape and location of the solid-liquid interface
during heat diffusion-controlled melting process for a system within a horizontal cylindrical isothermal enclosure. The
finite difference method was used to find the dimensionless transient temperature profile in the liquid medium and the
position and rate of movement of the solid-liquid interface. However the analysis neglected the convective heat transfer
during the phase change process. Later on Moore and Bayazitoglu (1982) investigated the unconstrained diffusion-
natural convection controlled melting process of n-octadecane wax within a spherical enclosure. The energy and interface
equations were solved using the finite difference technique. Good agreement was found between the numerical results
and the experimental data for Ste = 0.05 and 0.1 with a maximum deviation of about 10 percent in the predicted interface
position. Based on the energy stored results the study also concluded that the convective effects can be neglected only at
small Stefan numbers below than 0.1.

Bahrami andWang (1987) presented an approximate closed-form solution of conduction-driven melting within spheres
by the use of assumptions similar to the theories of lubrication and film condensation. The effects of gravitational force
resulting from unequal solid and liquid densities and the decoupled temperature and velocity fields were considered. The
agreement between the theory and the experiments appears to be reasonable for small values of Fo · Ste. The agreement
decreased for larger Fo ·Ste values with the experimental data laying approximately 20 percent below the theory. Melting
process in spherical containers has been studied further by Roy and Sengupta (1987) who reported an analytical solution
for the melting rate at the lower surface of the solid core based on the technique originally developed for the cylindrical
geometry by Bareiss and Beer(1984). Heat transport was controlled by heat conduction only. The predicted melting rate
showed good agreement with the experimental data published by Moore and Bayazitoglu (1982) with maximum devia-
tion of 16 percent for Ste = 0.05 and 0.1. Later on Roy and Sengupta (1990) analytically studied the effect of natural
convection within the thin melting layer in the bottom of the sphere and within the top part of the solid core during the
unconstrained melting process with an isothermal boundary. The analysis concluded that a significant amount (15% for
typical cases) of melting takes place at the upper surface of the solid core. Also the effects of Grashof and Prandtl numbers
in the upper region are smaller than the values commonly encountered in natural convection on spherical geometries.

Saitoh and Kato (1993) reported experimental and numerical results on the melting in horizontal cylindrical capsules
with both close-contact and natural convective heat transfer. The experimental setup consisted of copper cylindrical tubes
with diameters of 0.04, 0.1 and 0.2 m filled with n−octadecane as the PCM material mounted in a constant temperature
bath. Based on the melting front results indicated that with the increase of the Stefan number the contribution of natural
convection becomes more significant. Fomin and Saitoh (1999) presented a numerical and analytical investigation of
the close-contact melting within a spherical capsule with a non-isothermal wall. The analytical solution method used in
their investigation is an extension of the mathematical approach developed by Bareiss and Beer (1984) and the numerical
model was solved by utilizing the boundary fixing method. The wall temperature boundary condition was specified by
a sinusoidal function. They found that the increase of the temperature distribution leads to a higher melting speed for



Figure 1: Schematic diagram of the physical model.

Ste = 0.5. Khodadadi and Zhang (2001) performed a computational study of the combined conduction and buoyancy-
driven convection on constrained melting of PCM’s within spherical containers with an isothermal boundary. The study
focused on low-Prandtl number fluids and used silicon as a PCM. The results were obtained through simulations based
on the finite-volume procedure and the phase change phenomenon was modeled by single-domain enthalpy formulation.
Three cases (case a, Ra = 1.428x105,case b, Ra = 1.143x106 and case c, Ra = 1.151x107) were analyzed in order to
assess the role of the Rayleigh number on the melting process. The total melting time was 8% shorter for Case (a),
15% shorter for Case (b), and 40% shorter for Case (c) when compared to the corresponding diffusion-controlled melting
processes. Also the study analyzed the effect of Stefan number during the melting process. It was concluded that the flow
and thermal fields are very similar for cases with Stefan number from 0.0267 to 0.0533 and fixed Raleigh and Prandtl
numbers. Also as buoyancy-driven convection became more dominant due to the growth of the melt zone, accelerated
melting in the top region of the sphere in comparison to the bottom zone was observed.

