
Methodology to Stochastically Generate Synthetic 1-Minute
Irradiance Time-Series Derived from Mean Hourly Weather

Observational Data
Jamie M. Bright1 , Peter G. Taylor1,2,3 and Rolf Crook1

1 Energy Research Institute, School of Chemical and Process Engineering,
University of Leeds, Leeds (UK), LS2 9JT

2 Sustainability Research Institute, University of Leeds, Leeds (UK)
3 Centre for Integrated Energy Research, University of Leeds, Leeds (UK)

Abstract

Well geographically distributed high temporal resolution solar irradiance data is scarce, resulting in many
studies using mean hourly irradiance time-series as an input. This research demonstrates that by taking
readily available mean hourly meteorological observations of okta, wind speed, cloud height and
atmospheric pressure; 1-minute resolution irradiance time-series that vary on a spatial dimension can be
produced. The synthetic time-series temporally validates against observed 1-minute UK irradiance data with
99% K-S test confidence levels across 3 metrics of variability indices, ramp-rate occurrences and irradiance
frequency. A new methodology is applied to existing research that produces two-dimensional cloud cover
using a vector approach to add spatial correlation to irradiance time-series, as well as improvements to the
clear-sky index calculations. The methodology is applied to a hypothetical configuration to demonstrate its
capabilities.
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1. Introduction

Solar irradiance fluctuates on a 1-minute time scale or less (Sayeef et al., 2012) and is driven by the transport
of atmospheric pollutants (Vindel and Polo, 2014), atmospheric losses, and cloud dynamics (Calinoiu, 2014).
Large irradiance fluctuations can cause ramps in solar energy power generation outputs (Hummon et al.,
2012), these power fluctuations can result in electrical problems and supply/demand issues such as over
voltages in PV laden distribution grids (Widén et al., 2011). Furthermore, irradiance is dependent on
geography, irradiance at locations across 1 km are affected by different optical losses as they can be obscured
at different times. It is important, therefore, to utilise a solar irradiance data input that can capture these
problematic fluctuations and spatial variations when theoretically considering power reliability and impacts
on a high frequency time scale. Averaging solar irradiance data over different temporal frequencies results in
loss of detail of the irradiance fluctuations. Figure 1 demonstrates how averaging irradiance data across
different time-scales significantly underemphasises the actual incident irradiance fluctuations, as well as
underestimating peak irradiance values.

Calibrated 1-min irradiance datasets are usually the output of isolated research projects and are often limited
in duration, consistent measurement techniques, and geographic distribution. Sources of 1-min resolution
irradiance data exist such as the World Radiation Monitoring Centre’s Baseline Surface Radiation Network
(BSRN), which will be used in a validation, however it is lacking in coarse geographical distribution. 1-hour
resolution weather data, however, is widely collected and made available through national meteorological
offices. This hourly data fails to capture the intermittent nature of solar irradiance (Sayeef et al., 2012); some
solar irradiance models, therefore, use hourly datasets to artificially generate minutely irradiance time-series.
Examples of such have been reviewed previously (Gueymard, 2012), with more notable methodologies using
utilising a sun obscured type approach (Morf, 1998, 2011, 2013) and (Ehnberg and Bollen, 2005).

This paper presents a novel methodology that takes readily available mean hourly meteorological
observation data of okta, wind speed, cloud height and atmospheric pressure; 1-minute resolution irradiance
time-series that vary on a spatial dimension can be produced, which validate temporally against observed 1-
minute UK irradiance data.



Fig. 1: Global horizontal incident irradiance in Leeds, UK on 25/06/2015 between the hours of 10:00 and 14:00.
The data was logged using a horizontally-mounted silicon photodiode (BPW20) in short-circuit current mode with
a linear current response converted to voltage with a transconductance amplifier, logged at 10 Hz using a 10-bit
DAC. The data has been averaged across the timescales of, from top to bottom: 1 second, 10 seconds, 1 minute,

10 minutes and 1 hour.

