COMPARISON BETWEEN LEBARON-PEREZ AND DAL PAI-ESCOBEDO CORRECTION METHODS FOR DIFFUSE IRRADIANCE MEASURED BY THE *MEO* SHADOWRING METHOD

Alexandre Dal Pai¹, João Francisco Escobedo¹ and Enzo Dal Pai¹

¹ São Paulo State University, School of Agricultural Sciences/UNESP, Botucatu (Brazil)

Abstract

This study aims to determine the effectiveness of two methods of correction of diffuse irradiance measured with shadowbands: LeBaron-Perez method and Dal Pai-Escobedo method. For the LeBaron-Perez method, we use the original coefficients and adjusted coefficients for the atmospheric conditions of Botucatu. Global, direct and diffuse solar irradiances were supplied by the Laboratory of Solar Radiometry of Botucatu. The period assigned for the study comprised the years 1996 to 2005. The results showed that the LeBaron-Perez correction model with the original coefficients are not suitable for correction of diffuse irradiance in Botucatu. Otherwise, the LeBaron-Perez model with adjusted coefficients and Dal Pai-Escobedo model are indicated for the correction of diffuse irradiance in Botucatu measured by shading ring with accuracy of 0.5%.

Keywords: Shading ring, diffuse irradiance, Correction Factors, anisotropy, Measurement Methods.

1. Introduction

Information of the solar potential are required in various industries and areas of society, with applications in climatology, architecture, agriculture, passive lighting, satellite studies, among others. In general, the information serves to supply solar energy conversion models, thermal comfort and energy balance.

Several weather stations, for practical reasons, measure, routinely, only the global radiation. Measures of direct and diffuse radiation are less frequent due to the high financial costs. However, it is possible to establish a database of global, diffuse and direct radiation with low financial investment. In this case, the global component is monitored by a pyranometer positioned in the horizontal plane of the locality, the diffuse component is monitored by a pyranometer placed under the shade of a shading ring and the direct component is obtained by the difference between the global and diffuse components.

This method of measuring diffuse radiation is known as shading ring method. Different assemblies are described in the literature and best known is the Drummond's assembly (1956) (Fig. 1). In Drummond assembly, the pyranometer remains fixed and the shading ring moves parallel to the polar axis to compensate the variations in the solar declination. The Drummond assembly is currently the most widely used. An alternative assembly with low cost, easy operation and maintenance, was proposed by Melo and Escobedo (1994) - *MEO* assembly (Fig. 1). In this system, the shading ring is fixed with an inclined angle equal to the local latitude, and to compensate the solar declination, the pyranometer moves parallel to the local horizon plane on a moving base to stay under the shadow produced by the ring.

Despite having operational and financial advantage, shading ring method has the disadvantage of correction factors (CF) to offset the portion (LF) of diffuse irradiance barred by shading ring (Drummond, 1956; Kasten et al, 1983; Stanhill, 1985). 5% errors in the measurement of diffuse radiation can propagate up to 20% uncertainty in the estimate of direct radiation to high zenith angles (Lebaron et al, 1990). Correction factors are based on isotropic radiation, and consider only the use of geometric factors (radius and ring width) and geographic (latitude and solar declination).

Figure 1 - Shading ring assembly: Drummond and MEO.

Several researchers have shown that the application of isotropic correction does not include atmospheric effects (turbidity, cloudiness, pollution, water vapor) that are responsible for anisotropy in the diffuse radiation. Kasten et al. (1983) and Pollard and Langevine (1988) introduced corrections based on anisotropic parameters such as K_T clearness index (ratio between the global irradiance I_G by the extraterrestrial irradiance I_O), zenith angle and atmospheric turbidity associated with isotropic correction to improve the accuracy of the measurement of diffuse irradiance by Drummond shading ring. Stanhill (1985) found that the anisotropic corrections showed spatial and temporal dependence, caused mainly by the different sizes and concentration levels of aerosols in the atmosphere. LeBaron et al (1990) proposed anisotropic parameter (geometric and geographic), highlighting the K_T clearness index as the most significant parameter in the representation of anisotropic conditions. In this way, Iqbal (1983) recommends different anisotropic corrections to the ring as a function of K_T clearness index (3% to $0 < K_T < 0.30$; 5% to $0.30 < K_T < 0.65$ and 7% to $0.65 < K_T < 1$). Battles et al (1995) used the same parameters of LeBaron and developed two numerical correction methods through multiple linear regression: the first method uses all the parameters in a single equation, whereas the second uses geometric parameters, brightness and solar zenith angle grouped by four intervals of the K_T clearness index, a total of four numeric correction equations.

