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Abstract

The one-dimensional radial heat conduction in a phase change material (PCM) heat storage system
encapsulated in cylindrical pipes in a single glazed flat plate natural circulation solar air heater is presented.
The PCM is prepared in modules, with the modules equispaced across the absorber plate. Enthalpy method is
applied to convert the relevant energy balance equations into dimensionless forms for easy tracking of the
moving phase boundaries. Crank-Nicolson implicit finite difference scheme which has the features of being
stable, accurate and fast in its solution is used in the solution of the governing equations subject to suitable
initial and boundary conditions. The scheme is applied at each node and the resulting simultaneous equations
are solved using the Gauss-Seidel iterative method. An existing computer programme in BASIC known as the
EGGINC which was developed for the rectangular channel containing the PCM is modified to cylindrical
coordinate for the pipes containing the PCM to predict the temperature distributions in the solar air heater. The
predicted temperatures of the system is compared with the experimental data under daytime no-load condition
over the ambient temperature range of 18.5-36.0°C and daily global irradiation of 4.9-20.1MJ/m?-day. The
predicted temperatures agree closely with experimental data to within acceptable limits.

Keywords: Phase change materia(PCM); Natural circulation; Solar air heater; Enthalpy method,;
Dimensionless forms; Crank-Nicolson implicit finite difference scheme; Predicted temperatures; Experimental
data

1.0 Introduction

The heat-conduction equation and its solutions express temperature as a function of the space coordinate and
time. This work deals with a survey of existing numerical technique — the Crank-Nicolson implicit finite
difference scheme for solving one-dimensional radial problem of a tube containing phase change material in a
natural circulation solar air heater used for many purposes. In particular we will consider the melting/freezing
problem using the enthalpy method, hence, the temperature range in the phase change using the heat
conduction equation. Crank-Nicolson method provides a good introduction in the phase change problem and
presents an elaborate approximation for these problems. The implicit methods are the natural alternative to the
front tracking methods. Within these implicit methods the most widely used are the enthalpy method. In the
enthalpy method described in Voller and Cross (1981), the total enthalpy of the system, is utilized.

In many industrial problems the phase change occurs over a temperature range rather than at a specified
temperature. The enthalpy method can also be applied to such problems Enibe (2003).These methods appear to
have great flexibility and are easily extended to multidimensional problems. The advantages of this approach
are stated in (Voller and Cross1981). The solar air heater is considered to be a promising direction for
increasing the economic feasibility of low temperature solar systems for heating water for domestic,
agricultural and industrial applications. A system of this type combines collection and storage of thermal
energy in a single unit (Rabin et al, 1995).Most investigators have devoted greater attention to forced
circulation air heaters operating under steady state conditions. In contrast, only few reports of natural
circulation air heaters have appeared in the literature (Macedo and Altemani, 1978).

In this work, cylindrical tubes or pipes encapsulating phase change materials (wax) are used instead of
rectangular blocks or channels reported in Enibe (2003). In the previous work the analysis was purely on
rectangular coordinates whereas herein cylindrical coordinate is used extensively in the analysis. This work
will be undertaken using an upgraded computer simulation program, based on an optimally verified transient
thermal analysis to validate and optimise the system. Natural circulation air heaters are important in many
industrial and agricultural applications including the drying of crops and medicinal/aromatic plants, timber,
natural rubber, tea and coffee products, and fodder for animals (Ekechukwu and Norton, 1998; Diamante and
Munro, 1993; Fohr and Figueiredo, 1980; Palaniappan and Subramaian, 1998). It could also be used for poultry
egg incubation. In the latter case, as well as in the drying of medicinal/aromatic plants, the heated air
temperatures is to be maintained within specified ranges. Further, the hot air is to be supplied over a continuous
period of several days, including off-sunshine periods. For these special applications, some form of energy



storage, possibly combined with an auxiliary heat source is required. Other applications of the natural
circulation solar air heaters are in domestic hot water and space heating, and to a lesser degree, in industrial
rocesses. They can be employed to supply hot water in absorption refrigeration systems for space cooling.
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2.0 Derivation of the Simultaneous Equations for the Temperature
Distributions in a Solar Air Heater
The 1 — D differential equation governing heat transfer in cylindrical coordinates is given by
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We assume that the heat flows in the y and z directions are negligible.
The initial condition is

T (r,O) = f(r,0<r<r (2.2)
Where f(r) = T =T
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The boundary conditions are as follows:
(6] At the edge of the pipe, the radius r = r,,, is maximum and there is continuation of heat flux.