2. Methodology

This work is an extension of the methodology by Bright et al. (2015) that demonstrated the success of taking
mean hourly weather observation data to generate 1-min temporal resolution irradiance time-series. The
original methodology has six distinct sections: cloud cover samples production, where descriptions of an
hour of cloud are made; Markov chain production, produced through analysis of 12 years of mean hourly
weather observation data to capture the patterns of transitions of each variable; the stochastic selection of
variables, using probabilistic application of the variables guided by the Markov chains; calculation of global
clear-sky irradiance, using standard irradiance modelling considering geography to determine the
background irradiance; calculation of clear-sky index for each location, using statistics of optical losses
derived as a function of the okta value; and finally calculation of incident irradiance upon an arbitrary plane,
using methodologies from literature. For greater detail, the reader is referred to the work by Bright et al.,
(2015).

Significant developments have been made to the cloud cover samples production section and the calculation
of clear-sky indices sections that allow for a spatial element to the previous temporal-only methodology. This
section will discuss the production of cloud cover samples and their application in producing spatially
correlating sun obscured time-series, and the updates to calculating the clear-sky indices and subsequent
irradiance.

2.1 Cloud Cover Sample Production
Cloud cover samples are a description of an hour’s cloud cover. The methodology is a sun-obscured type,
which means that during periods when the sun is obscured, as indicated by the cloud cover sample, a clear-
sky index value is applied to the global clear-sky irradiance. The clear-sky index is a fractional
representation of the incident global horizontal irradiance from the available clear sky irradiance. Previously,
the cloud cover samples were represented by a binary, single dimension vector describing each minute that



an arbitrary plane as obscured or unobscured, signified using 1s and 0s respectively. A new methodology is
proposed that considers an area of sky with a randomly set number of clouds within it, as this will be moving
across a static cluster with points of interest i.e. residential PV installations within a low voltage grid, each
sample of cloud cover must represent the entire hour defined by the stochastic selection of the weather
variables: cloud speed, u, and okta. The size of the area of sky is therefore a function of distance and time,
1.5km-by-u*3600, where 3600 is the number of seconds in an hour.

The cloud cover samples are lists of x and y coordinates for the centres of each cloud, and also includes their
radii. The clouds are assumed to be circular with radii size adhering to the horizontal cloud length single
power-law distribution (Wood and Field, 2011). The clouds’ associated clear-sky indices are represented as
optical thicknesses applied to all areas across the circle using a distribution that ranges from typical clear-sky
indices lows of ~0.1, to highs of ~1.1, the implication of this is that across the circular cloud there will be
sections above a clear-sky index of 1, indicating wispy or insignificant levels of cloud, whilst other areas
indicate thicker sections, and therefore the clouds are not actually circular in application, instead the circle
defines an area which cloud is allowed to form. In order to produce multiple samples, random numbers of
clouds are selected, which are then given random x-y coordinates and radii drawn by the aforementioned
distribution. The cloud cover fraction of each sample is analysed to determine the okta value, and is then
sorted and stored appropriately in a larger matrix. Samples are then selected using an indexing based on the
conditions stochastically selected through a Markovian process within the model simulation.

2.2 Clear-sky Fluctuations
Clear-sky indices fluctuate across different timescales. The cumulative probability distributions functions

(CDF) for the frequency of occurrence of absolute step size changes for different time scales are shown in
Lave et al. (2012). It is shown that 1-min and 1-hour data have very different statistics. To capture these
fluctuations, the CDF profiles for the different time scales are applied to the clear-sky indices. Two vectors
of fluctuations following the CDF profiles are drawn, one for clear periods, F0, the other for obscured
periods, F1. For moments of obscured sky, the step changes are equally step downs as well as step ups.
To create F0 and F1, a step size change is selected following the appropriate cumulative distribution

function, this increase is then linearly applied across the hour/10-min/minute, before being smoothed using a
spline technique (using inbuilt Matlab functions (Matlab, 2012)) and can be represented for both as

sTtt toror 1::):( 0),(10 1010 FF
(eq. 1)
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where t0 and t1 are index references in minutes of current and future location within F0or1, T refers to the
number of minutes within the operating frequency (when performing fluctuations on a 1-h period, T=60), Ft0
refers to the fluctuation value at the previous index. The use of the colon, :, in the format (t 0: t1) refers to the
space within F between t0 and t1, and in the format (x : n : y) refers to a linearly spaced vector starting at x
and ending at y with n number of intervals. CDFT refers to the appropriate cumulative probability distribution
function, r is a random variate evenly distributed between 0 and 1, and finally s is the step size magnitude
randomly extracted from the CDF.