In this sense, the objective is to compare the efficiency of Lebaron-Perez and Dal Pai-Escobedo methods for correction of diffuse solar irradiance measured by the *MEO* shading ring assembly.

2. Materials and Methods

The study is based on global, direct and diffuse irradiance measurements provided by the Laboratory of Solar Radiometry, located at the Department of Bioprocess and Biotechnology, School of Agricultural Sciences / UNESP / SP (latitude 22° 54 'S, longitude 48° 27' W and altitude 716 m). There were used 10-years data (1996-2005), 75% intended for modeling and 25% for validation purposes. A computational routine was developed to separate the data, being three lines for modeling and 1 line for validation..

The city of Botucatu (Fig. 2) lies in a region of planting sugarcane and eucalyptus. It has about 130,000 inhabitants and is surrounded by an asymmetric embossing called Cuesta de Botucatu and the watersheds of the Tietê and Paranapanema. It has few industries and its economy is based on service delivery.

Figure 2 - Map of Brazil with state divisions showing the location of the study (Botucatu in the state of São Paulo)

According to the Köppen climate classification, the local climate is Cwa (humid subtropical climate), with hot, humid and rainy summers and dry winters and mild temperatures. The temperature and relative humidity values follow the astronomical variations, with maximum values of temperature and relative humidity in February (23.12 ° C and 78.25% respectively) and minimum temperature values in July (17.10 ° C) and relative humidity in August (63.97%). The rainy season occurs in the summer and spring, accompanied by high cloudiness. About 80% of the annual rainfall occurs during this period, with a maximum in January (246.2 mm). In the winter and fall seasons, the average rainfall is less than 100 mm per month, and minimum in August (36.1 mm). Regarding aerosols, industrial activity and motor vehicles are the largest emitters of aerosols in the atmosphere. However, as the Botucatu is full of sugarcane crops, the practice of harvest burning can emit large amounts of particulate matter in the atmosphere, especially in winter, where the removal by rain is minimal (Codato et al, 2008).

The global solar irradiance I_G was measured by an Eppley PSP pyranometer; the direct solar irradiance by an Eppley NIP pyrheliometer equipped with a ST-3 solar tracking device; and diffuse solar irradiance by an Eppley PSP pyranometer under the *MEO* shading ring (radius of 0.40 m width 0.10 m). Tab. 1 shows the operating characteristics of the measurement devices.

Irradiance	Global	Direct	Diffuse		
Sensor-brand	Eppley Precision Spectral Pyranometer	Eppley Normal Incidence Pyrheliometer	Eppley Precision Spectral Pyranometer		
Sensibility	$\pm 7,45 \ \mu V/Wm^2$	$7,59 \ \mu V/Wm^2$	$\pm 7,47\ \mu V/Wm^2$		
Spectral Range	295 - 2800 nm	$295-2800 \ nm$	295 – 2800 nm		
Response time	1 s	1 s	1 s		
Linearity	±0,5% (from 0 to 2800 W/m²)	±0,5% (from 0 to 1400 W/m ²)	±0,5% (from 0 to 2800 W/m²)		
Cogino offoot	±1% (0° <z<70°)< th=""><th></th><th>±1% (0°<z<70°)< th=""></z<70°)<></th></z<70°)<>		±1% (0° <z<70°)< th=""></z<70°)<>		
Cosine effect	±3% (70°≤Z<80°)	_	±3% (70°≤Z<80°)		
Temperature Dependence	±1% (from -20°C to +40°C)	$\pm 1\%$ (from -20°C to +40°C)	±1% (from -20°C to +40°C)		

Table 1 - Operational characteristics of the global, direct and diffuse solar irradiance measurements.

