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Abstract 

Trigeneration systems benefit from process integration to achieve primary energy savings, reduction of pollutant 

emissions, and reduction of unit costs relative to conventional separate production. Achieving such benefits 

requires an appropriate design procedure. The issue is that finding the best configuration that minimizes total 

annual cost is not enough anymore, as the environmental concern has become an ever-present theme in the 

design and synthesis of energy systems. The minimization of costs is often contradictory to the minimization of 

environmental impact. Multiobjective optimization tackles the issue of conflicting objectives by providing a set 

of trade-off solutions, or Pareto solutions, that can be examined by the decision maker, so that the best 

configuration can be selected for a given scenario. This paper proposes a mixed integer linear programming 

model (MILP) to determine the optimal configuration and hourly operation of trigeneration systems considering 

the effects of thermal energy storage (TES) and hourly variations of solar radiation, energy supply prices, 

energy demands, and CO2 emissions. The objective functions to be minimized are the total annual costs and the 

total annual CO2 emissions. Initially, the objective functions were evaluated separately. Then, the Pareto curve 

was obtained for the minimization of total annual cost subject to CO2 emissions restrictions. The trade-off 

solutions were analyzed and the preferred solutions were selected, achieving results close to the optimal 

solutions with reasonable sacrifices for both objectives. 
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1. Introduction 

Environmental awareness, depletion of fossil fuels resources, and economic aspects are some of the factors that 

motivate the development of alternative energy systems. Process energy integration is regarded as an effective 

way to achieve primary energy savings and reduction of pollutant emissions relative to conventional separate 

production (Mancarella, 2014; Serra et al., 2009). Trigeneration systems benefit from process integration, 

producing electricity (and/or mechanical energy), heating, and cooling from a common resource. There is a 

large potential for the incorporation of trigeneration systems in the residential-commercial sector (Liu et al., 

2014; Rong and Su, 2017). 

In the design of trigeneration plants, two fundamental issues must be addressed (Lozano et al., 2009; Wakui et 

al., 2016): the synthesis of the plant configuration (installed technologies and capacities, etc.) and the 

operational planning (strategy concerning the operational state of the equipment, energy flow rates, 

purchase/selling of electricity, etc.). Finding the optimal configuration of trigeneration systems in building 

applications is a complex task, given the wide variety of technology options available and great diurnal and 

annual fluctuations in energy demands and energy prices. Other factors that further increase complexity are: (i) 

the incorporation of renewable energy technologies, such as photovoltaic panels and solar thermal collectors, 

which are characterized by intermittent behavior and non-simultaneity between production and consumption; 

(ii) the incorporation of TES units, which allow to decouple production from consumption; and (iii) conflicting 

objectives, as the minimization of environmental burdens is often contradictory to the minimization of costs. 

Nowadays, sustainability-related issues are ever-present themes in the design of energy systems. Therefore, a 

purely economic analysis is not sufficient anymore. Multiobjective optimization tackles the issue of conflicting 

objectives by providing a set of non-dominated solutions (Pareto Frontier), which provides flexibility and allows 

the decision maker’s judgement into the optimization problem (Andiappan, 2017). 
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One of the most important steps in the optimization problem is data collection, since the quality of the data 

given as input to the model will directly affect the results obtained. In this regard, it is essential to maintain the 

same level of detail for all aspects of the model; however, this information is not always easily obtained or 

identified. In the case of hourly optimization problems, Pina et al. (2017) argued the difficulty of finding hourly 

CO2 emissions data associated with the electricity available in the Spanish electric grid, as opposed to the well-

established hourly electricity prices. Because the authors could not find appropriate CO2 emissions data on an 

hourly basis, a constant annual average was considered; as a result, it was necessary to consider a constant 

electricity price as well, as it is not consistent to evaluate electricity prices on an hourly basis and electricity CO2 

emissions on a constant annual value. 

This work improves the optimization model proposed by Pina et al. (2017) to include hourly electricity prices 

and the corresponding hourly CO2 emissions, instead of constant annual values. The MILP model determines 

the optimal configuration and optimal operation of trigeneration systems, considering the effects of thermal 

energy storage and hourly variations of solar radiation, energy supply prices, energy demands, and CO2 

emissions associated with the electricity from the electric grid. A multiobjective optimization procedure is 

presented, taking into consideration the minimization of the total annual cost and total annual CO2 emissions. 

The MILP model provides a Pareto frontier, a set of solutions representing the optimal trade-offs between the 

economic and environmental objectives, in which there can be no increase in one objective without a decrease in 

the value of the other. The solutions along the Pareto curve were analyzed and the preferred trade-off solutions 

were selected. 

