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Abstract 

This paper presents a numerical model to analyse the thermal and fluid dynamic behaviour of a mechanical 
vapour compression MVC desalination system, which uses renewable energy to supply the electricity required 
by the whole system. The reason to use renewable energy is that the MVC desalination system has been though 
to work in remote places, where an electric grid is not available. The transient and steady-state of the 
desalination system are evaluated taking into account the variability of the renewable energy sources (solar 
energy). A scalability study has been carried out to find the relation between the variability of the renewable 
energy sources and the capacity of the desalination system (distilled water production). Different components 
which making up the desalination system are considered in the numerical simulation, all of them are solved in a 
coupled way by mean of an object-oriented tool called NEST. The influence of the feed seawater conditions is 
also analysed on the system performance. 
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1. Introduction 

The MVC desalination method is an evaporation and condensation process that occurs at low pressure, which 
requires a compression work to increase the saturation temperature of the vapour. The trend is to use low 
evaporation temperatures (between 50 to 70oC) to reduce the risk of corrosion and scale deposition (El-Khatib 
2004). The compressed vapour is condensed and its latent heat is transferred to the feed seawater. The 
applicability of MVC desalination systems in remote places where there is not possible a connection to an 
electric grid depend on the use of renewable energy sources. However, the renewable energy means variability 
in the power given. This variability should be well defined to avoid damage and establish secure partial working 
operation of the desalination system. The MVC desalination is used at low and medium scale in comparison 
with other techniques such as: multistage flash desalination (MSF) or reverse osmosis (RO) (Ettouney, 2006). 

The numerical modelling presented in this paper is applied to analyse the thermal and fluid dynamic behaviour 
of a MVC desalination system, which uses renewable energy source (solar energy) to supply the electric 
requirements of the system. The electrical energy is used to feed the mechanical compressor, a heater, a group of 
pumps and the control panel of the system. The well-known variability of renewable sources of energy is 
considered in the performance system study. Also, the influence of the boundary conditions on the execution of 
the unit along the time is analysed.   

2. Dynamic modelling  

The desalination system has been divided in four different subsystems, following the strategy proposed by 
Bodalal (2010) and Mazini (2014). The first subsystem is the evaporator and condenser, in which the 
evaporation and distillation processes are performed. The second is the vacuum and deareation subsystem, 
where the low pressure is achieved and non-condensed gas (Oxygen) is stripped. The third subsystem is the 
mechanical compressor, which is modelled to know its energetic requirement in function of the desalination 
performance and the climatic conditions. The last subsystem is the heat exchangers, which preconditioning the 
feed seawater flow temperature, taking advantage of the heat contained in the distilled water and brine flows at 
the outlet of the evaporator/condenser. 

The evaporator and condenser subsystem is modelled describing it as a brine block, vapour space block, and a 
tube bundle. A schematic representation of these blocks is depicted in Figure 1, together with the others 
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subsystems. The vacuum and deareation subsystem is modelled assuming that there are a liquid block, a vapour 
space block and a package zone, which are depicted in Figure 2. The compressor has been modelled following 
the mechanical model of a rotatory lobe compressor (blower), which uses the geometric configuration and the 
relation between velocity (rpm) and the displacement by revolution (cfr) of the compressor. 

3. Mathematical formulation  

The mathematical formulation of the evaporator/condenser subsystem is based on mass, and energy balance 
conservation equations. 
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Mass of the bundle tubes and energy conservation equation of the vapour condensed inside tubes, assuming that 
there is not heat accumulation in solid walls. 
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The heat transferred between the vapour condensed inside of the bundle tubes and the fluid outside of tubes is 
defined in function of the global heat transfer coefficient, transfer area and the difference temperatures. 
Assuming that the tubes cannot accumulate salt on the external surface, then 
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Fig. 1: Schematic representation of the MVC desalination system and evaporator/condenser subsystems 