Figure 3 – Global, diffuse and direct solar irradiance measurements.

The values of solar irradiance were monitored by an automatic data acquisition system model Datalogger 23X Campbell Scientific Inc with a 0.2 Hz frequency. Mean values were calculated every 5 minutes and stored in W/m^2 format.

The diffuse irradiance data measured by the MEO shading ring (Id_{ANEL}) were corrected using the geometric correction factors proposed by Oliveira et al (2002). True diffuse irradiance, called reference diffuse irradiance (Id_{REF}) was calculated as the difference between the global and direct irradiance. Of the 525 592 available data on ten years of monitoring, 47725 (representing 9.09% of total) were removed due to the application of filters shown in Tab. 2 (Kudish and Evseev, 2008). The cutoff values are due to misalignment, lack of electricity and internal reflections occurred in the shading ring caused by low solar altitude.

Solar Irradiance	Filter
Global	$I_{\rm G} < I_{\rm O}$
Direct	$I_b \leq Io$
Diffuse	$0,\!1~I_G \!\leq Id_{ANEL} \!<\! I_G$
Diffuse Reference	$0 \leq Id_{REF} \leq I_o$

Table 2 - Quality control filters and results (Kudish and Evseev, 2008).

For LeBaron-Perez correction method (Lebaron et al, 1990), we calculated the zenith angle (Z), the clarity index Epsilon (ϵ) and the brightness index (Δ).

$$Z = \cos^{-1}[\sin\phi\sin\delta + \cos\phi\cos\delta\cos\omega] \tag{1}$$

$$\varepsilon = \frac{I_G - I_d}{I_d \cos Z} + 1 \tag{2}$$

$$\Delta = \frac{I_d \cdot m}{I_o} \tag{3}$$

where ϕ is the local latitude, δ the solar declination, ω the hour angle, I_G the global irradiance I_d the diffuse irradiance uncorrected measured by the shading ring, m the optic mass and Io the extraterrestrial irradiance mass. The Dal Pai-Escobedo correction method (Dal Pai et al, 2011) uses the atmospheric transmissivity parameter K_T.

$$K_T = \frac{I_G}{I_o} \tag{4}$$

The original method of LeBaron-Perez used the geometric correction factors for Drummond assembly. As in Botucatu the diffuse irradiance measurement method uses the MEO assembly, the geometric correction factors were adjusted for such assembly. Equations (5) and (6) show the loss of fractions of assemblies Drummond (Drummond, 1956) and MEO (Oliveira et al, 2002), respectively, and the equation (7) the calculation of the geometric correction factors.

$$F_{lost-D} = \left(\frac{2b}{\pi R}\right) \cdot \cos^3 \delta \int_0^{w_z} \cos Z \, d\omega \tag{5}$$

$$F_{lost-MEO} = \left(\frac{2b}{\pi R}\right) \cdot \cos \delta \cdot \left[\frac{\cos(\phi + \delta)}{\cos \phi}\right]^2 \int_0^{w_z} \cos Z \, d\omega \tag{6}$$

$$F_G = \frac{1}{1 - F_{lost}} \tag{7}$$

where b is the width of the ring and R the radius of the ring. The evaluation of the correction model is based on MBE and RMSE statistical indicative (Stone, 1993) given by Eq. (8) and Eq. (9), respectively.

$$MBE = \left(\sum_{i}^{N} (y_i - x_i) / N\right)$$
(8)

$$RMSE = \left(\sum_{i}^{N} (y_{i} - x_{i})^{2} / N\right)^{\frac{1}{2}}$$
(9)

where y_i represents the ring diffuse irradiance, x_i the reference diffuse irradiance and N is the number of observations. The MBE is the simple deviation and a positive value indicates an overestimate, while a negative value indicates an underestimate. The RMSE is the standard deviation and is related to the dispersal of values from the average.

