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Abstract 

Peak electricity demand has become a global concern. It causes grid transmission constraints and congestion, 
and also increases the cost of electricity for all users, specifically industrial consumers with high peak demands. 
Time-of-use demand side management coupled with thermal energy storage and off-grid solar PV can be an 
alternative to increase the flexibility and security of the whole energy system. The aim of the current paper is to 
study the potential of implementing time-of-use demand side management coupled with thermal energy storage 
and solar PV technologies using optimization techniques for shifting electricity peak loads of cooling processes 
in an industrial unit.  It was found that considerable reductions can be achieved in electricity power demands in 
different tariff periods using optimization-based demand side management (DSM) together with thermal energy 
storage and off-grid solar PV. In addition, it was seen that coupling cold thermal energy storage and solar 
photovoltaic technologies is more energy-beneficial than using them separately. 

Keywords: Thermal energy storage, solar PV, time-of-use DSM, optimization, peak-load shifting. 

 

1. Introduction 

In developed nations electricity plays an important role to economic growth. A considerable rise in electricity 
demand can be seen in all end-use sectors, and further on, the share of electricity is steadily increasing in all 
sectors (IEA, 2016). In addition, increasing wealth in developing nations are likely to lead to bigger demand for 
energy services using electricity, such as cooling and refrigeration. The industry sector is one of the major 
energy-consuming sectors in the world with about one third of total final energy consumption and almost 40% 
of total energy-related CO2 emissions. Reducing these hazardous emissions due to high non-renewable 
generations is an important issue in the global climate system. For this reason, many governments in the world 
are exploring alternatives to slow down the global warming by enforcing new rules and regulations for different 
sectors.  

Peak electricity demand is a global policy concern which creates transmission constraints and congestion, and 
raises the cost of electricity for all end-users (Strengers, 2012). In addition, a considerable investment is required 
to upgrade electricity distribution and transmission infrastructure, plants and build non-renewable power 
generation to provide power during peak-demand periods (Strengers, 2012). For this reason, commonly service 
suppliers charge a higher price for services at peak-time than for off-peak time to compensate for the costly 
electricity generation at peak hours (Kim et al., 2016). So that, reducing some of this peak demand would 
benefit the whole energy system (Faruqui et al., 2007).  

Solar PV is becoming an important technology in the world energy market for electricity generation, and it has 
proven its capability to reduce energy costs and hazardous energy-related emissions over time and this is 
projected to continue. However, in systems with high shares of PV generation, variability and uncertainty in 
electricity generation within the system may occur because of weather conditions. To overcome this uncertainty 
energy storage could be a solution to match energy supply and demand. As an example, battery storage 
technologies could be used to store generated electricity by solar PV, however, currently large-scale electricity 
storage technology is expensive and needs further technology development (Hameer and van Niekerk, 2015), as 
a result, electricity storage has limited potential and the generated electricity has to be consumed instantly 
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(Faruqui et al., 2010).  

Demand side management (DSM) is a proactive way to increase the energy efficiency among customers in the 
long-term (Barbato and Capone, 2014), and can reduce both the electricity peak power demand (kW) and the 
electricity consumption (kWh) (Warren, 2014; Zhou and Yang, 2015). Among DSM methods techniques load 
shifting is the most effective load management technique (Esther and Kumar, 2016) which can enhance the 
demand flexibility without compromising the stability and continuity of the process and, furthermore, a 
highlighted feature of DSM is that it can be 100% efficient, since no energy conversion to and from an 
intermediate storable form is required (Lund et al., 2015). However, in order to shift loads from high-demanding 
hours (on-peak hours) to low-demanding hours (off-peak hours), specifically for industrial and commercial units 
with considerably high power demand profiles due to their industrial processes, high-capacity energy storage is 
an essential component to provide an effective and continuous load shifting. 