2.3 Cloud Movement and Clear-sky Indices
Once the cloud cover samples are selected for each hour of the simulation, the samples are simulated to pass
across the stationary targets within the spatial domain. To simulate the cloud direction, the locations are
rotated in accordance with the cloud direction using rotational matrices as demonstrated in equation 3
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where x and y denote the coordinates of the initial locations within the spatial domain, and x’ and y’ are the
rotated coordinates by angle . The angle by which to rotate is determined using a normally distributed
random walk, with standard deviation equal to 10, around a mean set to the previous cloud direction, this
allows for gradual changes in direction. The cloud speed is determined stochastically (Bright et al., 2015)
and so the cloud movements in relation to the locations of interest within the spatial domain are known.

The simulation works iteratively, progressing by one time-step at a time. Whilst the calculations are in a
vectorised format, it is simplest to imagine a static rectangle with the locations of interest marked, being
overlapped by a rectangle containing the clouds; at each moment it is determined whether or not a location is
obscured by the cloud. For each iteration, the distance from the location of interest to the centre of each
cloud within the sample is calculated. Firstly, let the length of the spatial domain be Xl and the length of the
cloud sample be Xc, the coordinates of the location of interest and each cloud are (xl’,yl’) and (xc,yc)
respectively. The distance from the location to the edge of the domain is

lll xXx (eq. 4)

while the distance from the cloud to the edge of the cloud environment is given by xc.The overlap of domains
is defined as the number of iterations, i, multiplied by the temporal resolution that the simulation is operating
at, t. Therefore the distance in the x-direction from the location to the cloud, dx, is given by

itxxx cl (eq. 5)

the distance along the y-axis from the location to the cloud is given by

lc yyy (eq. 6)

the horizontal distance from the location to the centre of the cloud is therefore calculated using Pythagoras’
theorem as

22 yxd (eq. 7)

To produce a clear-sky indices vector for each location, the simulation enters an loop which cycles through
each time step for the desired duration, and for each location. At each loop the locations are rotated
according to the cloud movement direction as shown in equation 3, the x-y coordinates of each cloud sample
are updated according to the cloud movement speed and time step before working through equations 4-7. At
each loop it is determined if the location is covered by cloud. To do so, a logical if statement is applied,
querying d against the radius of the cloud, r, such that

1Bdr else 0B (eq. 8)

where B is a Boolean matrix indicating the presence of cloud, and denotes the use of a logical if
statement. The iteration moves on until the end of the cloud sample. If a location moves beyond the sample



as it passes, the next sample is loaded and queried against using the same methodology.

B is used as a binary indicator for sun obscured. During periods of B=1 when the cloud is present, a clear-sky
index, kc, is generated for each cloud present using distributions of clear-sky indices as a function of the okta
number (Bright et al., 2015).

)(oktafkci (eq. 9)

The clear-sky index for overlapping clouds is found as the mean of the overlapping clear-sky indices
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Where subscript i is the current iteration, kc(B=1) are the clear-sky indices during moments of cloud, kc,n is
the kc value for the nth term, and c is the total number of overlapping clouds index.

The clear sky indices vector, kc, for each property is calculated at each iteration, i. This iteration, i, must
undergo a correction as a function of x’ and u to account for spatial variability, where u is the cloud speed; kc
is therefore calculated as

u
xii (eq. 11)

1Fk ici kcB )1( (eq. 12)
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Multiple irradiance time-series can now be drawn from any x-y-z location within a 1.5 km by 3600u km area,
each with different arbitrary plane orientations and tilts, such as the different tilts and rotations of residential
PV installations within a low voltage grid. Irradiance is calculated for each location using the methodology
outlined in Bright et al. (2015), and the corresponding clear-sky indices, kc, are applied.

2.4 Cloud Edge Enhancement
Cloud edge enhancement, CEE, describes events whereby a point on the surface receives a larger amount of
incident irradiance than is available in the clear-sky irradiance, the events are attributed to irradiance
reflecting from the edge of cloud. The typical behavior of irradiance in the 60 sec leading up to, and after the
largest 1 sec ramps is detailed by Lave et al. (2012). This behavior is applied to periods of transitions from
clear to clouded moments.

