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Abstract 

Solar hot water (SHW) systems are viable and sustainable devices for hot water domestic and industrial energy 

needs. Nevertheless, the efficient operation of these systems can be compromised if the necessary maintenance 

measures are not implemented. Degradation of components and malfunction in SHW systems may undergo 

unnoticed when coupled to traditional auxiliary energy sources. Detailed and continuous monitoring to counter 

this, however, elevates the overall cost of the system and thus, other methods have been explored for 

performance assessment and fault detection. Data-driven techniques became popular as Prognosis and Health 

Management approaches in mechanical components for detection, diagnostics and prognostics of complex 

systems. In this article, Deep Learning algorithms, such as ANN, RNN and LSTM, are analyzed as alternatives 

for performance prediction and anomalous behavior detection in a solar hot water system. TRNSYS simulation 

software is used to generate synthetic operation data for the system for nominal operational and fault-induced 

conditions. Similar results were obtained for the temperature predictions, with the LSTM models obtaining a 

lowest combined RMSE of 1.27°C, MAE of 0.55°C and variance 0.52 °C2, as well as the lowest relative 

prediction errors of 3.45%, indicating a more reliable performance. Using this model, the prediction-based 

anomaly detection was tested under different meteorological conditions, where overheating and heat 

underproduction anomalies were detected with a mean accuracy of 85% and 82%, respectively.  

Keywords: Solar hot water systems, performance forecast, anomaly detection, Deep Learning. 

1. Introduction 

Improving the performance and reliability of renewable energy systems, aiming to reduce the associated  

investment and operational costs, is a high priority for scientists and engineers since it represents the biggest 

entry barrier to a market currently dominated by fossil-fuel based energy sources (IRENA, 2018). Fault 

detection and diagnostics can be achieved through various techniques, from simulation and model-based 

approaches to data-driven methods. During the past decade, several Machine Learning (ML) applications have 

been explored in Prognosis and Health Management (PHM) focused on increasing the availability and 

performance of complex systems, as well as assisting maintenance and other decision-making analysis (Niu, 

2017). Based on the available information, a ML algorithm can learn from the data, extracting abstract 

relationships within the studied variables to classify or predict future values. Within these, the growing success 

and popularity of Deep Learning (DL) techniques for reliability and maintenance in mechanical systems have 

led, for instance, to successful fault detection in rotary machinery (Janssens et al., 2016) and the estimation of 

Remaining Useful Life (RUL) in lithium-ion batteries (Lui et al., 2017), among others.  

Solar hot water (SHW) systems are commercially mature applications of solar thermal technologies for 

domestic and low temperature industrial uses. These are frequently coupled to conventional electrically-driven 

or fossil-fueled back-up systems, as well as thermal storage, which extend the availability of thermal energy 

limited by the solar radiation’s daily profile. Thus, failures or anomalous behavior may not be visible in SHW 

systems, as the auxiliary sources supply the required energy to fulfill the nominal heat load. Therefore, 

component failure may go unnoticed since nominal periodical maintenance procedures are not complex enough 

to take into account degradation issues and replacement needs in specific components. For this reason, frequent 

inspection and monitoring are important factors in extending the useful life of SHW systems, as well as 

reducing the energy consumption of conventional heat sources (de Keizer et al., 2013). In this context, 

performance prediction is also a fundamental tool to assess the state of health of the system and assisting in 

maintenance scheduling tasks.  

In previous literature, the task of performance prediction in solar thermal systems has been addressed with ML 
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algorithms. A thorough review was presented by Ghritlahre and Prasad, referencing over 30 papers regarding 

the use of different variants of Artificial Neural Networks (ANN) (Ghritlahre and Prasad, 2018). Performance 

prediction and efficiency analysis under different meteorological conditions are studied in SHW systems, solar 

assisted heat pumps and thermal storage systems with different neural network models such as Multi-Layered 

Perceptron (MLP), Radial Basis Functions (RBF) and Adaptive Network-Based Fuzzy Inference System 

(ANFIS). Fault detection has also been investigated by applying ANN in thermal systems. Kalogirou et al. 

proposed a fault diagnosis system in which the monitored data is compared to the predicted values, allowing to 

identify faults in solar collectors with outstanding results (Kalogirou et al., 2008). However, specialized DL 

architectures, developed for specific tasks, have not yet been tested in SHW systems. For instance, the 

advantages of implementing solutions based on Recurrent Neural Networks (RNN) for timeseries replication 

and analysis of temporal relationships, as well as Long Short-Term Memory (LSTM-RNN) implemented for 

analyzing long-term temporal dependencies have not been thoroughly analyzed in SHW systems (Lipton et al., 

2015). 