A considerable number of studies have been devoted to investigate the benefits of thermal energy storage (TES) 
for renewable energies applications and system integration. As an example, Alva et al. (Alva et al., 2017) 
extensively reviewed the application of TES materials and systems for solar energy applications. Additionally, 
Li and Zheng (Li and Zheng, 2016) studied different methods of TES system integration for building and 
industry applications. However, the application of cold storage systems has been broadly developed in the 
power generation sector, the building sector, and the industrial sector because of their high potential of cooling 
load shifting (Oró et al., 2012), and decreasing greenhouse gas emissions (de Sisternes et al., 2016). For this 
reason, there is growing interest in using DSM techniques together with TES, battery storage, and solar PV 
technologies for industrial and commercial sectors. However, there has been little discussion about coupling 
DSM together with solar PV and cold TES technologies to reduce peak loads in the industry sector and 
enhancing the overall performance of the energy system through interconnection of these technologies (Arteconi 
et al., 2017). Therefore, further research and technology advancement are required for electric load management 
to address the potential peak load shifting and energy savings considering the new time-of-use tariff structure 
and elevated electricity prices, high surplus demand charges, and variable solar PV share and its uncertainties in 
the energy system (Arteconi et al., 2012).  

The objective of the current study is to address the potential for applying optimization-based time-of-use DSM 
in the industry sector to reduce peak electricity demands and eventually to decrease the annual electricity bill. 
Particularly of interest are, on one hand, to reduce contracted power demands and to shift electrical chiller peak 
loads from high-price times (on-peak hours) to low-price times (off-peak hours), by taking advantage of cold 
TES (sensible systems, ice or phase change materials) and off-grid solar PV; and on the other hand, to determine 
the optimum combinations of contracted power at different tariff periods by integrating TES and solar PV 
technologies with different capacities, and considering the solar PV variations and surplus charges of power 
demand.  

 

2. Methodology 

2.1. Case study 

To give an estimation of the annual energy bill for an industrial consumer, it was assumed that for running its 
industrial processes, a conventional energy system with no demand management facilities, neither solar PV nor 
TES system is used. So that, the industrial consumer directly uses the electricity from the grid to run its 
processes whenever it is required and without considering the on-peak, mid-peak and off-peak demand and 
energy tariff periods (Figure 1a). The industrial processes take place from 8:00 to 17:00 all days except 
Saturdays and Sundays, requiring 450 kW of electric demand for cooling processes. To calculate the electricity 
consumption, the Spanish electricity tariff structure (6.1A time-of-use tariff structure) (Real Decreto 1164/2001, 
2016) has been used. The tariff structure is divided into six different tariff periods, and consumers pay through 
the bill the energy cost and the demand cost. Further explanations of the above-mentioned tariff structure are 
provided in Section 2.4.1. Assuming that for all tariff periods the reference industrial unit contracts 450 kW 
power demand with 100% of load factor, the annual electricity bill for operational hours can be calculated using 
eq. 1: 

𝐸𝑙𝑒𝑐௧௢௧ ൌ ሺ𝐸௣ ൅ 𝐸௘) +ൣሺ𝐸௣ ൅ 𝐸௘ሻ ൈ  VAT൧     (eq. 1) 
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Geiger classification and could be representative of climate condition of Lleida province, Spain. 

 

2.3. Thermal energy storage model 

A cold thermal storage was integrated into the system with the aim of shifting the electric demand (kW) and the 
energy consumption (kWh) from on-peak and mid-peak to off-peak hours. The storage model and corresponding 
charging/discharging modes are similar to the method presented by Ihm et al. (Ihm et al., 2004). The storage 
capacity can be characterized by a charge/discharge rate as shown in eq. 4. In addition, to convert thermal load 
to electrical load an average coefficient of performance (COP) of 3 was considered. Then, the electrical acquired 
energy could be calculated using eq. 5. 

Table 1. Sunrise SR-M672315 module specifications (Sunrise, 2016). 