Lok, % - v, (1,- 1) 23)

(ii) At the centre of the pipe, the radius is r = 0 and there is temperature symmetry.
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To overcome the problems of tracking the moving boundary associated with the melting/freezing of the
phase change material, we employ the total enthalpy method described in Voller and Cross (1981) and Enibe
(2003). Here, the heat transfer equation is rewritten in terms of total enthalpy of the phase change material as

H, 10T, 7T,
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The phase change material used does not melt at a single temperature, but rather over a temperature range
say T; and T,. The temperature — enthalpy relationships for the material may be represented as a series of
straight lines as shown in table 1 and fig.1.

Table 1.: Temperature-Enthalpy Relationship For Paraffin Wax( PCM)

2.5)

Temperature (K) Specific Enthalpy (KJ kg™
273 0
331 52.2 H,
333 268.4 H,
373 304.4
100
g 80+
a 60+ oo o o o
o 401
}7
20T
0 S0 100 150 200 @250 300 350
specific

Fig 1. Temperature-Enthalpy Relationship for Paraffin Wax(PCM)



Suppose the specific enthalpy of the PCM at a reference temperature T, is H,, the specific enthalpy of the fully
solid phase at a minimum melting temperature T, is H;, while the specific enthalpy of the liquid phase at the
maximum melting temperature T, is H,. The specific enthalpies are calculated from the expressions presented in
Enibe (2003) as follows:

H =¢ (T-T) 2.6)
H,=H + ¢ (T-T)+ AH = H, + AH, @.7)
where T, is an arbitrary reference temperature, and AH, = AH! + ¢, (7; -1 ), the modified enthalpy

of fusion. We assume that at T;, the PCM is fully solid, while at T,, it is fully liquid. In between the two
temperatures, the liquid fraction and the temperature vary linearly with specific enthalpy.

For any temperature less than T,, the specific enthalpy is given by the expression
H =H+ ¢ (L-T). T <7 8
Suppose the liquid fraction at any point between the minimum and maximum melting temperature is « .
Then, the specific enthalpy of a mixture of the liquid and solid phase at any temperature, T is given by

H = H + o\H, (2.9)

L =T +aaT, =15+ a(hL-T), L<T <7 (2.10)
Above the maximum melting temperature T,, the PCM is fully liquid and the specific enthalpy is given by
H =H + ¢ (T -T), T >T, @.11)

Since T, can be taken quite arbitrary, we set Hy = 0 at To = 273k.
To simplify the utilization of the temperature-enthalpy relationships in the governing equations, we define

the dimensionless enthalpy, ¥ | as

H -H, H

V. - i (2.12)
$ AH, AH,
H,
Let ¥, = m (2.13)
and
H,

"Pz = AHS (2.14)
For the range T, < T, and from equations (2.8) and (2.12) we have

W T, —%AHHrTO (2.15)

Fortherange 7; < 7, < 7, we have from equation (2.9) that
<
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Hence, H, = H + ———AH, 2.17)
2¢€,
Dividing through by AH_, we have
y y L-4 2.18
= + .
s 1 2 ES ( )
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For the range T > T,, we have from equation (2.11) that



H =H + ¢ (I-5). T>1

Since H, = H, + Y ,AH,
Where H, is set equal to zero, and H, = V,AH_, we obtain

AH,
T,=—"(y,~y )+ T, (2.20)
CS
From equations (2.15), (2.19) and (2.20) we can write in general that
T = Ay + 4 2.21)
Where A, A, are constants which depends on the temperature range.
From equation (2.22), we can write more specifically for the phase change material as