2. Solar assisted trigeneration system 

The synthesis of trigeneration systems begins with the definition of a superstructure (Iyer and Grossmann, 1998; 

Lozano et al., 2010; Yokoyama et al., 2015). The first step in defining the superstructure is to identify design 

targets, that is, the types and quantities of resources available (e.g. fuels, electricity from the electric grid) and 

desired products (energy demands of the consumer center that the system must attend), as well as possible 

restrictions (e.g. permission or not to sell electricity to the grid). Then, the superstructure can be established, 

considering potential technologies and the feasible connections between them, based on appropriate process 

integration. Once the superstructure is defined, additional and more specific data are incorporated; this step 

plays an essential role, since the quality of the data collected will directly affect the results of the optimization 

model. After the optimization procedure, the superstructure will be reduced to its optimal configuration. These 

three steps are presented in the following subsections. 

2.1. Energy demands 

The consumer center considered in this study is a multifamily building located in Zaragoza, Spain. The complex 

is composed of 100 dwellings, each one with 100 m² surface area. The energy demands of the consumer center 

are assumed to be known beforehand: the annual electricity, heating, and cooling demands are 254,963 kWh, 

573,503 kWh, and 113,989 kWh, respectively. The electricity demand is required all year round. The heating 

demand is composed of domestic hot water, required all through the year, and space heating, required from 

November to April. The cooling demand is only required in the summer months (from June to September). 

The study covers the period of one year. It was considered that the energy demands and the operation of the 

system are described by 12 representative days d (NRD = 12) each one composed of 24 consecutive periods h 

(NP = 24) of 1-hour duration (NHP(h) = 1). Each representative day d is attributed to a month of the year, so the 

number of representative days d per year is equal to the number of days in the corresponding month (NRY(1, 2, 

3, …, 12) = 31, 28, 31, …, 31). Two additional representative days were included to account for extreme 

demand situations, as described in Pina et al. (2017); what these extreme representative days do is increase the 

technologies’ installed capacity for safety power margin, with impact on the annual fixed cost, but not on the 

annual operation cost. 

2.2. Superstructure 

The superstructure of the trigeneration system considered in this study is depicted in Fig. 1. Natural gas Fp, 

electricity purchased from the grid Ep, and solar radiation Fpv and Fst are the resources that can be used by the 

system to attend the electricity Ed, heating Qd, and cooling Rd demands of the consumer center. Heat can be 
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produced at two temperature levels: low-temperature heat is only used to cover the heating demand, while high-

temperature heat can also be used for cooling production. The cogeneration module GE (natural gas 

reciprocating engine coupled to a heat recovery system) consumes natural gas Fc and produces electricity Wc, 

low-temperature heat Qcc, and high-temperature heat Qcr; also, a portion of the total heat produced can be 

dissipated to the environment Qcl. The gas boiler GB consumes natural gas Fa and produces low-temperature 

heat Qac and high-temperature heat Qar. The photovoltaic panels PV produce electricity Wpv from the incident 

solar radiation Fpv. The single-effect absorption chiller ABS uses high-temperature heat Qabs to produce cooling 

Rabs; this technology also consumes a small quantity of electricity Wabs. The reversible heat pump HP and the 

solar thermal collectors ST are assumed to operate in two operation modes according to the month of the year: 

• From January to May and from October to December: The HP operates in heating mode (HPQ), 

consuming electricity Whp to produce low-temperature heat Qhp. The ST produces low-temperature heat 

Qstc from the incident solar radiation Fst; 

• From June to September: The HP operates in cooling mode (HPR), consuming electricity Whp to 

produce cooling Rhp. The ST can produce low and/or high-temperature heat Qstc and Qstr, respectively. 

Both operation modes consider the possibility of dissipating heat from the ST Qstl. Finally, two thermal energy 

storage tanks are considered, one for low-temperature heat (TSQ) and another for cooling (TSR). Energy can be 

charged to/discharged from the TSQ Qin/Qout and TSR Rin/Rout. Energy losses Qs and Rs are proportional to the 

stored energy Sq and Sr, respectively, and to an hourly energy loss factor. 

 

Fig. 1: Superstructure of the trigeneration system 

2.3. Data collection and elaboration 

Once the superstructure is established, it is necessary to provide more specific information about the system in 

line with the objective of the analysis. In this regard, in order to contemplate the technical, economic, and 

environmental aspects of the incorporation of potentially installable technologies, including renewable energy 

technologies and thermal energy storage units, in the building trigeneration system analyzed herein, the 

following information is required: 

(i) Technical data 

All technologies included in the superstructure are commercially available. The equipment can modulate up to 

nominal load, except for the non-manageable ones (PV and ST). Performance variations with ambient and 

operation conditions are taken into consideration. Table 1 presents the technologies’ main technical parameters 

obtained from the manufacturers’ catalogs. The PV has a maximum power of 0.260 kW, module efficiency of 

15.51%, and total surface area of 1.60 m². The ST presents thermal performances of k0 = 0.789, k1 = 3.834 

W/(m²·K), and k2 = 0.011 W/(m²·K²), and total surface area of 5.04 m². The hourly unit productions per square 
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meter of the PV panels and ST collectors were evaluated as explained in Pina et al. (2017). 