The CEE behavior is normalised to 1 to form a correctional factor for both ramp up, CEEup, and ramp down,
CEEdown as a function of a magnitude, M. The magnitudes of the CEE ramps are determined through analysis
of 1-min data from the BSRN against the corresponding mean hourly weather observational data from the
same location. The frequency and magnitude of ramp events attributed to CEE correlate with the okta
number, CEE events were defined as >25% of the clear-sky irradiance. CDF profiles of the magnitude for
each okta were made allowing for random extraction following the appropriate distribution. The normalised
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Tab. 1: Input physical parameters for the 5 locations as shown in figure 2. Note that the letter C
denotes the centre of the spatial domain which represents (750,750).

1 2 3 4 5

x (m) C C - 500 C C + 500 C
y (m) C + 500 C C C - 200 C – 250

Azimuth ( ° ) 0 0 0 0 0
Pitch ( ° ) 0 0 0 0 0

Elevation (m) 87 87 87 87 87

The model is functional for all azimuth and tilts with reference to the input longitude and latitude, in this
instance however the locations are assumed flat so that irradiance is reported in terms of global horizontal
irradiance, the purpose of this is for comparison with the global horizontal observation irradiance data. The
weather station in Cambourne, UK is at a longitude of -5.32656o and latitude of 50.2178o, with an elevation
of 87 m above sea level.

The temporal resolution of 1 minute has a spatial granularity defined as the smallest distance between
locations where a difference in irradiance can be observed. This is determined using the temporal resolution
of 60 s and the minimum and upper cloud speeds of 1 ms-1 and ~20 ms-1 to give a granularity of 60 to ~1200
m.min-1. The average cloud speed is 10 ms-1 which gives typical granularity around 600 m.min-1. The
scenario depicted in figure 2 shows that the locations are separated by at least 250-1020 m and will therefore
show appropriate differences. In order to observe spatially varying irradiance time-series for locations closer
together, a decreased granularity would be required. This is achieved by increasing the temporal resolution
e.g. from 60 s down towards 1 s.

Figure 3 displays a typical output from the model using inputs from table 1. The profile is typical of a clear
day in mid-January for the location of Cambourne, UK. Typical patterns can be observed associated with the
spatial correlation. Most notably around 700 minutes, there is a gradual ramp down in output at location 1 a
few minutes before the other 4 locations undergo a similar ramp down, this is attributed to the wind speed
and direction at the time, the clouds were travelling approximately north to south. At ~860 minutes, location
2 is the only location to undergo a large ramp down event.



Fig. 3: Synthetic irradiance profiles across 5 locations on the 10th Jan using the described methodology
for Cambourne, UK.

Fig. 4: Cumulative probability distribution plots of the (a) daily variability index, (b) the minutely
irradiance ramp-up and ramp-down occurrences, and the (c) minutely global horizontal irradiance

frequencies for both the modelled data and the measured data from Cambourne, UK.

4. Validation

Validation to date has focussed on a temporal basis only. All data processing was performed using the
commercial software package Matlab r2012a (Matlab, 2012). Hourly weather observational data are taken
from the BADC (BADC, 2013). As monitoring stations are occasionally taken off-line for repairs or
upgrades for months at a time, 12 years of data are used to allow at least 10 years data for each variable that
require a Markov chain to be created.

The simulation is run as detailed in the Application and Discussion section, and compared against the
statistics obtained from the World Radiation Monitoring Centre – Baseline Surface Radiation Network
(WRMC-BSRN, 2014) from BSRN station number 50, located in Cambourne, Cornwall, UK. Missing data
points were ignored and deemed to not significantly impact the distributions for comparison.

Three metrics are used to validate the temporal nature of the model output, the variability index (Stein et al.,
2012) cumulative probability function (CDF), the irradiance frequency CDF and the ramp rate CDF, denoted
as VI, IF and RR respectively. The 2-sample Kolmogorov-Smirnov (K-S) test was carried out for each metric
for each day of the year. When comparing the entire data sets against one another, the K-S validation
technique is not appropriate due to the size. The subsets for comparison must be relatively small to gain any
significant findings from the K-S test. For this reason the subset of each K-S test consisted of 7 of the same
day’s minutely data. For example, 7 modelled samples of the 1st January represent one subset, which is
compared against a subset made from 7 samples of the same day from observational data.