A comparative study of LSTM neural networks in forecasting day-ahead global horizontal irradiance with 

satellite data was presented in 2018 (Srivastava and Lessmann, 2018). The authors highlight that shallow ML 

algorithms (Support Vector Machine (SVM), Random Forest, among others) and standard ANN (Feed-Forward 

Neural Networks (FFNN), RBF, MLP) have been frequently used for radiation forecast, but at the time, no 

specialized models such as LSTM had been explored for this purpose. This work aimed to obtain an accurate 

forecast for photovoltaic (PV) based energy plants, since PV power production, stability, and storage 

dimensioning is strongly influenced by instantaneous meteorological conditions. Predictive features are a critical 

issue for the electrical grid management and for smart-grid applications: planning, storage system sizing and 

market participation of variable renewable energy sources (Leva et al., 2017). However, as mentioned, 

applications of these architectures are scarce in solar thermal systems. Even though thermal systems present a 

natural inertia which generally reduces the need for high accuracy and precision for temperature predictions, 

time series-focused algorithms such as RNN and LSTM may lead to better and more precise forecasts than the 

previous ANN results. 

In this work, ANN, RNN and LSTM architectures are analyzed for temperature prediction in a SHW system; 

and compared under similar conditions to highlight their strengths and shortcomings. Their accuracy and 

precision are compared for the prediction of future instantaneous values, as well as for short sequences based on 

the RMSE and MAE scores obtained. The methodology and results of this analysis is thoroughly detailed in 

(Correa-Jullian et al., 2019). The trained models are used in a further application for detection of anomalous 

behavior within the system, allowing an early identification of heat underproduction or overheating conditions 

based on the obtained predictions. By comparing the prediction errors of the model produced when using 

nominal and fault-induced data, an error-based threshold is determined to classify the health state of the system. 

Three cases with induced faults are studied under different meteorological conditions. The accuracy, precision, 

recall, F-1 and specificity scores are reported for this anomalous scenario. Aiming to apply the algorithms to an 

actual system, the solar-assisted heating loop located at the University of Chile is used as a case of study. 

Synthetic data is generated in TRNSYS under nominal and anomaly-induced conditions as suggested in 

(Kalogirou et al., 2008; Souliotis et al., 2009). For building and validating the TRNSYS simulation, the nominal 

data from the manufacturer was employed, introducing design temperatures, equipment sizes and capacities and 

the control scheme, of each subsystem. 

The following sections of this article are organized as follows. Section 2 briefly describes the configuration of 

the SHW system, its components, and operation logic. Section 3 presents the methodology used for data 

recollection and the Deep Learning framework for temperature sequence prediction. Results regarding both 

temperature prediction and anomaly detection are discussed in Section 4. Finally, Section 5 concludes and 

highlights the future challenges for the proposed anomaly detection framework. 

2. SHW System Description 

The SHW system analyzed herein is currently installed at Universidad de Chile, located in Santiago, Chile; and 

serves as a heat source for supplying hot water to showers, among other sanitary hot water needs. A schematic 

representation of the system is shown in Fig. 1, where the red and blue lines represent hot and cold-water flows, 
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respectively. The nominal daily demand is estimated as 24,000 L at 40°C for 12 hours and is provided by two 

separate heating circuits. The preheating section consists on the SHW system, excess heat from heat-recovery 

chiller and two intermediate 4 m3 storage tanks (Pre-Heat Tank 1-2) designed to store water at 30-40°C 

throughout the year. The storage tanks also receive the returning hot water not dispatched to the system. 

Subsequently, when hot water is required, both tanks deliver the demand to the heating circuit, where heat 

pumps complements the heat load to reach 60°C and later stored in four final storage tanks (Hot Tank 1-4). 

These circuits are connected to the mains water distribution system, used to regulate output temperature and as 

make-up water in the preheating section. Temperature and operation status are monitored in the SHW system, 

taking into consideration the tanks, heat-recovery chiller and heat pumps, as well as the heat exchangers and 

centrifugal pumps. Hitek Solar NSC 58-30 heat-pipe collectors are considered, as well as a Thermocold CWC 

Prozone 1320 Z C heat-recovery chiller. Table 1 presents the Incidence Angle Modifiers (IAM) reported by the 

solar collector manufacturer for transverse 𝜃𝑇 and longitudinal 𝜃𝐿 incidence angles. Relevant thermal properties 

of the heat-pipe collectors used in this installation are detailed in Table 2.  