Table 1: Technologies’ technical parameters 

Parameter Value Parameter Value 

GE Electric power efficiency, αw 0.26 HP Cooling/heating capacity ratio, RCAPrq 0.90 

GE Thermal efficiency, αq 0.61 ABS COP, COPabs 0.69 

GB Thermal efficiency, ηq 0.95 ABS unit electricity consumption, kwabs 0.03 

HP COP in heating mode, COPhpq 3.24 TSQ hourly energy loss factor, fpacuQ 0.01 

HP COP in cooling mode, COPhpr 3.19 TSR hourly energy loss factor, fpacuR 0.01 

 

Based on the geometry of the buildings, a total roof top area of 2000 m² is available for the installation of PV 

panels and ST collectors. PV and ST are installed with a tilt of 35º and 30º, respectively. Considering their 

surface areas and tilt, it was possible to determine the roof top area occupied by each square meter of PV and 

ST: the PV unit surface area usage is equal to 3.1250 m² roof/m² PV and the ST unit surface area usage is equal 

to 2.2676 m² roof/m² ST. 

(ii) Economic data 

Table 2 presents the unit investment cost CI of each technology i included in the superstructure. These values 

were obtained from manufacturers’ catalogs (including taxes) and multiplied by a simple module factor that 

took into account transportation, installation, connection costs, etc. An operational lifetime nyr of 20 years was 

considered for all equipment. An amortization and maintenance factor fam of 0.15 yr-1 and an indirect costs 

factor fic of 0.20 were considered (Ramos, 2012). 

Table 2: Technologies’ economic and environmental data 

Technology 

i 

Unit Investment 

cost 

CI 

Unit CO2 

emissions 

CO2U 

Technology 

i 

Unit Investment 

cost 

CI 

Unit CO2 

emissions 

CO2U 

GE 2700 €/kWel 65 kg CO2/kWel PV 264 €/m² 285 kg CO2/m² 

GB 77 €/kWth 10 kg CO2/kWth ST 578 €/m² 95 kg CO2/m² 

HP 481 €/kWth 160 kg CO2/kWth STQ 150 €/kWh 150 kg CO2/kWh 

ABS 518 €/kWth 165 kg CO2/kWth STR 300 €/kWh 300 kg CO2/kWh 

 

Gas and electricity rates were taken from a real Spanish distributor (EDP, 2017). The gas price is constant all 

through the year cg = 0.057 €/kWh LHV (with taxes). In the case of the electricity purchase price cep, a time-of-

use tariff is applied with three time periods, namely on-peak, mid-peak, and off-peak, whose rates are given in 

Table 3. The selling price of electricity ces was assumed to be the same as the purchase price cep. 

Table 3: Electricity prices in €/kWh, with taxes (EDP, 2017) 

Annual period 
On-peak Mid-peak Off-peak 

Hours cep Hours cep Hours cep 

Winter (Jan-Mar, Nov-Dec) 19-22 0.183 9-18, 23-24 0.156 1-8 0.122 

Summer (Apr-Oct) 12-15 0.183 9-11, 16-24 0.156 1-8 0.122 

 

(iii) Environmental data 

Table 2 presents the unit CO2 emissions CO2U of each technology i of the superstructure. The CO2U values 

were obtained from the literature (Carvalho, 2011; Guadalfajara, 2016; Ito et al., 2009; Ralui et al., 2014). 

In terms of CO2 emissions, the environmental cost associated with the consumption of natural gas is constant 

throughout the year kgCO2g = 0.252 kg CO2/kWh; this is a Spanish national value obtained from IDAE (2014). 

Red Eléctrica de España (REE, 2017) provides data on the national electric demand, generation, and associated 

emissions on a 10-minute basis. We have processed this information to obtain the hourly CO2 emissions 

associated with the electricity available in the grid for each representative day, as shown in Fig. 2. 
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Fig. 2: Hourly CO2 emissions of the electricity in Spain for each representative day, in kg CO2/kWh (REE, 2017) 

3. Mathematical model 

Having defined the superstructure of the trigeneration system, it is necessary to develop a mathematical model, 

representing the behavior and performances of all elements in the superstructure, to determine the optimal 

configuration and optimal operation modes of the system. A MILP model was developed using the software 

LINGO (Schrage, 1999). Two objective functions are included: the first considers the economic aspects of the 

trigeneration system through the total annual cost, while the second considers the environmental impact in terms 

of the total annual CO2 emissions. 