The K-S test results are displayed in table 2 and comparative CDF profiles in figure 4. The RRs are captured
well correlating with R2=0.9998, and that 99.5% of days with the K-S test reject the null hypothesis that the
modelled and observed minutely datasets are not from the same dataset with a confidence of 99%. The
implications of this are that for each day of the year, only 0.5% of the days modelled did not produce
statistically representative ramp rate data to a confidence of 99%. This means that for application of PV
integration into the LV grid for example, the ramp rates seen in the synthetic irradiance time-series would be
statistically accurate and allow for a good comprehensive study of how ramp rates impact upon the grid to a
1-min resolution. The daily VI CDF correlates with R2=0.9777, and K-S at 95.9%. When comparing 1-min
VI values for the whole datasets against one another in a frequency plot, the R2 value is 0.9980 implying that
throughout the year, the VI is captured, figure 4a however demonstrates that there is a more localised
dependency with room for improvement. The daily VI value is the mean VI value recorded for that day. It
can be seen that there is a slight overestimation of days with a VI between 7-15 and an underestimation of
stable days between VI=0 to 7 and unstable days with VI >15, the implication of this is that the lower and
higher daily variability extremes, where the variability is sustained over a lower time resolution, are slightly



Tab. 2: The percentage of days that reject the null hypothesis when performing the 2-sample
Kolmogorov-Smirnov test on 7 of the same day of modelled and observational CDF profiles of 3

metrics.
K-S test significance Level 90% 92.5% 95% 97.5% 99%

Variability index 97.5% 97.5% 97.3% 96.4% 95.9%
Ramp rate occurrence 99.7% 99.7% 99.7% 99.7% 99.5%
Irradiance frequency 99.7% 99.7% 99.7% 99.7% 98.9%

less frequent than in reality. The VI is still captured at a satisfactory rate with K-S of 95.9% with only 4.1%
of days accepting the null hypothesis that the observational and synthetic datasets are not the same,
importantly of these 4.1% of days, there was no bias as to what time of the year these days occur, suggesting
that there was no seasonal bias within the model. Potential reasoning is that within the observational data, a
particular day for each of the 7 different years coincidentally had an overcast day each time, which when
compared with a clear day generated by the model, would be dramatically unfavourably compared. The IF
CDF correlates well with R2=0.9980, and K-S at 98.9%. Figure 4c indicates a marginal overestimation in the
lower range of irradiance magnitudes and a marginal underestimation in the extreme values of 900-1000
Wm-2. The more extreme values within the models are functions of the clear-sky fluctuations and the cloud
edge enhancements. It is possible that because the cloud edge enhancement correction described in section
2.4 only bands across 1-min before and after the CEE event, when in fact this 1-min is an average of all the
events recorded within the study, it is entirely possible that a CEE event would span across 2 or more
minutes depending on the speed of passing cloud, and so there is scope to make the correction a function of
the cloud speed. Otherwise the validation is very strong and the magnitudes are captured well with only 1.1%
of days accepting the null hypothesis with the K-S test.

5. Conclusion

This work has developed meaningful high temporal resolution irradiance time-series with a spatial
correlation that temporally validates well. The irradiance time-series correlate spatially as a function of
location, cloud speed and direction. The variability index, ramp rate occurrence and irradiance frequency
metrics perform well using the 2-sample K-S test with a confidence level of 99%. The daily variability
indices do tend towards midrange values, however the 1-minute variability index correlates excellently. The
ramps present within the simulation have an excellent correlation to observation data with 99.5% of all days
passing a 99% significance level K-S test.

Future work opportunities include further development of the temporal resolution as the nature of the
methodology would allow it to be increased. This methodology would allow for theoretical high resolution
simulations and studies of the impacts of solar variability and intermittency derived from readily available
inputs of mean hourly weather observational data. The temporal methodology and Matlab script files are
made freely available through download so that it can be adopted for any other application, and adapted to
further the study (Bright et al., 2015).
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