 

Fig. 1: Schematic process flow diagram of the SHW system. 

Tab.  1: Incidence Angle Modifiers values for Hitek Solar NSC model. 

IAM Values 10° 20° 30° 40° 50° 60° 70° 

𝐾𝜃(𝜃𝑇) 1.010 1.019 1.056 1.151 1.452 1.462 1.261 

𝐾𝜃(𝜃𝐿) 0.999 0.994 1.018 0.974 0.952 0.913 0.833 

 

Tab.  2: Thermal capacities of Hitek Solar NSC model. 

Parameter Value 

𝜼𝟎 0.618 

𝒂𝟏𝒂 [𝑾 𝒎𝟐𝑲⁄ ] 1.377 

𝒂𝟐𝒂  [𝑾 𝒎𝟐𝑲𝟐]⁄  0.018 

Effective Thermal Capacity [𝒌𝑱 𝒎𝟐𝑲⁄ ] 5.684 

3. Methodology 

The purpose of the Deep Learning-based framework is to predict future values of the solar collector’s outlet 

temperature based on the generated data from the TRNSYS simulation. In this section, a brief description of the 

simulation approach in TRNSYS software and the methodology to design the prediction framework is 

presented. Data recollection is assessed in Section 3.1, including the generation of anomalous temperature 

profiles. Design decisions regarding the DL models, the training process are detailed in Section 3.2  

3.1 Data recollection 
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Technical data and nominal operating conditions are used as inputs to construct a  TRNSYS deck (Klein, 2018), 

as well as meteorological data from a complete measuring station located close to the solar field. This 

meteorological station includes measurements of solar radiation (Global, Beam and Diffuse components), 

ambient temperature, wind speed and wind direction. The following simplifications were considered in the 

simulation:  

• Mains water temperature is estimated based on numeric correlations presented in (Burch and 

Christensen, 2007). 

• Heat pumps are modelled as auxiliary water heaters with the same nominal heating capacities. It must be 

noted that the temperature setpoint of the four heating water tanks is 60°C to control Legionella growth. 

• Nominal conditions are kept constant for returning flows to the heat-recovery chiller which have not 

been simulated. These returning flows enter the evaporator at 12.7°C and the returning temperature from the 

secondary heat load at 44.5°C.  

• The temperature control systems are simplified as the following:  

o If the temperature registered at the outlet of the solar collector field is higher than the average pre-

heating tank temperatures, Pumps 1-2 are activated.  

o Mixing valves are activated if the outlet temperature of the heat tanks is higher than 45°C, in which 

case mains water is introduced before being dispatched. 

• The system operates for 14 hours on weekdays, between 7 AM and 9 PM. During weekends the 

operation hours are reduced to 11, from 8 AM to 7 PM.  

• As no real-time measurements of the hot water demand profile were available, a weekly profile was 

drawn from estimations of user experience and the design conditions. 

Although the model is not experimentally validated due to technical difficulties in the installed system, a 

comparison between the main temperatures obtained with the simulation and the design temperatures is 

presented in Table 3. Here, the overall difference accounts temperatures 19.5% higher in the simulation. This is 

an average difference of 7.7 °C, mainly caused by the higher participation of the solar field. In addition to that, 

TRNSYS has been applied and validated in different solar thermal studies, such as pool heating, hot water 

storage tanks, and both flat plate and evacuated tube solar collectors (Ayompe et al., 2011; Kalogirou et al., 

2019; Ruiz and Martínez, 2010). Thus, the thermal behavior of the system estimated by TRNSYS constitutes an 

acceptable approach to explore the DL techniques for performance prediction. The simulation is carried out 

considering actual radiation data from April 7th to September 22nd, 2018. Resulting temperatures are monitored 

and extracted at sampling frequency of a minute.  

Tab.  3: Comparison of design and simulated temperatures in the SHW system. 