I; = /lls l//x + /12,v (222)
Where it is understood that A;5 and A, are evaluated at T;. From equation (2.21) and equation (2.22), the
difference between the temperature of any material and that of the phase change material, T — T, may be
given by
T_’I;:/Ill//-l-ﬂ'l_ﬂ’lsl//s_ﬂ?s

T- T =2xp+(4-Aw- 24)4 (223)
T- T =24(y-v) (2.24)
Where /| = (g//s Ayt Ay - /12)//11 (2.25)

On the other hand, for any two materials not involving the phase charge material such as Ty and Tp, A
and ), are constants and equal, hence, the temperature difference is given by

Ty - T = 4 (‘//ﬂ - ‘//fz) (2.26)
To simplify the numerical solution of the equation and also aid in the parametric analysis of the natural
circulation, solar air heater, we define the following dimensionless parameters.

R = — 2.27)

;oL (2.28)

Where t, is some arbitrary time interval
Utilizing the above dimensionless enthalpy terms, the differential coefficients may be given as follows:

H AH, oy,

0{ = s (2.29)
ﬂ;"; ) ;1_01 % (2.30)
% éfr ) % % 5;11; (2.31)
? _ % 55,71”% (2.32)
5;72" ) j_; iRl/; (2.33)

m
Where r,, is the inside radius of the pipe containing the PCM. It is noted that for the phase change material,
Mand A, are replaced by A and A,
Substituting the dimensionless coefficients into the governing equation for the phase change material,

simplifying and multiplying through by 7’,,,2 / A, to obtain



p. AH71 Oy, 1 Jdy, ly, 234)
s _—__smo s _ — + .
k. A, or R R R
Now let
//i’ls
A, = A e A B (2.35)
Using the expressions for A; and A, from the temperature - enthalpy relationship, we have
i) A, < , T T, 2.36
= - - = s . < N
s CS AHA K 1 ( )
5 2e, ¢ 2¢€, ¢, T<T < T )37
s - 1 AHT - AHY s 1 - s = 2 ( . )
B AH, < 1 T T, (2.38)
o= - - = 5 > .
s CS AHA K] 2
It is noted that for a phase change material with constant phase change temperature,
L =T =T, €, = (7; - 7;)/2 = Oand hence f = 0. Thus, [, is a phase change
temperature range factor. Since t, can be taken quite arbitrary, we set
o, AH7T] pAH 1l c, p.c 1. rp, ¢,
- = ‘ = ——— =1togett, = — (2.39)
ks A’lsto ks AHS tO ks tO ks
2
r. P, C
Thus, #, = T C (2.40)
kS
Substituting t,, and A, into equation (2.34) and simplifying to obtain
PAH, 1k e, Iy, 1y, Py,
= — +
2 2
k. B AHp.r,c. Or R OR ‘R
To give
oy, 1 & 3y,
s L= Hs + —W; (2.41)
or R R R
The boundary conditions then become
M r=mr, R=1
We have
I, .
-k 5 = U (7;1 - 7;) equation (2.3)
or, A, O
but - k, =~ = -k, — —= 2.42
! oo “r, OR (242)
U, 7;1 = U v, (2.43)
U T = U v, (2.44)
//tl_v al//s
-k, R U, 4 (1//171 - l/ls) (2.45)
2’lv al//v
-k = U4 f(!//,,, %) (2.46)

Where [ ( Vs l//s) = functions of dimensionless enthalpy of plate 1 or temperature of plate 1 and

dimensionless enthalpy of phase change material or temperature of phase change material.
Simplifying to obtain



= - f(lr//pl7'//s)

& k.v //i’ls
ﬁ')”s US rm 1
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Ay, 5,
L 2.47
R B (2.47)
Discretizing equation (2.47) we have
1w i+ n i+ 1) 4w, (i+ 1)) s
— = - N (2.48)
4AR) | =y (i-1,j+1) =y, (i-1,/) JiA
Since i = m, we have
78 (m+ Lj+ 1) + Y, (m+ l,j)
4(AR) S’ (2.49)
=y (m-1,j+1) + w (m-1,j) - T
where
Vo= Plate dimensionless enthalpy and
Y, = Phase change dimensionless enthalpy
ii Similarly, at r =0, R =0 and =0
(i) imilarly, at r an R
oy,
— =0 2.50
R (2.50)
Discretizing equation (2.50) we obtain
1 yli+Lj+1)+ w it j
— ( ) ( ) =0 (2.51)