Maximum power [W] 315 

Module area [m2] 1.94 

Tolerance [%] 0~+3 

Open circuit voltage (Voc) [V] 45.42 

Short circuit current (Isc) [A] 9.24 

Maximum power voltage (Vm) [V] 36.69 

Maximum power current (Im) [A] 8.59 

Module efficiency [%] 16.20 

Solar cell efficiency [%] 18.85 

Cell type [mm] 156x156 (Mono-Crystalline Silicon) 

Number of cells [Pcs] 72 (6x12) 

Maximum system voltage [V] DC1000 

Temperature coefficient of Voc [%/ºC] -0.35 

Temperature coefficient of Ise [%/ºC] 0.05 

Temperature coefficient of Pm [%/ºC] -0.45 

Operating temperature [ºC] -40 to 85 

Nominal operating cell temperature (NOCT) [ºC] 45ି
ା2 

Maximum series fuse [A] 15 

Wind bearing [Pa] 2400 

Pressure bearing [Pa] 5400 

Standard Test Conditions (STC):1000W/m2 AM=1.5  25 ºC 

 

𝑄ሶ  ௦௧௢௥௔௚௘ ൌ 𝑥 
ௌ௅

∆௧
       (eq. 4) 

𝐶𝑂𝑃௔௩௘ ൌ  
ௌ௅

ா௟௘௖ೌ೎
      (eq. 5)    

𝑓ሺ𝑥ሻ ൌ ൝
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒, 𝑥 ൌ 0

𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑚𝑜𝑑𝑒, 𝑥 ൐ 0
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑚𝑜𝑑𝑒, 𝑥 ൏ 0

 

where Qሶ  ୱ୲୭୰ୟ୥ୣ is the TES charge (+)/discharge (−) rate (kW), SL is the cold TES capacity (kWh), x the 

charge/discharge rate (fraction), Δt the simulation time step (15 minutes), COPୟ୴ୣ the average thermal to 
electrical load conversion COP, Elecୟୡ୯ the acquired electric energy (kWh). 

The design is based on three operation schedules over the continuity of charge/discharge rates:  

 Inactive mode: when the TES system is not working, for instance at the weekends, the charge/discharge 
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rate is set to zero in a sub-hourly schedule defined specifically for the TES operation. 

 Charging mode: the dedicated TES chiller integrated in the TES module produces cold at the charging 
rate, x, during off-peak hours (the cheapest period) with the maximum charging rate of 375 kW. 

 Discharging mode: in this stage the TES system supplies cooling at different capacities to meet the 
cooling demand during on-peak and mid-peak hours (avoiding or reducing compressor operation). In 
the present study, the economic impact due to the use of various TES capacities (75-9000 kWh) on the 
final electricity bill will be analyzed.  

The steady-state storage model does not take into account the external weather conditions such as dry bulb 
temperature, humidity, etc. Moreover, charging and discharging efficiencies were kept a constant value of 100% 
throughout time steps.  

2.4. Time-of-use tariff structure 

2.4.1. The electricity bill 

In many countries the electricity bill consists of an energy charge, peak demand charge, and taxes. In Spain, 
taxes are significant and include an electricity tax of 5.1% and a value-added tax (VAT) of 21%. Depending on 
which demand category the consumer fits in, it determines how many charge categories are applied to the 
contract. The industry sector has 6.1A demand category which is classified in periods P1 to P6. In each charge 
category a peak and energy charge is applied. Further on, for this demand category incentives are applied. 
Figure 2 shows the hourly and monthly periods during which each tariff structure is applied. PX refers to the 
tariff price profile consisting of an on-peak, mid-peak and off-peak price and P6 refers to all prices at off-peak 
rates. The tariff consists of both an energy price and a demand price per period as shown in Table 2. 

 
Figure 2. Incentive time-of-use electricity tariff structure. 

Table 2. Incentive time-of-use electricity prices [59]. 