The economic objective is to minimize the total annual cost Ctot, which consists of the annual fixed cost Cfix and 

the annual operation cost Cope. 

𝑀𝑖𝑛 𝐶𝑡𝑜𝑡 = 𝐶𝑓𝑖𝑥 + 𝐶𝑜𝑝𝑒 (1) 

 

The annual fixed cost is expressed by Eq. (2) 

𝐶𝑓𝑖𝑥 = 𝑓𝑎𝑚 ∙ (1 + 𝑓𝑖𝑐) ∙ ∑ 𝐶𝐼(𝑖) ∙ 𝐶𝐴𝑃(𝑖)
𝑖

 (2) 

 

in which the fam, fic, and CI were given in Section 2 (CI values are given in Table 2). 

As explained earlier, it was considered that the year was divided into NRD representative days d, each one 

composed of NP consecutive hourly periods h of NHP(h) duration. Throughout the year there are NRY(d) days 

for each representative day type d. The annual operation cost includes fuel costs and the purchase/sale of 

electricity, as expresses Eq. (3): 

𝐶𝑜𝑝𝑒 = ∑ ∑ 𝑁𝑅𝑌(𝑑) ∙ 𝑁𝐻𝑃(ℎ) ∙ (𝐹𝑝(𝑑, ℎ) ∙ 𝑐𝑔 + 𝐸𝑝(𝑑, ℎ) ∙ 𝑐𝑒𝑝(𝑑, ℎ) − 𝐸𝑠(𝑑, ℎ) ∙ 𝑐𝑒𝑠(𝑑, ℎ))

𝑁𝑃

ℎ=1

𝑁𝑅𝐷

𝑑=1

 (3) 

 

Regarding the environmental objective, the goal is to minimize the total annual CO2 emissions CO2tot, which is 

composed of the annual fixed emissions CO2fix and the annual operation emissions CO2ope. 

𝑀𝑖𝑛 𝐶𝑂2𝑡𝑜𝑡 = 𝐶𝑂2𝑓𝑖𝑥 + 𝐶𝑂2𝑜𝑝𝑒 (4) 

 

The annual fixed emissions, annualized for the equipment’s operational lifetime nyr is expressed by Eq. (5) 

𝐶𝑂2𝑓𝑖𝑥 = ∑ 𝐶𝑂2𝑈(𝑖) ∙ 𝐶𝐴𝑃(𝑖)/𝑛𝑦𝑟
𝑖

 (5) 

 

in which the CO2U values of each technology i are given in Table 2. 

The annual CO2 emissions associated with the operation of the system is expressed by Eq. (6). The first and 

second terms within the parenthesis correspond to the emissions associated with the purchase of natural gas and 

electricity, respectively, while the last term corresponds to the avoided emissions due to the selling of electricity. 
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𝐶𝑂2𝑜𝑝𝑒 = ∑ ∑ 𝑁𝑅𝑌(𝑑) ∙ 𝑁𝐻𝑃(ℎ)

𝑁𝑃

ℎ=1

𝑁𝑅𝐷

𝑑=1

∙ (𝐹𝑝(𝑑, ℎ) ∙ 𝑘𝑔𝐶𝑂2𝑔 + 𝐸𝑝(𝑑, ℎ) ∙ 𝑘𝑔𝐶𝑂2𝑒(𝑑, ℎ) − 𝐸𝑠(𝑑, ℎ) ∙ 𝑘𝑔𝐶𝑂2𝑒(𝑑, ℎ)) 

(6) 

 

The objective functions are subject to equipment constraints (capacity limits and production restrictions), 

balance equations, and electric grid constraints (permission to purchase/sell electricity). The reader is referred to 

Pina et al. (2017) for a detailed explanation of the restrictions. 

4. Single-objective optimization 

The two objective functions were initially evaluated separately. Table 4 gathers the main results obtained for the 

minimization of total annual costs and total annual CO2 emissions. 

For the optimal annual cost solution, all candidate technologies were included except for the PV and ST; further, 

the TSQ installed capacity is so small (0.4 kWh) that it could be dropped out. Regarding the annual investment 

cost, 47% is due to the installation of HP, followed by the ABS with 29%, and the GB with 10%. Taking into 

account the annual CO2 emissions relative to the manufacturing of each device, the HP also accounts for the 

highest share, 46%, followed by the ABS with 28%, and the TSR with 21%. This configuration heavily relies on 

natural gas (363,285 kWh/yr) and electricity from the electric grid (355,040 kWh/yr). Further, all electricity 

produced by the GE is consumed, so that there is no selling. 