3. Results and Discussions

In this section are compared two methods of correction of diffuse solar irradiance measured by the shading ring. The first method used is based on LeBaron-Perez correction method (Lebaron et al, 1990), using four parameters for a sky conditions description (geometrical factor, zenith angle, clarity index and brightness index). The second methodology is based on the correction method of DalPai-Escobedo (Dal Pai et al, 2011), and used two parameters for description of sky conditions (geometric factor and atmospheric transmissivity).

The LeBaron-Perez correction model considers both isotropy and anisotropy conditions of the radiation. A geometric factor was proposed for isotropy conditions based on construction features of the ring, while zenith angle, clarity index and brightness index was assigned for anisotropy conditions. In this case, while zenith angle is responsible for the position of the sun in the celestial hemisphere and the optical path taken by the sun's rays, clarity index and brightness index are linked to measurements performed on surface and reflect the interaction of radiation with the atmosphere. Tab. (3) shows the parameter values used in the LeBaron Perez-correction model divided into four sets, which result in 256 sky categories. Two situations were present for geometric factors: one containing the values of the original model for Drummond assembly and one adjusted for *MEO* assembly at Botucatu.

	D	_		Groups								
	Parameter	S	1	2	3	4						
i	Zenith angle		0 to 35	35 to 50	50 to 60	60 to 90						
;	j Geometric factor	(Original)	1 to 1.068	1.068 to 1.100	1.100 to 1.132	1,132 to						
J		(Adjusted)	1 to 1.123	1.123 to 1.165	1.165 to 1.208	1,208 to						
k	Epsilon		0 to 1,253	1.253 to 2.134	2.134 to 5.980	5.980 to						
1	Delta		0 to 0,12	0.12 to 0.20	0.20 to 0.30	0.30 to						

Table 3 - Limit values used for the four parameters chosen to describe the corrections applied to the diffuse irradiance measured by the shading ring. The combination of these parameters allow 256 sky coverage categories.

Once you have determined 256 categories of sky condition, corrections were calculated by the ratio of reference diffuse irradiance to not corrected diffuse irradiance. The advantage of Lebaron Perez-model is that these 256 classes represent a "scan" of more complex analytical formulas and, since these values are tabulated, the computational time in processing is more efficient. Tab. 4 and Tab. 5 show the correction factors obtained for Lebaron Perez-correction method. In Tab. 4 are shown the original coefficients developed using Drummond assembly. In Tab. 5 are shown the adjusted coefficients for Botucatu for *MEO* assembly.

Table 4 - Correction factors for each parameter category. (LeBaron-Perez model with original coefficients)