 P1 P2 P3 P4 P5 P6 --- --- 

Power 39.139 19.586 14.334 14.334 14.334 6.540 
€/kW/ 
year Regulated price 

Energy 0.120 0.096 0.092 0.074 0.0708 0.065 €/kWh 
Standard free 

price 

2.4.2. Charges due to power excess (surplus charges) 

In case that an industrial consumer requires more demand that it has contracted in each determined time interval 
(for some minutes or even hours), a penalization due to power excess is charged to the bill. This penalization is 
calculated according to the power contracted in each tariff period and, if applied, depending on each tariff 
period, the actual demanded power rates are metered using electricity metering equipment. The billing of the 
excesses of power for the 6.1 tariffs is calculated according to the formula established in Royal Decree 
1164/2001 (Real Decreto 1164/2001, 2016) (eq. 6 and eq. 7), and it is measured every 15 minutes:  

Fep = ∑ 𝐾௜ ൈ 1.4064 ൈ௜ୀ଺
௜ୀଵ 𝐴௘௜     (eq. 6) 

where Fep stands for charges in € and Aei is a factor that weights excess of demand depending on the period, Ki is 

Month/Hour 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
January P6 P6 P6 P6 P6 P6 P6 P6 P2 P2 P1 P1 P1 P2 P2 P2 P2 P2 P1 P1 P1 P2 P2 P2
February P6 P6 P6 P6 P6 P6 P6 P6 P2 P2 P1 P1 P1 P2 P2 P2 P2 P2 P1 P1 P1 P2 P2 P2
March P6 P6 P6 P6 P6 P6 P6 P6 P4 P4 P4 P4 P4 P4 P4 P3 P3 P3 P3 P3 P3 P3 P4 P4
April P6 P6 P6 P6 P6 P6 P6 P6 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5

May P6 P6 P6 P6 P6 P6 P6 P6 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5

1-15   June P6 P6 P6 P6 P6 P6 P6 P6 P4 P3 P3 P3 P3 P3 P3 P4 P4 P4 P4 P4 P4 P4 P4 P4

16-30 June P6 P6 P6 P6 P6 P6 P6 P6 P2 P2 P2 P1 P1 P1 P1 P1 P1 P1 P1 P2 P2 P2 P2 P2

July P6 P6 P6 P6 P6 P6 P6 P6 P2 P2 P2 P1 P1 P1 P1 P1 P1 P1 P1 P2 P2 P2 P2 P2

August P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6

September P6 P6 P6 P6 P6 P6 P6 P6 P4 P3 P3 P3 P3 P3 P3 P4 P4 P4 P4 P4 P4 P4 P4 P4

October P6 P6 P6 P6 P6 P6 P6 P6 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5
November P6 P6 P6 P6 P6 P6 P6 P6 P4 P4 P4 P4 P4 P4 P4 P3 P3 P3 P3 P3 P3 P3 P4 P4
December P6 P6 P6 P6 P6 P6 P6 P6 P2 P2 P1 P1 P1 P2 P2 P2 P2 P2 P1 P1 P1 P2 P2 P2
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the coefficient that takes the values depending on the tariff period i as shown in Table 3, Aei is calculated 
according to the following conditional equation: 

𝐴௘௜ ൌ ቐ
0,                                Pୢ ୨ ൏ൌ  Pୡ୧

ට∑ ሺPୢ ୨ െ Pୡ୧ሻ 
ଶ௝ୀ଺

௝ୀଵ , Pୢ ୨  ൐  Pୡ୧

    (eq. 7) 

where Pdj is demanded power in each quarter of hour which is excessed (higher than Pci), 
Pci is contracted power in each period and in the considered period. 

Table 3. Ki coefficients according to the tariff periods. 

Period 

(i) 

1 2 3 4 5 6 

Ki 1 0.5 0.37 0.37 0.37 0.17 

These powers are expressed in kW and the excesses of power are billed monthly. For tariffs 6.1 at every breach 
is charged a penalty i.e. every 15 minute breach. Thus, it means that if the user demands over the contracted 
power during one hour, the penalty is charged four times. However, there is an optimum contracting demand 
that reduces the energy cost taking into account the penalties. The application of optimized DSM together with 
TES and PV can optimally find the contracting demands in each period and can improve the overall 
performance of the energy system.  