Assis et al. (2007) reported a numerical and experimental study of the melting process in spherical enclosures of 40,
60 and 80mm in diameter subjected to constant wall temperatures. The numerical model takes into account the volume
expansion due to melting, the density change between the phases and the convective heat transfer in the fluid media.
RT27 (Rubitherm GmbH) was used as the PCM. In order to model the volumetric expansion a PCM-air computational
domain was defined. Initially solid PCM fills 85% of the enclosed space while the remaining 15% is filled by air. The
enthalpy-porosity approach was used to model the melting process. The melt fraction was presented as a function of a
combination of the Fourier, Stefan and Grashof numbers, namely, FoSte1/3Gr1/4. The investigation concluded that all
the study cases, except that for Ste = 0.2, practically merge into a single curve. Tan et al. (2009) discussed a combined
experimental/computational study of the effect of buoyancy-driven convection on the melting process in spherical con-
tainers. Density differences of the liquid and solid phases were neglected in the mathematical simulations. Paraffin wax
n− octadecane was used as the PCM. The single domain enthalpy-porosity formulation was used to model the melting
process. In the study, computational findings were verified through qualitative observations of the phase change pattern
during constrained melting of the PCM. It was shown that even though the computational technique captures the trends
of the constrained melting of the sphere, it predicts a faster rate of melting. Also computational results reveal a waviness
and excessive melting of the bottom part of the PCM.

In this study, a parametric analysis of the 2D melting in a spherical cavity was carried out in order to investigate
the effect of the Rayleigh and Stefan numbers on the melting rate of the PCM. Special emphasis is placed on the fact
that, to the best of the authors knowledge, the melting process of spherical encapsulated sodium nitrate has been rarely
investigated in the literature.

2. Physical and mathematical model.

A spherical shell of inner and outer radii Ri and Ro, respectively, is initially filled with a solid PCM at a temperature
Ti. For time t > 0, the outer surface of the shell is exposed to a constant temperature Tw, which is greater than the melting
temperature of the PCM. Heat is transferred by conduction through the wall of the capsule and melting process initiates
at the inner surface with the solid-liquid interface moving into the PCM. A schematic representation of the considered
physical model is shown in the left hand side of Figure 1.



Table 1: Governing equations.
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The following assumptions are made for the mathematical model: (1) both the solid and liquid phases are homoge-
neous and isotropic, (2) the flow in the capsule is axisymmetric around the vertical axis of the sphere and two dimensional
spherical polar coordinate system (r, θ)can be employed, (3) the liquid phase was assumed as a Newtonian fluid with
laminar flow, (4) the Boussinesq approximation is used to analyze the buoyancy induced motion in the melt, (5) the
viscosity and thermal conductivity of molten sodium nitrate were defined as functions of temperature. Thermophysical
properties and process parameters are listed in Table 2.

2.1 Mathematical f ormulation

Given the above assumptions, the continuity, momentum and energy equations in the spherical coordinates (r and θ
radial and polar direction respectively) are presented in Table 1.
A significant effort was directed into the methods used to track the continuously moving boundary of the solid liquid
interface and the associated thermophysical property change over the discrete grid of nodes that define the numerical
method. According to Voller et al. (2006), the existing modeling methods for such problems can be divided into three
groups: fixed grid schemes, deforming grid schemes and hybrid methods. In this study the enthalpy formulation (Eyres
et al. (1946) and Price and Slack (1954)), that is one of the fixed grid class methods was employed. The enthalpy function
is defined as the sum of the sensible heat h and the latent heat ΔH required for a phase change as follows.

H = h+ΔH (5)

where
h = hre f +

T̂

Tre f

cpdT (6)

Where hre f and Tre f are the reference sensible heat and temperature, respectively. As mentioned, the single domain
enthalpy-porosity technique, originally introduced by Voller and Prakash (1987) and Brent et al. (1988) was used to track
the liquid-solid front inside the PCM. The method considers computational cells in which phase change is occurring as a
pseudo porous media, with porosity λ = liquid/solid f raction decreasing from 1 to 0 as the latent heat content decreases
from L to 0. A linear relationship between the latent heat and temperature is used, i.e., ΔH = λL, where L is the latent
heat of fusion and the liquid/solid fraction (λ ) is used in every cell based on the following relations:

⎧⎪⎪⎨
⎪⎪⎩

λ = 0, T < Ts

λ =
T −Ts

Tl −Ts
, Ts < T < Tl

λ = 1, T > Tl

(7)