	Categories (i j k l)														
				(i = ze	enith; j	= geon	netric fa	actor; k	= epsil	lon; l =	delta)				
categ	fc	categ	fc	categ	Fc	categ	fc	categ	fc	categ	fc	categ	Fc	categ	fc
1111	1.051	1311	1.117	2111	1.051	2311	1.115	3111	1.069	3311	1.119	4111	1.047	4311	1.074
1112	1.051	1312	1.117	2112	1.051	2312	1.130	3112	1.073	3312	1.115	4112	1.058	4312	1.117
1113	1.051	1313	1.117	2113	1.051	2313	1.128	3113	1.076	3313	1.131	4113	1.060	4313	1.103
1114	1.051	1314	1.117	2114	1.051	2314	1.143	3114	1.085	3314	1.117	4114	1.069	4314	1.117
1121	1.051	1321	1.117	2121	1.051	2321	1.117	3121	1.161	3321	1.147	4121	1.076	4321	1.104
1122	1.051	1322	1.117	2122	1.051	2322	1.186	3122	1.086	3322	1.168	4122	1.074	4322	1.118
1123	1.051	1323	1.117	2123	1.051	2323	1.180	3123	1.135	3323	1.176	4123	1.092	4323	1.143
1124	1.051	1324	1.117	2124	1.051	2324	1.195	3124	1.132	3324	1.183	4124	1.118	4324	1.150
1131	1.051	1331	1.117	2131	1.051	2331	1.117	3131	1.051	3331	1.117	4131	1.187	4331	1.139
1132	1.051	1332	1.117	2132	1.051	2332	1.203	3132	1.080	3332	1.211	4132	1.140	4332	1.191
1133	1.051	1333	1.117	2133	1.051	2333	1.207	3133	1.169	3333	1.193	4133	1.150	4333	1.180
1134	1.051	1334	1.117	2134	1.051	2334	1.210	3134	1.144	3334	1.226	4134	1.117	4334	1.178
1141	1.051	1341	1.117	2141	1.051	2341	0.990	3141	1.015	3341	0.946	4141	0.925	4341	0.977
1142	1.051	1342	1.117	2142	1.051	2342	1.120	3142	1.182	3342	1.081	4142	1.057	4342	1.133
1143	1.051	1343	1.117	2143	1.051	2343	1.117	3143	1.051	3343	1.117	4143	1.089	4343	1.216
1144	1.051	1344	1.117	2144	1.051	2344	1.117	3144	1.051	3344	1.117	4144	1.024	4344	1.162
1211	1.082	1411	1.173	2211	1.104	2411	1.163	3211	1.082	3411	1.140	4211	1.063	4411	1.030
1212	1.082	1412	1.176	2212	1.095	2412	1.162	3212	1.089	3412	1.142	4212	1.076	4412	1.156
1213	1.082	1413	1.182	2213	1.082	2413	1.159	3213	1.088	3413	1.129	4213	1.085	4413	1.156
1214	1.082	1414	1.191	2214	1.105	2414	1.168	3214	1.093	3414	1.156	4214	1.082	4414	1.156
1221	1.082	1421	1.248	2221	1.082	2421	1.184	3221	1.161	3421	1.168	4221	1.078	4421	1.146
1222	1.082	1422	1.211	2222	1.082	2422	1.194	3222	1.130	3422	1.177	4222	1.102	4422	1.174

1223	1.082	1423	1.221	2223	1.171	2423	1.213	3223	1.148	3423	1.197	4223	1.119	4423	1.182
1224	1.082	1424	1.238	2224	1.148	2424	1.230	3224	1.160	3424	1.210	4224	1.116	4424	1.185
1231	1.082	1431	1.156	2231	1.082	2431	1.156	3231	1.082	3431	1.156	4231	1.167	4431	1.191
1232	1.082	1432	1.237	2232	1.082	2432	1.212	3232	1.195	3432	1.185	4232	1.098	4432	1.181
1233	1.082	1433	1.238	2233	1.160	2433	1.230	3233	1.191	3433	1.210	4233	1.133	4433	1.156
1234	1.082	1434	1.232	2234	1.206	2434	1.238	3234	1.178	3434	1.216	4234	1.155	4434	1.167
1241	1.082	1441	1.181	2241	1.082	2441	1.104	3241	1.016	3441	1.027	4241	0.967	4441	1.150
1242	1.042	1442	1.217	2242	1.082	2442	1.180	3242	1.115	3442	1.111	4242	1.119	4442	1.033
1243	1.082	1443	1.156	2243	1.082	2443	1.156	3243	1.082	3443	1.156	4243	1.194	4443	1.064
1244	1.082	1444	1.156	2244	1.082	2444	1.156	3244	1.082	3444	1.156	4244	1.025	4444	1.142

Table 5 - Correction factors for each parameter category. (LeBaron-Perez model with adjusted coefficients)
Categories (i j k l)