The mathematical formulation of the vacuum and deareation subsystem is based on the same mass, energy and 
salt balance conservation equations applied on the vapour, liquid and packed zone. The conservation equations 
are applied on the package zone assuming that there is not accumulation of mass, energy or salt on it. Some 
extra relations are used to define the value of the non-condensable gas stripped, the flash evaporation, the mass 
flow condensed into the package and the mass flow at the outlet of the deareator (Suryanarayana, 2011).  
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Fig. 2: Schematic representation of the deareator subsystem (including a detail of the package zone) and the compressor 
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Assuming that there is not accumulation on package zone: 
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The compressor (blower) model is based on the root blower laws, in which the volumetric flow, velocity, power 
and the displacement by revolution values are related: 
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The ideal gas law is used to evaluate the inlet pressure at the compressor as function of the vapour mass 
contained into the evaporator, the temperature of the vapour and the volume occupied.  
 

௜ܲ ൌ
ଵ

௏ೡ

௠ೡ

ெ
ܴܶ         (eq. 27) 

ṁ
 V2

 

 ṁ
 V4

ṁ
 Fi 

- ṁ
 flash

ṁ
nc

ṁ
F1

ṁ
V2

  

ṁ
 Fo

, T
Fo

, X
Fo

, X
nco

  

 

ṁ
4

ṁ
 Fi

, T
Fi

, X
Fi

, X
nci

ṁ
nc
 ṁ

 flash
 

ṁ
 F1

 
m

l
 

m
g
 

ṁ
 Fi

 - ṁ
 flash

z

 
ṁ

 D,  
P

 i
 

ṁ
 D,  

P
 o
 

N (rpm) 

S. Morales-Ruiz / SWC 2017 / SHC 2017 / ISES Conference Proceedings (2017)

 



The heat exchangers are evaluated in function of heat flux transferred between flows (distilled water, brine and 
feed seawater) to obtain the temperatures of each one, using the overall heat transfer coefficient (U), the 
logarithm mean  temperature difference (LMTD) and the transfer area (AHex). Assuming the hypothesis that 
there is not heat losses in the heat exchangers, the heat transferred should be equal to the heat flux obtained or 
delivered for the flow.    
 
ܳ௘௫௖௛௔௡௚௘ௗ ൌ ܦܶܯܮ	ுா௑ܣ	ܷ ൌ	 ሶ݉ ௣ሺܥ	 ௜ܶ௡ െ	 ௢ܶ௨௧ሻ    (eq. 28) 
 

4. Numerical resolution 

The group of equations is solved by means of the in-house object-oriented tool called NEST, which is capable to 
link and solve different elements that making up a system (Damle, et. al., 2011; Farnós, et. al., 2014). The MVC 
desalination system that is presented in this paper has different components: an evaporator/condenser, a 
compressor, a deareator, two heat exchangers and a group of pumps. Although in this numerical platform each 
component is an object, the whole system resolution is carried out iteratively by solving all its components and 
transferring the appropriated information between them (see Figure 3).   

A dynamic model based on mass, energy and salt balances and applied to internal components of the MVC 
desalination system has been implemented to analyse the transient behaviour of the MVC desalination system, 
which uses renewable source energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Global algorithm to solve the MVC desalination unit 

5. Results 

A numerical analysis has been carried out to define the specific average consumption of the MVC desalination 
systems analysed. A value of 15.08 kW/m3 has been defined including the power required by the compressor, 
pumps and heater of the whole system. A scalability study using three different units, each one with a 
production capacity of 100, 200 and 400 m3/day of distilled water, has given 14.98, 15.07 and 15.19 kW/m3, 
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The mass flows used by the MVC desalination unit depend on the energy used by the compressor during the 
working period, whilst the temperatures, pressure and salt concentrations into the evaporator/condenser are 
independent of this value.  

The salt concentrations of the flows into the evaporator/condenser depend on the boundary conditions applied 
at the inlet of the MVC desalination system. The third case shows the variation of the salt concentration of the 
brine in function of the salt concentration of the feed seawater (Xf).  

The temperatures of the distilled water and brine flows at the outlet of the system and the preheated seawater 
temperature at the inlet of the evaporator/condenser are function of the mass flows used by the MVC 
desalination unit and depend on the feed seawater temperature (TCW) at the inlet of the precondition heat 
exchangers. 
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