Temperature °C Design Simulated Difference 

Pre-Heat Tank 35.0 45.2 29.3% 

HR Ch. Outlet 50.0 54.5 9.0% 

Solar Inlet 37.0 45.0 21.7% 

Solar Outlet 45.0 53.2 18.2% 

  
 

Average 19.5% 

Additionally, anomalous scenarios regarding pump failure and solar collector degradation were simulated, 

inducing overheating or unexpected reduced heat production, represented as faulty water-draw forcing function 

and the reduction of incident radiation, respectively. Overheating may be caused by low hot water demand or 

pump failure. This is mainly due to the logic with which the control system activates the circulation pumps 

connecting the solar field and the heat exchangers, as well as the lack of other heat-dampening methods to 

prevent this behavior and reduce the heat delivered. From operational experience, the biggest issues arise from 

overheating due to lower demand profiles than expected, especially during the summer season. On the other 

hand, heat underproduction may be associated with unexpected meteorological conditions, degradation, or 

failure in one or more of its components (de Keizer et al., 2011).  

Special interest is devoted to monitoring the solar field outlet temperature, since the traditional sources (heat-
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recovery chiller and heat pumps) mask the effect of the anomalous behavior and possible damages in the SHW 

system. The effect of the anomalous water-draw profiles and the reduction of the collector’s efficiency on the 

outlet temperature of the solar field are shown in Fig. 2. These plots show the difference between healthy and 

anomalous temperature values caused by the induced fault. Fluctuations in the system with a cycle life shorter 

than an hour and lower magnitudes cannot be categorically defined as anomalous, since might be explained by 

the natural variation of the incoming solar radiation. 

 

Fig. 2: Anomalous temperature profiles for (a) water-draw anomaly and (b) collector operation anomaly. 

3.2 Deep Learning Framework 

The prediction of future values from historic operational fault-free data is explored by using DL algorithms. As 

mentioned, ANN has been frequently used for performance prediction in many different systems. A trained 

model can extract abstract relationships within the data, interpreting new samples and subsequently replicating 

the learnt behavior. Model’s performance depends on the architecture, the nature of the data, the selected 

hyperparameters and the training process, which is stochastic in nature.  

The basic representation of a single-layered ANN is presented in  Fig. 3 (a), in which the output value 𝑦 is 

calculated by applying a non-linear transfer function 𝜎 to a weighted sum of the input data 𝑋. In multiple-

layered ANN or Deep Neural Network (DNN), a series of weight matrices (𝑊) and bias (𝑏) vectors represent 

the transitions between the layers, as shown in eq. 1, in which the input data is the output value from the 

previous layer (eq. 2). For regression tasks, the final output layer applies a linear function to yield the predicted 

future value of a time-series.  

𝑦 = 𝜎(𝑊𝑡𝑋 + 𝑏)       (eq. 1) 

ℎ𝑖 = 𝜎(𝑊𝑖
𝑡ℎ𝑖−1 + 𝑏𝑖)      (eq. 2) 

 
Fig. 3: Basic structure of (a) MLP or ANN (b) Unfolded RNN. 

In the case of Supervised Learning methods for regression tasks, the training of the ANN model consists on the 

adjustment of the weight and biases to properly predict an output. This value is then compared with the original 

label, and through the minimization of the Mean Squared Error (MSE), the parameters of the network are 

updated through backpropagation (Rumelhart et al., 1988). A usual metric to describe the performance of the 

model is the Root Mean Squared Error (RMSE) shown in eq. 3.  
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RMSE =  √∑
(𝑦𝑟𝑒𝑎𝑙,𝑖−𝑦𝑝𝑟𝑒𝑑,𝑖)

2

𝑛

𝑛
𝑖=1      (eq. 3) 

Similar processes are applied to the training of RNN and LSTM architectures, in which the data is cyclically 

analyzed to extract temporal relationships. In an RNN, each layer will receive the current input data 𝑥𝑡 and the 

previous hidden state ℎ𝑡−1 per timestep. The output 𝑦𝑝𝑟𝑒𝑑,𝑡   will depend on the hidden value of the current time 

step ℎ𝑡 shown in eq. 4 and eq. 5. The graphical representation of the unrolled temporal structure of an RNN is 

presented in Fig. 3 (b), where each timestep shares weights for the input, hidden and output data through 

𝑊𝑥 , 𝑊𝑟 , 𝑊𝑦 and biases in the hidden and output layers 𝑏ℎ , 𝑏𝑦, as follows.  