		(i = zenith; j = geometric factor; k = epsilon; l = delta)													
categ	fc	categ	fc	categ	Fc	categ	fc	categ	fc	categ	fc	categ	Fc	categ	Fc
1111	1.061	1311	1.137	2111	1.063	2311	1.103	3111	1.065	3311	1.100	4111	1.045	4311	1.062
1112	1.061	1312	1.138	2112	1.068	2312	1.132	3112	1.066	3312	1.108	4112	1.047	4312	1.068
1113	1.061	1313	1.148	2113	1.068	2313	1.137	3113	1.066	3313	1.121	4113	1.054	4313	1.060
1114	1.061	1314	1.159	2114	1.086	2314	1.141	3114	1.076	3314	1.109	4114	1.040	4314	0.934
1121	1.061	1321	1.249	2121	1.174	2321	1.208	3121	1.173	3321	1.170	4121	1.102	4321	1.159
1122	1.061	1322	1.249	2122	1.220	2322	1.233	3122	1.205	3322	1.165	4122	1.087	4322	1.151
1123	1.061	1323	1.250	2123	1.209	2323	1.225	3123	1.187	3323	1.190	4123	1.096	4323	1.142
1124	1.061	1324	1.257	2124	1.189	2324	1.232	3124	1.170	3324	1.204	4124	1.097	4324	1.150
1131	1.061	1331	1.470	2131	1.460	2331	1.479	3131	1.061	3331	1.187	4131	1.211	4331	1.241
1132	1.061	1332	1.338	2132	1.326	2332	1.342	3132	1.343	3332	1.320	4132	1.257	4332	1.224
1133	1.061	1333	1.314	2133	1.284	2333	1.306	3133	1.281	3333	1.299	4133	1.277	4333	1.292
1134	1.061	1334	1.318	2134	1.244	2334	1.295	3134	1.218	3334	1.261	4134	1.132	4334	1.172
1141	1.061	1341	1.384	2141	1.357	2341	1.394	3141	1.257	3341	1.290	4141	1.064	4341	1.055
1142	1.061	1342	1.372	2142	1.293	2342	1.371	3142	1.229	3342	1.309	4142	1.063	4342	1.110
1143	1.061	1343	1.187	2143	1.251	2343	1.328	3143	1.218	3343	1.292	4143	1.019	4343	1.142
1144	1.061	1344	1.187	2144	1.061	2344	1.187	3144	1.165	3344	1.304	4144	1.014	4344	1.145
1211	1.112	1411	1.185	2211	1.103	2411	1.151	3211	1.091	3411	1.109	4211	1.058	4411	1.039
1212	1.119	1412	1.183	2212	1.104	2412	1.162	3212	1.103	3412	1.122	4212	1.058	4412	1.041
1213	1.120	1413	1.186	2213	1.111	2413	1.163	3213	1.097	3413	1.125	4213	1.060	4413	1.045
1214	1.125	1414	1.193	2214	1.117	2414	1.160	3214	1.100	3414	1.133	4214	1.004	4414	1.005
1221	1.144	1421	1.245	2221	1.222	2421	1.212	3221	1.176	3421	1.202	4221	1.134	4421	1.187
1222	1.228	1422	1.267	2222	1.237	2422	1.219	3222	1.171	3422	1.202	4222	1.117	4422	1.188
1223	1.224	1423	1.284	2223	1.222	2423	1.230	3223	1.189	3423	1.204	4223	1.122	4423	1.189
1224	1.231	1424	1.292	2224	1.219	2424	1.257	3224	1.191	3424	1.232	4224	1.120	4424	1.190
1231	1.345	1431	1.445	2231	1.379	2431	1.420	3231	1.144	3431	1.240	4231	1.216	4431	1.254
1232	1.315	1432	1.362	2232	1.311	2432	1.349	3232	1.313	3432	1.321	4232	1.187	4432	1.229
1233	1.261	1433	1.360	2233	1.296	2433	1.344	3233	1.264	3433	1.317	4233	1.256	4433	1.246

1234	1.256	1434	1.344	2234	1.266	2434	1.337	3234	1.243	3434	1.316	4234	1.148	4434	1.207
1241	1.328	1441	1.426	2241	1.349	2441	1.405	3241	1.240	3441	1.312	4241	1.069	4441	1.177
1242	1.361	1442	1.355	2242	1.314	2442	1.360	3242	1.239	3442	1.310	4242	1.083	4442	1.161
1243	1.144	1443	1.230	2243	1.283	2443	1.322	3243	1.256	3443	1.305	4243	1.048	4443	1.155
1244	1.144	1444	1.230	2244	1.144	2444	1.230	3244	1.205	3444	1.287	4244	1.030	4444	1.169