The above procedure is accomplished using a Darcy’s law-type of porous medium treatment of Voller and Prakash to
modify the momentum equation. In this way, on prescribing a “Darcy” source term the velocity value arising from the
solution of the momentum equations is inhibited, reaching values close to zero on complete solid formation. The Darcy
damping term is the last component in the source term in Eqs (2) and (3) and is defined as:

S = Amu
(1−λ )2

(λ 3− ε)
ϑi (8)

where ε = 0.001 is a small computational constant used to avoid division by zero, and Amu is a constant reflecting
the morphology of the melt front. This constant is a large number, usually 104–107. In the present study a value of
C = 105 kg/m3s has been used.



(a) Ste∗Fo = 1.33x10−2 (b) Ste∗Fo = 5.35x10−2 (c) Ste∗Fo = 1.00x10−1

(d) Ste∗Fo = 1.81x10−1 (e) Ste∗Fo = 2.68x10−1 (f) Ste∗Fo = 3.48x10−1

Figure 2: Computed streamlines and temperature contours for case P2 at different time instants.

Table 2: Thermophysical properties and process parameters.

Parameter Value Reference values Ref.

Sodium nitrate

Density
(kg/m3)

ρ = ρl/β (T −Tl)+1 ρl = 1950kg/m3 Wang et al.(2010)

580 K < T < 673 K β = 6.6x10−4K−1

Tl = 580 K

Liquid viscosity
(mPa · s)

lnμ̂ = 26.689− 97.54
T̂

+
112.5

T̂ 2
− 41.70

T̂ 3
μ̂ = μ(T )/2.98mPa · s Nunes et al.(2006)

580 K < T < 750 K T̂ = T/580 K

kl = 0.04184(13.5+0.0114(T −579))
613 K < T < 693 K

Thermal
conductivity
(W/m K)

White and Davis(1967)

ks = 0.04184(13.5+0.008(T −503))
300 K < T < 580 K

Specific heat
cp,s ≈ cp,l(J/kg K)

1730 Wang et al.(2010)

Latent heat of
fussion (J/kg)

182000 Wang et al.(2010)

Ts(K) 577

Ti(K) 298

Aluminum

Thermal
conductivity
(W/m K)

202.4 Dewitt et al.(1996)

Specific heat
(J/kg K)

871 Dewitt et al.(1996)

Density
(kg/m3)

2719 Dewitt et al.(1996)



3. Computational Procedure

The governing equations were solved using the semi-implicit method for pressure-linked Navier-Stokes equations
(SIMPLE) in a segregated fashion based on the commercial software Ansys/Fluent 12.1. The computational domain
was discretized using a grid system of 14043 quadrilateral cells. Grid size and time step independence of the unsteady
solution based on the liquid/solid interface have been checked by considering cases with different grid densities and time
steps values. After a detailed comparison process, the results were found independent. The schematic diagram of the
computational grid system is shown on the right half of Figure 1. The time step was set to 0.002sec for all the simulations.
The Second Order Upwind scheme was employed for solving the momentum equation and the Power Law differencing
scheme was used for the energy equation, and the PRESTO scheme was adopted for the pressure correction equation.

Table 3: Cases investigated for the parametric study.

Case
PCM

Diameter
(mm)

Shell thickness
(mm) �T (◦C)

Rayleigh
number

Stefan
number

P1 15 1 93 1.22x107 0.884

P2 15 1 73 9.17x106 0.694

Q1 20 1 93 2.90x107 0.884

Q2 20 1 73 2.17x107 0.694

S2 30 1 73 7.33x107 0.694

The under-relaxation factors for Pressure, Momentum and Liquid fraction were 0.3, 0.01, and 0.9, respectively. Con-
vergence of the solution was checked for each particular time step. Scaled absolute residuals of 1x10−4, 1x10−6 and 1x10−8

were set for continuity, velocity components and energy, respectively as convergence criterion. The number of iterations
needed to achieve convergence varied between 150 and 300 per time step.

4. Results and Discussion

Five different configurations were analyzed in the simulation process. All of them are summarized in Table 3. Three
different PCM diameters of 15mm, 20mm and 30mm were investigated. Also two temperature differences of 73◦C and
93◦C above the mean melting temperature of the sodium nitrate were explored.