Table 4: Main results of the single-objective solutions 

Technology 

Optimal annual cost (B) Optimal annual CO2 emissions (A) 

Installed 

capacity 

Investment 

cost 

[€/yr] 

CO2 

emissions 

[kgCO2/yr] 

Installed 

capacity 

Investment 

cost 

[€/yr] 

CO2 

emissions 

[kgCO2/yr] 

GE 4.2 kWel 2050.8 13.7 0.0 kWel - - 

GB 204.8 kWth 2838.1 102.4 49.3 kWth 683.1 24.6 

HP 162.1 kWth 14,031.7 1296.5 269.6 kWth 23,343.1 2156.9 

ABS 94.0 kWth 8761.6 775.2 48.8 kWth 4554.4 403.0 

PV 0.0 m² - - 461.2 m² 21,873.1 6571.6 

ST 0.0 m² - - 246.5 m² 25,618.8 1170.7 

TSQ 0.4 kWh 10.8 3.0 314.0 kWh 8449.1 2354.8 

TSR 39.9 kWh 2148.9 598.9 0.0 kWh - - 

Annual fixed          Cfix / CO2fix 29,841.9 2789.8  84,521.6 12,681.6 

Energy 

service 

Consumption 

[kWh/yr] 

Energy 

cost 

[€/yr] 

CO2 

emissions 

[kgCO2/yr] 

Consumption 

[kWh/yr] 

Energy cost 

[€/yr] 

CO2 

emissions 

[kgCO2/yr] 

Natural gas 363,285.1 20,557.7 91,547.8 124.2 7.0 31.3 

Purchased 

electricity 
355,040.0 54,667.3 60,728.1 355,919.7 54,606.8 63,048.5 

Sold 

electricity 
- - - 9348.0 1505.1 1521.3 

Annual operation Cope / CO2ope 75,225.0 152,275.9  53,108.7 61,558.5 

Total annual         Ctot / CO2tot 
105,066.9 

€/yr 

155,065.7 

kgCO2/yr 
 

137,630.2 

€/yr 

74,240.1 

kgCO2/yr 

 

In the case of the optimal annual CO2 emissions solution, all technologies were included except for the GE and 

TSR. Compared with the optimal annual cost configuration, the installed capacity of the HP has increased, while 

the capacities of GB and ABS have decreased. This configuration heavily relies on electricity from the electric 

grid (355,920 kWh/yr), while there is virtually no consumption of natural gas (124 kWh/yr); also, a part of the 

electricity produced (9348 kWh/yr) is sold to the grid. It is interesting to note that all roof top area is used for the 

installation of PV and ST, which suggests that it could be interesting to increase its availability. Moreover, 

compared with the optimal annual cost solution, there was a significant shift in the use of thermal energy 

storage, from 39.9 kWh of TSR to 314.0 kWh/yr of TSQ. Looking at the annual investment cost, 30% is due to 
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the installation of ST, followed by the HP with 28%, and the PV with 26%. In the case of the annual CO2 

emissions relative to the manufacturing of each device, the three highest contributions are 52% PV, 18% TSQ, 

and 17% HP. 

The optimal CO2 emissions configuration presents a total annual cost 31% higher than the optimal annual cost 

solution, while CO2 emissions are 52% lower. The shift towards a more environmentally sound configuration 

incurs an increase of 183% in the annual fixed cost and 354% in the annual CO2 emissions relative to the 

manufacturing of the equipment. These are offset by a better energy usage during the operation of the system, 

translated into a decrease of 29% in the annual operation costs and 59% in annual CO2 emissions relative to the 

operation of the system. 

Analyzing the annual operation of the optimal annual cost solution, the GE, GB, HP, and TSQ operate all year 

round, the TSR operates all summer, and the ABS operates from July to September. Of the total electricity 

consumed, 8.4% is produced by the GE and the rest is purchased from the electric grid. Regarding the heat 

production, the HP and the GB are the major producers, with 48.4% and 38.6%, respectively. The produced 

cooling comes almost entirely from the HP (91.7%), being the ABS responsible for supplying peak demands in 

July and August. Considering the total cooling produced by the system, 4.5% is stored. 

Focusing on the optimal CO2 emissions solution, the HP operates all year except for May, the ABS operates all 

summer except for September, and the TSQ is used all year round. The GB operates marginally in June to attend 

heat peak demands. It is worth mentioning that there is dissipation of heat from the ST Qstl in May (4977 

kWh/yr). The PV panels account for 23.6% of the electricity consumed, while the rest is purchased from the 

grid. Of the total electricity produced by the PV, 8.7% is sold to the grid, generating economic benefits. The HP 

is responsible for 76.2% of the heat produced by the system, followed by the ST with 23.8%; the GB has a 

negligible share. Of the total heat produced, 26.7% is stored in the TSQ. Cooling is produced mostly in the HP 

(87.9%) and the rest is covered by the ABS with solar heat from the ST. 

The optimization model also determines the hourly operation of the system for each representative day. As an 

example, Fig. 3 presents, for the optimal annual cost solution, the hourly productions of (a) electricity, in the 

month of January, (b) heating, in the month of January, and (c) cooling, in the month of July. 