ℎ𝑡 =  𝜎(𝑊𝑥  ⋅ 𝑥𝑡  +  𝑊𝑟  ⋅ ℎt−1  +  𝑏ℎ  )    (eq. 4) 

yt = 𝜎(𝑊𝑦 ⋅ ℎ𝑡 + 𝑏𝑦)      (eq. 5) 

LSTM architectures are constructed from the same concept for timeseries analysis. However, this model is 

equipped with an internal memory cell, which selectively updates depending on the new input values for each 

timestep (Hochreiter and Schmidhuber, 1997). This allows the model to retain and replicate behavior for longer 

sequences than RNN models. The Vanilla LSTM is composed of three gates: forget, input and output gates, 

representing each an individual RNN, shown left to right in Fig. 4 which use logistic sigmoid activation 

functions to regulate how much information is passed through these gates, between [0,1]. Each cell has three 

inputs of data for each timestep: from the previous cell state 𝑐𝑡−1, previous hidden output ℎ𝑡−1 and the new 

input 𝑥𝑡. As the new data inputs the memory cell, the forget gate (eq. 6) selects which values from the previous 

state will be erased from the memory cell, while the input gate (eq. 7) selects the information with which the 

state will be updated with.  

 

Fig. 4: Basic structure of Vanilla LSTM. 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)     (eq. 6) 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)     (eq. 7) 

A new cell state candidate is constructed from the input data (eq. 8). By combining the input and forget gates 

with the previous state of the cell and the new candidate, the updated cell state is calculated with eq. 9.  

𝑎𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)     (eq. 8) 

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ 𝑎𝑡      (eq. 9) 

Finally, the output gate defines which information from the cell state will construct the hidden state of the cell 

through eq. 10 and eq. 11. 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)     (eq. 10) 

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝑐𝑡)       (eq. 11) 

Parametric models, such as DNN, RNN and LSTM, are defined by trainable parameters called hyperparameters. 

An adequate choice for these values significantly impacts the performance of the models. Depending on the 

nature of the data and the required task, the number of layers and units per layers, activation functions, learning 
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rates, optimizers, batch size and training epochs must be selected. An important aspect of these hyperparameters 

is impact that present on the abstract representation of the data within the latent space of the model. From the 

learned latent space, the performance of the model will depend on how similar or dissimilar the new input data 

is compared to the training set used to construct that latent space. For instance, for complex data mapping, such 

as physical phenomena, it has been reported that architectures with more layers and less units per layer are 

preferred (Graves et al., 2013; Levine et al., 2017). Adam and RMSProp are assessed as optimizers (Kingma 

and Ba, 2014; Tijmen and Geoffrey E., 2012), while the hyperbolic tangent (eq. 12) and the Rectified Linear 

Units functions (eq. 13) are used as activation functions.  

𝑡𝑎𝑛ℎ(𝑥) =
2

1+𝑒−2𝑥 − 1     (eq. 12) 

𝑅𝑒𝐿𝑈(𝑥) = {
0 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

     (eq. 13) 

The ANN, RNN and LSTM models were tested under different conditions regarding the length of the 

temperature sequence they were required to learn and replicate. One, three and seven days of continuous 

previous data sequences and their effect on the performance of the models was tested. The size of the datasets 

for each sequence length is detailed in Table 4. Models were compared with the RMSE metric, as well as the 

relative prediction error for single temperature predictions. Furthermore, their ability to predict longer sequences 

was analyzed.  

Tab.  4: Number of samples per time-window length. 

Dataset N° Previous Days Time-window Size Train Set Validation Set Test Set 

Solar 

Collector 

Outlet T° 

1 240 5836 1460 1824 

3 720 17510 4378 5472 

7 1680 23654 5919 7393 

4. Results and Discussion  

This section presents the results obtained when assessing the DL architectures applied for temperature 

prediction and anomaly detection. Initially, various potential candidate DL models are trained and tested with 

data in nominal operational conditions. From this assessment, one trained model is selected for anomaly 

detection purposes. This selected model is tested with fault-free and fault-induced data and the prediction errors 

will be compared. From this, a threshold is determined to separate and classify the health state of the system 

between nominal and anomalous conditions.  

Simulated data from the TRSNSYS model is processed through sliding windows, generating the sequences 

which the DL models are trained. The predictions of the solar collector field’s outlet temperature considered the 

following variables of the system as inputs: ambient temperature, inlet temperature of solar field, control signal 

of solar pumps and inlet temperature of the heat exchanger connected to the pre-heating tanks. Datasets are 

normalized and separated into training (20%), validation (16%) and test sets (64%).  