 

2.5. Optimization 

It could be understood that for given electricity consumption requirements, an optimization problem can be 
derived based on the power contracting plan, i.e. how much power is contracted for each one of the 6 period 
tariffs. The optimization problem results deterministic when no PV production is considered. Otherwise, PV 
uncertainty will lead to stochastic optimization. In both cases, constraint integer programming (CIP) was used as 
a novel paradigm that integrates constraint programming, mixed-integer programming (MIP), and satisfiability 
modeling and solving techniques in order to model and solve this problem (Achterberg, 2008; “SCIP 
Optimization Suite,” 2017). Without PV generation, the system may be described as sets, parameters and 
functions as follows: 

𝑃 ൌ ሼ𝑃ଵ. . 𝑃଺ሽ, is the set of tariff periods; 𝐶𝐸௜, 𝑖 ∈ ሼ1. .6ሽ is the cost of energy consumption during period 
𝑃௜ according to Table 2 in €/kWh; 𝐾௜, 𝑖 ∈ ሼ1. .6ሽ is the coefficient as defined in Table 3; SL is the cold TES 
storage capacity in kWh; H, D and M are the set of hours, days and months respectively; T=H*D*M is the set of 
hour periods in a year; 𝑃𝑒𝑟𝑖𝑜𝑑: 𝑇 → 𝑃, is a function that maps an hour period to its corresponding tariff as 
corresponding to Figure 2; 𝐶௜, 𝑖 ∈ 𝐻, is the required energy during an hour as shown in eq. 8: 

𝐶௜ ൌ ൜
450𝑘𝑊 ൉ ℎ, 𝑖 ∈ 8. .17

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       (eq. 8) 

Therefore, the cost of contracting power (CP), and the cost of consumed energy can be expressed as eq. 9 and 
eq. 10, respectively: 

𝐶𝑃 ൌ ∑ 𝐶𝑃௜௜ୀଵ..଺ ൉ 𝑃𝐶௜        (eq. 9) 

Subjected to these constraints: 𝐶𝑃଺ ൒ 𝐶𝑃ହ ൒ 𝐶𝑃ସ ൒ 𝐶𝑃ଷ ൒ 𝐶𝑃ଶ ൒ 𝐶𝑃ଵ 

𝐶𝐸 ൌ ∑ 𝑆௧௧∈் ൉ 𝐶𝐸௉௘௥௜௢ௗሺ௧ሻ ൅ 𝐾௉௘௥௜௢ௗሺ௧ሻ ൉ 1.4064 ൉ 𝑓൫𝑆௧ െ 𝑃𝐶௉௘௥௜௢ௗሺ௧ሻ൯    (eq. 10) 

Subjected to the surplus charge constraint of 𝑓ሺ𝑥ሻ that is applicable when supplied energy from grid at time t is 
higher than the contracted power in period i (𝑃𝐶௜) as shown in eq. 11: 

𝑓ሺ𝑥ሻ ൌ ቄ
𝑥, 𝑥 ൐ 0
0, 𝑥 ൑ 0         (eq. 11)   

    

where 𝑃𝐶௜ ∈ 𝑅, 𝑖 ∈ 1. .6, is the contracted power for tariff 𝑃௜; 𝑆௧ ∈ 𝑅, 𝑡 ∈ 𝑇, is the supplied energy from the grid 
in time t. When suitable, one can also denote 𝑆௧ as 𝑆௛,ௗ,௠.  

Finally, the following assumptions have been made: 1. The TES operation hours is between 00:00 to 07:00. This 
is an obvious optimal assumption since it is the off-peak period and no demand exists. 2. The stored energy can 
only be consumed during the same day. The objective is to find an optimum assignment of 𝑃𝐶௜ ∈ 𝑅, 𝑖 ∈
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