  

 
Fig. 3: Hourly production for a representative day of (a) electricity in January, (b) heating in January 

and (c) cooling in July. Optimal annual cost configuration 

 

In January, only electricity Ed and heating Qd are required by the consumer center. As can be seen from Fig. 3, 

the GE operates all through the day producing electricity Wc and heat Qcx; particularly, between hours 6 and 24, 

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23

Electricity [kW]

Wc Wpv Ep Ed

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23

Heating [kW]

Qcx Qax Qhp Qout Qd

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23

Cooling [kW]

Rhp Rabs Rout Rd

E. Pina / SWC 2017 / SHC 2017 / ISES Conference Proceedings (2017)

 



it operates at full load. Also, electricity is purchased from the grid Ep throughout the day. It is interesting to note 

the increase in the purchase of electricity at hours 7 and 8, which are the last two hours of off-peak rate. Apart 

from the electricity demand Ed, electricity is consumed by the HP from hour 6 to 20 for heat production Qhp. The 

HP’s load increases in the afternoon, after hour 11; it also complements heat production when the GB is at full 

load, e.g. hours 9 to 11 and 19 to 20. As already mentioned, the TSQ is used but with negligible shares. 

In the month of July, cooling is required from hour 12 to 22. However, as presents Fig. 3, cooling production 

begins earlier in the day (e.g. hour 8), being stored in the TSR for later use. The ABS operates marginally with 

heat from the GB at hours 12 and 13, and more significantly from hour 15 to 17, when the HP is at full load. The 

TSR has one significant charge at hour 8 and one significant discharge at hour 15. 

5. Multiobjective optimization 

The issue is that economic costs and environmental concern are generally conflicting objectives, which means 

that the optimal solution for one is not the best for the other, as was demonstrated in Section 4. Multiobjective 

optimization is used to optimize a problem with two or more conflicting objectives, identifying trade-off 

solutions among them. These trade-off solutions, also known as non-dominated solutions, constitute the Pareto 

set, in which no improvement in one objective can be achieved without sacrificing the other (Andiappan, 2017). 

Pareto optimization has been extensively applied in the literature concerned with multicriteria problems and 

many methods are available for solving multiobjective optimization problems. Some methods involve 

converting the multiobjective problem into a series of single optimization problems. An important question is 

the role of the decision maker in the procedure. In this regard, a posteriori methods for generating Pareto-

optimal solutions are preferred. Among them, the ε-constraint has been applied by various authors to the 

optimization of energy supply systems (Buoro et al., 2013; Carvalho et al., 2012; Fazlollahy et al., 2012; 

Gebreslassie et al., 2012). In this approach, the problem is optimized with respect to one of the objective 

functions, while upper/lower bounds are set for the rest of the objective functions. The problem is repeatedly 

solved for different ε values, obtaining the different trade-off solutions that compose the Pareto set. Based on the 

Pareto curve obtained, the decision maker has more flexibility to judge the different trade-off solutions and 

make a more informed decision. 

In this paper, the optimization model was solved for the total annual cost objective, subject to CO2 emissions 

constraints. The Pareto set obtained is limited by Limsup = 155,066 ton CO2/yr (optimal annual cost solution) and 

Liminf = 74,240 ton CO2/yr (optimal annual CO2 emissions solution). The interval between superior and inferior 

limits have been subdivided and the model was repeatedly solved. Table 5 presents the ε values considered in 

the analysis, starting from the optimal annual cost solution (point B), towards the optimal annual CO2 emissions 

solution (point A). Along the Pareto curve, different solutions are obtained with different configurations and 

installed capacities. Fig. 4 shows the Pareto curve obtained, in which equal symbols represent the same 

configuration (with different installed capacities). As can be seen from Table 5, a total of 33 ε values were 

evaluated, obtaining 9 different configurations. 

 
Fig. 4: Pareto curve – Annual economic cost vs. annual CO2 emissions 
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Table 5: Trade-off solutions obtained with the ε-constraint method considering economic cost and CO2 emissions 

ε-CO2 

emissions 

[tonCO2/yr] 

Economic 

cost 

[€/yr] 

Installed capacities Marginal 

cost 

[€/tonCO2] 