The following hyperparameters were assessed for DNN, RNN and LSTM architectures: number of units and 

layers, activation functions, optimizer, training epochs; and batch sizes, as seen in Tab.  5. These different 

configurations were trained, validated and tested with each independent dataset; and their performance is 

compared, seeking for accurate and precise predictions. 

Tab.  5: Tested hyperparameters and architectures. 

Model DNN, RNN, LSTM 

Data Length 1-3-7 Days 

Number of layers 1-2-3 

Number of RNN units 16, 32, 64, 128, 256 

Number of MLP units 128, 256, 512, 1024 

Activation Function Tanh, ReLU 

Optimizer Adam, RMSProp 

Epochs 50, 75, 100, 150, 200 

Batch Size 32, 64, 128 
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4.1 Temperature Prediction 

The criteria used to assess the performance of trained models is low RMSE values and low variance for both 

single time-step ahead value and sequence predictions obtained over the test sets. The best results for single 

value predictions were obtained with an RNN-based model, but LSTM achieved more precise predictions for 

temperatures sequences; and both outperform ANN architectures.  

In Table 6, the obtained test errors and their related statistical metrics are presented for different configurations, 

in which those models with a variance below 1°C have been highlighted in bold font. Here, the effect of the 

prior data sequence’s length used to train the model can be visualized as follows: for DNN and RNN, the use of 

the whole previous day as input data is enough to predict the following timesteps’ output accurately. However, 

LSTM requires longer sequences to reach comparable results. The improvement of the LSTM’s performance 

with a three day-length temporal matrix reaches an RMSE below 1°C, but the difference is not significant to 

when a seven-day sequence is analyzed.  

Tab.  6: Test errors and statistical metrics for trained models. 

Model Num. Days Units Test Error Variance R2 Explained Variance 

DNN 1 64-32 1.74 2.910 0.986 0.986 

RNN 1 64 1.68 2.460 0.987 0.988 

DRNN 1 64-32 1.28 1.221 0.993 0.993 

LSTM 1 64 2.5 3.410 0.982 0.984 

DNN-1 3 64-32 1.43 1.587 0.988 0.991 

DNN-2 3 64-32-16 1.29 1.502 0.990 0.991 

DNN-3 3 128-64 1.66 2.425 0.984 0.986 

DRNN-1 3 64-32 0.92 1.516 0.991 0.991 

DRNN-2 3 64-32-16 0.89 0.619 0.996 0.996 

DLSTM-1 3 64-32 1.42 0.618 0.996 0.996 

DLSTM-2 3 128-64 1.47 0.520 0.997 0.997 

DLSTM-3  3 128-64-32 1.66 0.898 0.993 0.995 

DNN 7 64-32-16 1.26 1.550 0.991 0.991 

DRNN 7 64-32 0.94 0.644 0.996 0.996 

DLSTM 7 64-32 1.38 1.510 0.991 0.991 

The performance of the three top-performing models under similar conditions was compared in Table 7 for 

MAE and RMSE scores. While the DNN model is consistently outperformed by the RNN and LSTM models, 

the latter yields a lower variance for more than half of the samples tested. This result may explain the reason for 

more extensive use of DNN models compared to more complex models which require significant efforts to 

select adequate hyperparameters and training conditions, as well as longer training times. However, the results 

yielded by the LSTM model suggest that sequence predictions can effectively benefit from the use of this 

architecture, given the availability of long enough previous data sequences.  

Tab. 7: Sequence reconstruction error trained with a three-day time-window. 