4(AR) | _ ,//S(i—l,j+1) - ws(i—l,j)

Since i = 0, we have

v, L+ 1)+ w, (L)) = w(-1/+1) + w(-1)) 2.52)

In order to achieve stable, accurate and fast solutions of the governing equations subject to the specified
boundary conditions, Crank-Nicolson implicit finite difference scheme is utilized. The scheme, describe in
Kreyszig (2006) and Carnaham et al (1969), has the advantage of being unconditionally stable, and has an
accuracy of second order compared with the explicit method. The technique involves sweeping across time and
space interval in one step. The resulting algebraic equations will therefore contain more than three unknowns at
any given node in a time step. Consequently, the tridiagonal algorithm cannot be used alone to solve the
equations. We therefore employ the Gauss-Seidel iterative scheme to solve the resulting equation in the
tridiagonal algorithm using iterations.

For the numerical solution the dimensionless forms of the partial differential coefficient are as follows:

é

a’/: - i v (i j+1)- v (i)} (253)
R = i(AR) (2.54)
oy, ) 1 v, (z + 1,5+ 1) + Y, 255

R MR | (i+1,7) - w (i-Lj+1) - v (i-1/)



= 2.56
§R2 2(AR)2 ( )

Substituting the finite difference form of the differential coefficient into the governing equation, we have

that for any given pipe in the solar air heater, the finite difference forms of the equation (from equations
2.41,2.53,2.54,2.55, and 2.56) become

B. . 1 y/x(i+1,j+1)+ y/s(i+1,j) .
i(AR) ~ A4AR) | =y (i-1,j+1) = p, (i-1,])

g v i+ L+ )+ w (i+1))- 20 (i,j+1)
28R |- 2y, (i, j) + w(i-Lj+ )+ w,(i- 1))
Aif o v+ 1) - v (i)} @.57)

Collecting like terms and simplifying, become

w(i+1,j+1) 2(5;)2 {%+1}—ws(i,j+l)
{i”ﬁ;)z}w«( Lj+ 1)

I BT
{H%l}ﬂ//x(i,j){ z o AL}

B { 1 }
+ w\i-1, > — -1 2.58
v i -1 | 3 2:58)
This may be written compactly in the tridiagonal format as
A, v, (i+1,7+1)+B (i, )

(2.59)
v (i, j+1)+ G (i, j) w, (i-1,j+1)= D, (i,))

Where A, B, and C, has their significance.
The boundary conditions are

(i) At the outermost part of the pipe r = r,,, 1 = m; the finite difference formulation of the boundary condition
from equation (2.49) is

1 %y/s(i+l,j+1)+ y/s(i+1,j) } S

4(AR) v (i-1Lj+1) - w (i-1/)

Letr=r,, i=m, we have

B, {ws(m+1,j+1)+ y/s(m+1,j) }

52% ) 1 {y/s(i+1,j+1)+ 1//x(i+1,j)—2l//x(i,j+1)}
2w (i) + v i-Lj+ )4y (i-1,))

= -5 .
AR | =y (-1 1) = (1)) - (260
From equation (2.52) we have

4(AR) S’
s e ) s e 1) = vl e ) + 1) -

Using the general node equation, equation (2.61), substituting i = m and simplifying further we have
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Substituting equation (2.49) into equation (2.61) and after rearranging to get

. B, 1 1
i lm= 1.5 +1) 2(AR)2{(1+ Ej ¥ (1' Ej}
N_ B 1 1
+ v (m-1.) 2AR)’ {(“ 2m) _(1_ 2m)}
1 ‘ 1 2Sr'
~y, (m, j+1) {E + (j;)z} :l//s(m’j){(Ai)z - E} + (AIS) (2.62)
Solving and simplifying we have

l//.v(m-laj+1)(i— t,z/s(m,j+1){1 + A }:

}+ y/s(m—l,j+1)

(2.61)

AR)? At (AR)
y__A N8 L 25
- m-1j)——— + m, o - — 0 — 2.63
In tridiagonal terms, this may be rewritten as
A(m, j) v, (m=1,j+ D+ Bom, v, (m, j+ 1) = Dim, )) (.64

Where A(m, j),B(m,j),and D (m, j) have their significance
Similarly, at the centre of the pipe, r = 0, the finite difference formulation of the boundary condition from
equation (2.51) becomes

1 l//s(l'-l-l,j-l-l)-l- 1//S(i+1,j) }

AR | =y i-tge1) - w(-1)
g y/s(i+1,j+l)+ y/s(i+1,j)
(2.65)
-y -1+ 4w (i-1j)=0
For r =0 .. i=0
Hence
Y (i9j+ 1) + l//s(laj)_ Vs (_ Lj+ 1) - l//s(_ 1’]) =0 (2.66)
From equation (2.52), we have
v, (Li+v )+ v, (L) = w(-Lj+1) + y (-17)
Sy L)+ v (L)) = w(Li+ 1) + v (1)) (2.67)

From equation (2.58) the general node equation, and substituting i = 0, we obtain



1
w,(Lj+1) 2(Aﬂ—;e)2 -, (0, 7+ 1){A—T ; (Af;)z} vy, (-1, +1)
. B,

2AR)} 2(AR)?

1
t+ !//S(O’f) {(A’f;)z - E} -y (_l’j)z(f—;z)z (2.68)

Rearranging and substituting equation (2.67) into equation (2.68), we have

v, (1,j+1)2(f—;e)2 -y, (0, j+ 1)

1
{E ! (A’%)z} R ANENE ws(laf)}ﬁ )

| N 1
-y, (1=J')2(Aﬁ—}e)z + Y, (0»1){(5{)2 - E} (2.69)

Solving and simplifying, we have

: : 1 :
AR R ALl

1
-y, (1,1'){2(@)2 + 2(5;)2} + . (o, j){(AIf;)z - A—T} (2.70)

In tridiagonal terms, this may be rewritten as

B(0, ) w, (L j+1) + C(m, j)(0,j+1) = D(0,)) @71)
Where B(0, j), C(0, j), and D(0, j) has their significance.
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3.0 Results and Discussions

The discrete forms of the governing equations modeling the thermal behaviour of the solar our heater are
solved numerically. An existing computer programme in BASIC know as EGGINC reported in Enibe (2003) is
adapted to implement the numerical solution of the equations and produce performance results. The programme
adapted by Enibe (2003) and modified by Obi (2008) to suit his analysis in radial tubes is a sequential modular
programme consisting the main programme and some other subprogrammes.The major subgrogramme of the
system is named PCM to implement the numerical solutions of the equations modeling the air heater one -
dimensional radial heat conduction in a phase change material (PCM) heat storage system encapsulated in
cylindrical pipes.Other sub-programmes read and analyze air heater chamber, absorber plate and fins, solar
radiation data and compute the particular amount absorbed at any given time. A number of the subroutines
calculated heat transfer coefficients for natural or forced convection under various conditions, while a group of
other subroutines calculate the thermophysical properties of air at any required temperature. Subprogrammes are
also available to implement standard numerical procedures such as function integration using Simpson’s rule
and the solution of tridiagonal algebraic equations.

The data for experimental and predicted values are reported in Obi (2008) for 12,13 and 14" June, 2006. as
shown in figs a to c,the ambient temperatures are the initial conditions for each day. The collector temperature
starts from the initial condition and rises to its maximum value near solar noon corresponding to temperatures of
60°C to 70°C. It begins to decrease thereafter as intensity falls. It is observed that these happened in all the
figures. The predicted temperatures are plotted alongside the experimental values in figures a to c. In fig a that is
June 12™, 2006, the predicted value is about 76°C and the experimental value is about 70°C. They are close to
within 6°C. On June 13, 2006, the predicted value is 76°C and the experimental value is about 56°C. They are
close to within 20°C.Lastly,on the June 14, 2006, the predicted value is about 74°C and the experimental value is
about 68°C. They are close to within 4°C.The above discussion is at the upper limit as shown in the graphs.