In order to study the influence of the Rayleigh number on the melting process, the predicted instantaneous contours of
the streamlines and isotherms for cases P2 and S2 are presented in Figures 2 and 3 at different dimensionless times defined
as a product of the Stefan and Fourier numbers. The streamline contours are shown on the left half of each circle whereas
the temperature contours (in K) are drawn on the right half, with the vertical axis of the sphere separating the two fields.
Temperature contours start in a concentric ring patterns at the beginning of the melting process (Figs. 2(a) and 3(a)), due
to the step change in the wall temperature. According to Zhang et al. (1999) this suggests that during the early periods,
the dominant transport phenomena is due to heat conduction, and natural convection plays a small role. For particular
dimensionless times higher than 0.1, the isotherms begin to deviate from the concentric ring patterns (Figs. 2(c) and 3(c)),
indicating that natural convection starts to influence the melting process.

A more pronounced effect of the Rayleigh number on the melting process of case S2 was expected when compared to
case P2. However as Figures 2 and 3 indicate the temperature field is getting oblique angle contours at almost the same
dimensionless times. A possible reason for the similar trend is the relative small difference between the Rayleigh numbers
of the two cases. Even though there is no apparent difference in the thermal fields for cases P2 and S2, special attention
should be paid on the order of magnitude of the flow field for all dimensionless times. It is clear that the buoyancy-driven
convection effect is higher in case S2 as compared to case P2.

The predicted melt fraction as a function of the dimensionless time for different configurations is shown in Figure 4.
As expected, faster rate of melting was obtained when the temperature difference is higher (higher Stefan number), for
each shell diameter. This behavior is illustrated in Fig. 4a. A significant difference in the melting rate of cases P1 and P2
was observed for the dimensionless times higher than 1.5x10−1. Figure 4b shows the melt fraction of the two different
PCM sizes for a fixed Stefan number. Similar trends are observed in the three different curves.

The predicted solid/liquid interface evolution is presented in Figure 5 at different dimensionless times. Results are
presented for cases P2 and S2 and, it is clear that for Ste∗Fo ≥ 2.05x10−1 the solid unmelted zone is shaped as an oblate
spheroid located just below the center of the sphere (Fig.5 (d and h)). It can be inferred that due to the recirculating vortex
formed between the top region of the solid phase and the inner wall of the capsule, as clearly observed in Figures 2(e) and
3(e), the melting process is more intensive in the upper part of the solid phase.



(a) Ste∗Fo = 1.33x10−2 (b) Ste∗Fo = 5.35x10−2 (c) Ste∗Fo = 1.00x10−1

(d) Ste∗Fo = 1.81x10−1 (e) Ste∗Fo = 2.68x10−1 (f) Ste∗Fo = 3.48x10−1

Figure 3: Computed streamlines and temperature contours for case S2 at different time instants.

(a) Cases P1 and P2 (b) Cases P2, Q2 and S2.

Figure 4: Predicted melt fraction rate for different cases.



(a) Case P2, Ste∗Fo =
1.00x10−1

(b) Case P2, Ste∗Fo =
1.81x10−1

(c) Case P2, Ste∗Fo =
2.68x10−1

(d) Case P2, Ste∗Fo =
3.48x10−1

(e) Case S2, Ste∗Fo =
1.00x10−1

(f) Case S2, Ste∗Fo =
1.81x10−1

(g) Case S2, Ste∗Fo =
2.68x10−1

(h) Case S2, Ste∗Fo =
3.48x10−1

Figure 5: Solid/Liquid interface evolution for cases P2 and S2.

5. Concluding Remarks

Diffusion-natural convective controlled heat transfer during unconstrained melting process within an encapsulate
spherical capsule filled with sodium nitrate was numerically investigated. The following conclusions are drawn:

• Based on the flow field and the solid liquid interface evolution for a fixed Stefan number (Ste=0.694), it can be
inferred that the Rayleigh number, when changed from 9.17x106 to 7.33x107 increases the melting rates of sodium
nitrate. Therefore, it can be inferred that for a fixed Stefan number (Ste=0.694) the melting time increase with
decrease in Rayleigh numbers.

• It was found that a recirculating vortex was formed between the top region of the solid phase and the inner wall of
the capsule that causes a more intensive melting process in the upper part of the solid phase.
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