 
DNN-2 DRNN-2 DLSTM-2 

Sample Mean STD RMSE Mean STD RMSE Mean STD RMSE 

1 3.39 5.35 6.33 2.11 4.28 5.46 0.57 3.99 4.03 

2 2.55 0.92 2.71 1.66 0.94 1.77 0.46 0.49 0.67 

3 0.74 0.50 0.89 -0.10 0.59 2.55 -0.75 0.36 0.83 

4 0.90 0.31 0.95 0.28 1.53 1.29 0.08 0.43 0.43 

5 -0.49 0.67 0.83 -0.13 0.40 0.04 0.03 0.55 0.55 

6 0.62 1.57 1.68 -1.36 2.59 2.89 1.09 2.13 2.39 

7 0.86 0.40 0.95 0.49 0.69 0.65 1.40 0.36 1.45 

8 1.40 0.73 1.58 -0.32 1.06 0.30 0.12 0.88 0.89 

9 1.17 0.56 1.29 0.16 0.41 0.26 0.80 0.43 0.91 

10 0.62 0.69 0.92 -0.20 0.36 0.60 0.17 0.50 0.53 

Average 1.18 1.17 1.81 0.16 1.28 1.58 0.40 1.01 1.27 

STD   1.60   1.68   1.07 

MAE 1.27   0.41   0.55   
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The best performing model obtained was the two layered LSTM with an output hidden layer, obtaining a mean 

RMSE of 1.27°C, MAE of 0.55°C with a mean standard deviation of 1.01 over ten random sequence samples 

during operating hours of the solar field. The selected architecture is presented in Table 8. 

Tab.  8: Selected Deep Learning model. 

Hyperparameter Value 

Architecture LSTM 

Units & layers 128-64 

Activation function Tanh 

Optimizer RMSProp 

Learning rate 10-3 

Batch size 64 

Epochs 150 

Length of time-window 3 days 

MLP hidden units 512 

4.2 Anomaly Detection  

The generated healthy and anomalous sequences were fed to the LSTM model and then the prediction errors 

were analyzed. By training the algorithms with fault-free data, it is expected to perform worse when presenting 

them with fault-induced temperatures. Fault-induced data profiles are generated by the TRNSYS deck: an 

anomalous water-draw profile and the reduction of the solar collector’s efficiency are studied in detail for 

samples extracted at different meteorological conditions.  

The discrepancy between predicted and observed values is then classified as anomalous behavior by defining a 

proper threshold. This threshold depends on the performance of the trained model with each new time series 

presented and is not dependent of a manually selected value. The response of the system to the induced fault is 

recorded for two hours, in which at least have an hour is needed to correctly identify unexpected behavior. This 

limits the real-time implementation of the model, which needs to be assessed with each system’s thermal inertia.  

The proposed method to identify anomalies consists of using the trained model’s prediction values variance as a 

threshold to classify health states of the system. This yields accurate results for the water-draw anomalous 

behavior, in which the system’s temperatures rise over expected trends. This scenario is recognized with a mean 

accuracy of 86% and precision, recall, F-1 score and specificity of 85%. Case 1 and 3 present favorable results, 

however, Case 2, occurring during mid-winter, present additional difficulty to recognize anomalous behavior.  

Fig. 5 shows how the anomalous profile generates higher prediction errors, indicating that the model’s latent 

representation of the healthy data is different enough to be recognized as an anomaly. As the LSTM model uses 

previous predictions to construct the whole temperature sequence, it is expected that the reconstruction errors 

increase when in predicting a larger horizon. However, as the prediction error increases during the 20 future 

timesteps for the anomalous profiles, the healthy reconstruction errors are consistently lower. Additionally, the 

anomalous predictions tend to constantly overestimate the anomalous-induced temperatures. That effect allows 

defining a separation between healthy and anomalous data by selecting a threshold based on the variance of the 

reconstruction errors. Classification metrics, such as precision, recall, accuracy, F1 and specificity scores are 

presented for this scenario in Tab.  9.  

 

Fig. 5: Anomalous water-draw detection threshold. 

 
C. Correa Jullian et. al. ISES SWC2019 / SHC2019 Conference Proceedings (2019)



 
Tab.  9: Anomaly detection classification metrics for overheating scenario. 

Precision Recall Accuracy F1 Specificity 

0.85 0.85 0.85 0.85 0.85 

Regarding the collector efficiency anomaly, the reconstruction errors sequence is shown in Fig. 6, which 

presents higher prediction errors for the healthy input data than the anomalous profile, overestimating the 

sequence of temperatures. Since the threshold is based on the variance of the prediction’s errors, as discussed 

above, the detection logic is inversed as the anomaly corresponds to lower temperatures than expected. In that 

context, any datapoint which is within the dispersion of the anomalous predictions is recognized as an 

anomalous state. The higher number of false positives reduces the overall confidence of the detector, indicating 

that heat underproduction is harder to capture and recognize as an anomaly from the characteristics learned by 

the model. From the perspective of the thermal model, the effect of the lower radiation absorbed is reduced by 

the constant heat influx from the heat-recovery chiller and the returning flow from the heat pump circuit. This 

may also reflect that the representation of the data in the latent space of the LSTM-based model requires other 

inputs which can indicate the presence of low anomalous temperatures in the system. This result is reflected on 

the lower scores obtained for this scenario, presented in Tab.  10.  