At the lower limit in the discussion below the predicted value is 40°C and the experimental value is 22°C.
They are close to within 18°C. That is on June 12, 2006. On the 13" June, 2006, the predicted value is 40°C and
the experimental value is 23°C. They are close to within 17°C. Lastly,on the 14" June, 2006, the predicted value
is about 38°C and the experimental value is about 25°C. They are close to within 13°C.The system operates over



the ambient temperature range of 18°C - 38°C and daily global irradiation range of 4.9 — 20.1MJ/m*-daily. The
cumulative useful efficiency is about 13.3%. The reason for the low efficacy is as a result of gloomy and wet
days in June. It is observed that from figs a — ¢, the predicted cure is close enough to the experimental curve
within the lower limits of about 6.5°C and upper limits of about 13°C.

The predicted values on the system (the solar air heater) for 3 different days in June at Nsukka, Nigeria
(latitude 7°N) of which the initial condition (the ambient temperature and irradiance) for each day are taken from
experimental data. The night time performance was not tested. The daily global irradiation covered the range
4.9-20.1MJ/m’-day, while the ambient temperature over the period varied within the range 18.5-36.0°C. The
initial conditions for each day are taken from the experimental data.

Below are the graphs a — ¢ comparing the experimental temperatures and the predicted temperatures, also

shown in the graphs are the irradiance and ambient temperatures.

4.0 Graphs (figs)
Graphs of Temperatures, Irradiance and Ambient Temperatures
[Comparison between the measured and predicted absorber plate temperatures]
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5.0 Conclusion

The finite difference method presented in this work has been employed to deal with one-dimensional heat
conduction problems analyzed in cylindrical coordinate. The computer procedure has been found to be reasonable
within the trend or within acceptable limits. In this work we consider the phase change material resulting from phase
transformations, the melting/freezing problem. Numerical solution of this problem using Crank-Nicolson implicit
finite difference scheme is obtained.The one-dimensional radial heat conduction of a phase change materials (PCM)
heat storage system encapsulated in cylinders housed in a single glazed flat plate natural circulation solar air heater is
presented. Theoretical modeling of the solar air heater predicted the temperature values as compared to the
experimental values which agree closely with experimental data to within acceptable limits.
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Nomenclature
First term in tridiagonal equation
Second term in tridiagonal equation
Third term in tridiagonal equation
Specific heat of the phase change material
Tube or pipe diameter
Last term in tridiagonal equation.
Solar radiation intensity, Wm™
Enthalpy, kJ kg
Total enthalpy, kJ kg
Node identifier in r-direction
Node identifier in time direction
Thermal conductivity, Wm™'k!
Number of nodes in | direction in a pipe containing PCM
Radial distance, m
Centre of the pipe containing the PCM, m
Radius at the edge or inside radius of the pipe containing the PCM, m
Dimensionless distance in the radial direction i.e. r-direction
Absorbed radiation, Wm™
Dimensionless net heat flux
Temperature, K
T Fin or plate temperature, K
t Time, s
to Arbitrary time, s
U Heat transfer coefficient, Wm™K -
Greek Letters
a Thermal diffusivity, m’s”!
Bs PCM phase change temperature range factor defined in equations 46 — 50.
3 Thickness, m
Implicit procedure.
0 Temperature
Tangential direction to the pipe containing the PCM (angular), r
Half the difference between upper and lower melting temperature of the PCM, K.
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m

A Parameter defined in equation 3-49
A, Parameter defined in equation 4 — 24
A

2 Parameter defined in equation 4 — 24
" Dimensionless enthalpy
T Dimensionless time
A Charge in quantity
[0 Temperature — irradiance function defined in equation.
1) Partial change or partial derivative
Subscripts
a Ambient, absorbed
] Phase change material