Average 

cost 

[€/tonCO2] 
GE GB HP ABS PV ST TSQ TSR 

 (B)       155.1 105,067 4.2 204.8 162.1 94.0 - - 0.4 39.9 - - 

145.0 105,126 3.5 193.5 176.8 83.8 - - - 40.0 5.9 5.9 

135.0 105,254 3.1 171.6 201.9 66.3 - - - 40.2 12.8 9.3 

125.0 105,453 1.1 169.0 209.8 60.9 - - - 40.2 19.9 12.8 

115.0 105,771 - 163.6 218.7 54.7 - - - 40.3 31.9 17.6 

(C)       105.0 106,266 - 140.0 244.6 36.7 - - - 40.4 49.5 24.0 

100.0 106,690 - 113.6 273.6 16.6 - - - 40.6 84.7 29.5 

99.0 106,916 - 91.8 297.6 - 1.5 - - 40.7 226.6 33.0 

97.0 107,745 - 91.8 297.6 - 88.1 - - 40.7 414.4 46.1 

95.0 108,574 - 91.8 297.6 - 174.7 - - 40.7 414.4 58.4 

93.0 109,403 - 91.8 297.6 - 261.3 - - 40.7 414.4 69.9 

91.0 110,232 - 91.8 297.6 - 347.9 - - 40.7 414.4 80.6 

89.0 111,060 - 91.8 297.6 - 434.4 - - 40.7 414.4 90.7 

87.0 111,889 - 91.8 297.6 - 521.0 - - 40.7 414.4 100.2 

(D)         85.0 112,718 - 91.8 297.6 - 607.6 - - 40.7 414.4 109.2 

84.0 113,170 - 86.6 303.3 - 640.0 - - 35.3 452.0 114.0 

83.5 113,472 - 75.3 315.6 - 640.0 - - 23.6 604.3 117.4 

83.0 113,932 - 74.5 316.6 - 634.9 7.1 - 22.7 919.2 123.0 

82.5 114,392 - 74.5 316.6 - 629.4 14.6 - 22.7 920.5 128.5 

82.3 114,631 - 72.6 316.6 - 626.8 18.2 1.9 22.7 953.8 131.3 

82.0 114,884 - 69.7 317.3 - 624.5 21.4 4.8 22.0 1012.7 134.4 

81.5 115,424 - 63.2 320.9 - 620.3 27.1 11.4 18.6 1080.2 140.8 

81.0 116,005 - 59.8 320.8 0.4 615.0 34.5 18.5 18.1 1163.3 147.7 

80.0 117,605 - 56.1 312.6 19.2 603.9 49.7 43.1 - 1599.3 167.0 

79.0 119,643 - 55.8 296.4 30.4 589.2 70.0 89.4 - 2038.6 191.6 

78.0 121,862 - 55.6 285.2 37.4 570.5 95.8 121.1 0.9 2218.4 217.9 

77.0 124,221 - 54.7 267.8 39.3 552.9 120.0 172.6 14.8 2359.3 245.4 

76.0 126,850 - 52.9 260.4 41.4 530.4 151.1 201.1 19.0 2629.2 275.5 

75.5 128,282 - 52.8 253.2 42.7 520.2 165.1 228.8 24.0 2863.0 291.8 

75.3 129,301 - 62.7 265.0 47.8 519.3 166.3 231.0 5.8 4076.3 303.6 

75.0 130,498 - 63.0 269.6 48.8 513.4 174.5 247.2 - 4789.6 317.6 

74.5 134,365 - 54.3 269.6 48.8 480.2 220.2 267.0 - 7734.3 363.7 

(A)         74.2 137,630 - 49.3 269.6 48.8 461.2 246.5 314.0 - 12,562.0 402.9 

 

The graphs in Fig. 5 show the installed capacities of each technology along the Pareto curve, from the optimal 

annual cost to the optimal annual CO2 emissions solution. The analysis of the trade-off solutions that constitute 

the Pareto curve obtained shows that each technology was included in at least one configuration; on the other 

hand, no configuration included all eight technologies simultaneously. The GB and the HP were included in all 

solutions obtained and the TSR was included in most solutions. From the optimal annual cost configuration (B), 

as CO2 emissions are forced down towards the environmental optimal (A), there is a shift in the installed 

capacities of GB and HP: the former decreases, while the latter generally increases. GE is only included at CO2 

levels higher than 125 ton CO2/yr, and even so with relatively small installed capacities. For total annual 

emissions below 99 ton CO2/yr, PV panels begin to be incorporated. ST collectors are included at even lower 

overall emissions levels, 83 ton CO2/yr, closely followed by the TSQ at 82.25 ton CO2/yr. There are two 

different ranges in which the ABS is included: for CO2 levels higher than 100 ton CO2/yr and lower than 91 ton 

CO2/yr. It is interesting to look into the role the ABS plays in each scenario: at the higher CO2 emissions range, 

the ABS is driven with heat produced with natural gas (Qcr and mostly Qar); on the other hand, at the lower 

range, the ABS is driven exclusively with heat from the ST (Qstr). It is worth noting that GE was not included in 

any solution simultaneously with PV and/or ST. 