The categories consist of the zenith angle parameters, geometrical factor, epsilon and delta, when combined, result in 256 categories. The groups was carried out by the indices "i", "j", "k" and "l", which represent, respectively, the zenith angle, geometrical factor, epsilon and delta, and each of these indices can take values from 1 to 4 depending on their range (Tab. 3). Thus, the cluster was determined by means of a number consisting of four digits in the format "ijkl". For example, the category 4321 describes a state with zenith angle ranging from 60 to 90, the geometrical factor of 1.100 to 1.132, epsilon 1.253 to 2.134 and delta 0 to 0.12. Some categories were not filled with solar irradiance data due to physical limitations of the parameters. In this case, the correction factor was adopted an average of the geometrical factor.

Tab. 4 shows the original correction factors proposed by LeBaron et al (1990), developed for the assembly of Drummond, ranging from 0.925 to 1.248. The largest corrections occurred for low cloudiness and high brightness index (delta), typical of the days of high solar declination. Minor corrections occurred for high cloudiness, wherein the isotropic behavior of the radiation is more evident.

We adjusted LeBaron-Perez's methodology for Botucatu atmospheric conditions and MEO shadow ring's assembly (LeBaron Perez-adjusted model). Tab. 5 shows the adjusted coefficients. Corrections ranged from 0.934 to 1.470. The largest correction also occurred for low cloudiness, showing great influence of the anisotropy. The lowest correction value occurred for high situation zenith angle and brightness index, probably linked to reflections inside the shading ring.

We also use the Dal Pai-Escobedo correction model, which is based on geometric factor (isotropy) and K_T atmospheric transmissivity (anisotropy). Tab. 6 shows the numerical factors used by the Dal Pai-Escobedo correction model for four K_T atmospheric transmissivity intervals.

K _T Interval	Correction Factors
$0 \le K_T < 0.35$	0.975
$0.35 \le K_T < 0.55$	1.034
$0.55 \le K_T < 0.65$	1.083
$0.65 \leq K_T < 1$	1.108

Table 6 - Correction factors based on K_T atmospheric transmissivity intervals (MEO shading assembly).

To validate the correction models, corrected diffuse irradiance were compared with reference diffuse irradiance by means of MBE and RMSE statistical indicators. MBE shows the long-term model behavior, with an underestimating or overestimating by the model. RMSE shows the dispersion of the model around the measure. Tab. 7 shows MBE, RMSE and slope, while Fig. 4 shows the graphs between reference diffuse irradiance and corrected diffuse irradiance by the correction models (LeBaron-Perez (Original), LeBaron- Perez (Adjusted) and Dal Pai-Escobedo).

Table 7 - MBE, RMSE and slope for reference diffuse irradiance and corrected diffuse irradiance (LeBaron-Perez (Original), LeBaron-Perez (Adjusted) and Dal Pai-Escobedo).

		Statis	tical Indic	ators	
Correction Model	MBE	MBE	RMSE	RMSE	CI
	(W/m ²)	(%)	(W/m ²)	(%)	Slope

LeBaron-Perez - OR	-9,52	-5,93	22,87	14,24	1,053
LeBaron-Perez - AJ	-0,74	-0,46	17,32	10,79	1,005
Dal Pai-Escobedo	-0,02	-0,01	18,11	11,28	0,999

The worst performance was given to the model LeBaron-Perez correction with original coefficients, with an underestimation of 6% and dispersion of 14.3%. This result was expected, since the original model coefficients were developed for a different atmospheric condition of Botucatu, both aerosols, water vapor and clouds. This model was significantly improved when setting the coefficients for atmospheric situation of Botucatu, causing a reduction in MBE (~ 0.5%) and RMSE (~ 11%). A good performance was also attributed to Dal Pai-Escobedo correction model, with low values of MBE (- 0.01%) and RMSE (11.28%). With respect to slope, Lebaron-Perez adjusted and Dal Pai-Escobedo correction models had the same great performance, with slope closer to 1. Overall, LeBaron-Perez (Adjusted) and Dal Pai-Escobedo correction models exhibit the same order of accuracy in correction of diffuse irradiance measured by the shading ring. Dal Pai-Escobedo correction model takes a small advantage by presenting less parameters to classify the sky.