From the analysis of the trade-off solutions obtained, point C in Fig. 4 and Table 5 was selected as preferred 

intermediate solution because of its good trade-off between both criteria: it achieves a 32.3% reduction in CO2 

emissions with an increase of only 1.1% in costs relative to the optimal cost configuration (B). Moreover, 

solution C includes only GB, HP, ABS, and TSR. Compared with the optimal annual cost solution (A), there is a 
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reduction in the installed capacities of GB and ABS and an increase in the installed capacity of HP. As a result, 

the system consumes 75.7% less natural gas and purchases 31.4% more electricity from the electric grid. By 

supporting a higher sacrifice for the economic objective, point D in Fig. 4 and Table 5 can also be identified as 

an interesting trade-off solution: it achieves a 45.2% decrease in CO2 emissions with an increase of 7.3% in 

costs relative to the optimal cost configuration (B). The configuration includes GB, HP, PV, and TSR.  

 

Fig. 5: Installed capacities along the Pareto curve 

Table 5 also presents the marginal and average costs of each solution, in €/ton CO2. The marginal cost 

represents the cost of moving from one solution to the next in the Pareto curve, while the average cost represents 

the cost of moving from the optimal annual cost solution (B) to any other. These could be interesting indices to 

measure the effort the decision maker is willing to make in order to move towards a more environmentally 

sound configuration. As can be seen from Table 5, it is no surprise that both the marginal and the average costs 

increase as the system shifts towards more environmentally sound configurations. Moving from one optimum to 

the other (B  A) involves an average cost of 402.9 €/ton CO2. However, taking the trade-off solution C into 

account, the average cost of moving from B to C is only 24.0 €/ton CO2. 

Based on the different circumstances under which the system operates, for instance local subsidies for CO2 

emissions savings and/or stock market prices of CO2 emissions, the marginal cost could be used to select among 

the various trade-off solutions obtained. Solution C presents a marginal cost of 49.5 €/ton CO2. Ensuring a 

higher economic compensation for CO2 emissions savings would enable other solutions to be chosen, such as 

solution D with 414.4 €/ton CO2.  

6. Conclusions 

This paper tackled the issue of conflicting objectives in the synthesis of trigeneration systems including 

renewable energy technologies and thermal energy storage. A MILP model was developed using the 

optimization software LINGO including two objective functions: minimize the total annual cost and minimize 

the total annual CO2 emissions. Both objectives take into account a fixed term, relative to the manufacturing and 
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installation of the equipment, and a variable term, relative to the hourly operation of the system. The model was 

applied to a multifamily building located in Zaragoza, Spain. 

At first, the objective functions were minimized separately, obtaining the optimal annual cost solution and the 

optimal annual CO2 emissions solution. The optimal solutions presented fundamentally different configurations: 

the optimal cost configuration included cogeneration, whereas the optimal CO2 emissions configuration 

included renewable energy technologies. Then, the ε-constraint approach was employed to identify the 

intermediate trade-off solutions that compose the Pareto curve. As a result, it was possible to identify trade-off 

solutions that were close to the single-objective solutions with reasonable sacrifices for both objectives; for 

example, the preferred trade-off solution selected in this study achieved a 46.2% reduction in total annual CO2 

emissions with only an 8% increase in total annual cost relative to the optimal annual cost configuration. This 

procedure demonstrated the importance of the decision maker in evaluating the trade-off solutions in search for 

the configuration that best suits the objectives of the analysis. 

In the synthesis of energy systems, the quality of the data used plays a central role because it directly affects the 

results of the optimization model. However, in multiobjective optimization problems, it is essential to maintain 

all objective functions at the same level of detail. This issue was highlighted in a previous paper by Pina et al. 

(2017), in which the price of the electricity from the grid and the associated CO2 emissions were considered 

constant throughout the year. The present paper improved the optimization model proposed in that work by 

incorporating hourly electricity prices and CO2 emissions per kWh, for each representative day. As a result, it 

was shown that the system takes advantage of the different electricity prices and emissions at different hourly 

periods to achieve more interesting results in accordance with the objective function. 

It is also important to maintain the closest level of detail as possible with regard to the elaboration of the 

optimization model. For example, it is known that the electricity tariff is generally composed of a power term 

and an energy term; however, what would be the appropriate counterpart to the power term for CO2 emissions? 

Due to the lack of an appropriate value, the authors opted to consider only the energy term in the calculations. 

Nevertheless, we do recognize having applied an amortization and maintenance factor over the operational 

lifetime of the system with no equivalent in the CO2 emissions objective function. These issues should be 

explored in further studies. 

Further work could explore the interconnection with the electric grid, considering local policies on the 

permission to sell/inject electricity to the grid and its effects on the optimal configuration and operation of the 

system. Moreover, more technologies could be included in the superstructure, namely prime movers (e.g. 

microturbines, fuel cell), RES (e.g. wind power, biomass), and energy storage units (e.g. electrical batteries). 
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