Figure 4 - Comparison between the diffuse irradiance reference and corrected diffuse irradiance by the correction models: a) LeBaron-Perez (Original). b) LeBaron-Perez (Adjusted). c) Dal Pai-Escobedo.

4. Conclusion

Our results allowed the following conclusions:

a) Lebaron-Perez correction model with the original coefficients, is not suitable to correct diffuse irradiance measured in Botucatu with the *MEO* shading ring method.

b) Lebaron-Perez correction model, when adjusted for Botucatu sky conditions, can be used to correct the diffuse irradiance measured by the *MEO* shading ring method.

c) Dal Pai-Escobedo correction model is suitable to correct diffuse irradiance measured by the *MEO* shading ring method.

d) Lebaron-Perez (Adjusted) and Dal Pai-Escobedo correction models has the same efficiency to correct diffuse irradiance.

e) We recommend Dal Pai-Escobedo correction model to correct diffuse irradiance because it uses fewer parameters.

5. References

- Battles, F. J., Olmo, F. J., Alados-Arboledas, L., 1995. On shadowband correction methods for diffuse irradiance measurements. Solar Energy, v.54, n.2, p.105-114.
- Codato, G, Oliveira, A P, Soares, J, Escobedo, J F, Gomes, E N, Dal Pai, A., 2008. Global and diffuse solar irradiances in urban and rural areas in southeast Brazil. Theor Appl Climatol, v 93, p 57-73.
- Dal Pai, A., Escobedo, J. F., 2011. Numerical correction for the diffuse solar irradiance by the Melo-Escobedo shadowring measuring method, ISES SOLAR WORLD CONGRESS, Kassel, Germany.
- Drummond, A. J., 1956. On the measurements of sky radiation. Archiv. fur Meteorologie. Geophysik Bioklimatologie, v.7, p.413-436.
- Iqbal, M. An introduction to solar radiation. Nova Iorque, Academic Press, 1983. 390p.
- Kasten, F., Dehne, K., Brettschneider, W. 1983. Improvement of measurement of diffuse solar radiation. Solar radiation data, série F, n.2, pp.221-225, D. Redel, Dordrecht.
- Kudish, A I, Evseev, E G., 2008. The assessment of four different correction models applied to the diffuse radiation measured with a shadow ring using global and normal beam radiation measurements for Beer Sheva, Israel. Solar Energy, v.82, p.144-156.

- Lebaron, B. A., Michalsky, J. J., Perez, R. 1990. A simple procedure for correcting shadowband data for all sky conditions. Solar Energy, v.44, n.5, pp.249-256.
- Melo, J. M. D., Escobedo, J. F., 1994. Medida da radiação solar difusa. In: ENERGÍAS LÍMPIAS EN PROGRESO, VII CONGRESSO IBÉRICO DE ENERGIA SOLAR, Vigo, Espanha. Anais INTERNATIONAL SOLAR ENERGY SOCIETY, v. 1.
- Oliveira, A. P., Escobedo, J. F., Machado, A. J., 2002. A new shadow-ring device for measuring diffuse solar radiation at surface. Journal of Atmospheric and Oceanic Technology, Boston, v. 19, p. 698-708.
- Pollard, D. G. E Langevine, L. P., 1988. An anisotropic correction for diffuse irradiance measurements in Guyana. In: Proceeding of the 1988 Annual Meeting, M. J. Coleman (Ed.), p. 238-243, ASES Cambridge.
- Stanhill, G. 1985. Observations of shadering correction factors for diffuse sky radiation measurements at the Dead Sea.Quarterly Journal of the Royal Meteorological Society, v.111, pp.1125- 30.
- Stone, R. J. 1993. Improved statistical procedure for the evaluation of solar radiation estimation models. Solar Energy, v.51, n.4, pp.289-291.

Acknowledgements. The authors acknowledge the financial support from FAPESP.