 

Fig. 6: Anomalous collector behavior detection threshold. 

Tab.  10: Anomaly detection classification metrics for heat underproduction scenario. 

Precision Recall Accuracy F1 Specificity 

0.82 0.63 0.68 0.71 0.76 

A significant difficulty in detecting anomalies is found when the temperatures are lowered. This is due to the 

operation of the auxiliary sources which maintain a regular temperature throughout, even though the solar 

field’s heat input is insignificant. Both results indicate the need to integrate temporal criteria into the detection 

algorithm. Additionally, the constant input from the auxiliary sources and the restrictions of the control system 

limit the number of operating hours of the system. This may unnecessarily induce bias on the results, toward 

lower temperatures and thus reducing the model’s performance toward lower heat input scenarios.  

5. Conclusions 

The present work aims to assess the application of DL algorithms for performance prediction in SHW systems, 

as well as exploring its usefulness as an anomaly detection tool. The system analyzed is based on a SWH 

installation built in TRNSYS, which allows generating large amounts of synthetic data. This approach results 

useful since it allows to adapt the model to the physical configuration of the system, disregarding the commonly 

high uncertainties related to the sensors used in thermal systems.  

In addition, different configurations of frequently used architectures such as DNN, and specialized algorithms 

for timeseries analysis as RNN and LSTM, were trained as potential candidates for temperature prediction and 

their performance compared. Low RMSE and MAE values were obtained, suggesting that a successful 

implementation is possible. Among the different architectures analyzed, the trained LSTM model yielded more 

accurate predictions than DNN model; and more precise values than RNN for temperature sequence predictions. 

However, further work is required when analyzing non-favorable operating scenarios of the solar field. A crucial 

step to develop a robust fault detection algorithm is to obtain a reliable latent representation of the data, 
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considering an implementation of a real-time monitoring and prognosis of the SHW system. For this, other pre-

processing techniques and architectures will be explored.  

The limitation of this framework is that the synthetic data was generated with a simulation platform. TRNSYS is 

a validated physics-based model which allows the incorporation of the real SHW installations technical 

specifications and quality meteorological measurement. Yet, the simplifications established in the simulation 

program, such as the restrictions on the control system and the ideal conditions of the auxiliary heat inputs, 

reduce the number of hours in which the solar field is operational.  

The results show the strengths and shortcomings of an initial approach for anomaly detection in a SHW system. 

The use of synthetic data allowed to isolate and study specific behaviors and anomalies without temporal 

limitations and measurement uncertainties. However, data recollection is a vital step for developing DL-based 

algorithms and the use of synthetic data also allows time-saving strategies to explore different alternatives 

before actual implementation in a real system. That approach is highly useful for conducting field assessments 

when the historical information is not available; however, its representativity of the thermal system is limited for 

anomalous scenarios.  

While further tuning of the model’s hyperparameters is required, specialized architectures for time-series 

analysis, such as RNN and LSTM have proven to capture and replicate temperature sequences better than DNN-

based models. Finally, other data-based metrics can be explored for anomaly and fault detection in systems by 

quantifying the uncertainty of the experimental measurements, the simulation’s results, and the model’s 

predictions.  

6. Acknowledgments 

The authors appreciate the financial support from CONICYT/FONDAP 15110019 “Solar Energy Research 

Center” SERC-Chile. 

7. References  

Ayompe, L.M., Duffy, A., McCormack, S.J., Conlon, M., 2011. Validated TRNSYS model for forced 

circulation solar water heating systems with flat plate and heat pipe evacuated tube collectors. Appl. 

Therm. Eng. 31, 1536–1542. https://doi.org/10.1016/j.applthermaleng.2011.01.046 

Burch, J., Christensen, C., 2007. Towards Development of an Algorithm for Mains Water Temperature. 

InterSolar 2007 Conf. 5–10. 

Correa-Jullian, C., Cardemil, J.M., Droguett, E.L., Behzad, M., 2019. Assessment of Deep Learning Techniques 

for Prognosis of Solar Thermal Systems. Renew. Energy 145, 2178–2191. 

https://doi.org/10.1016/j.renene.2019.07.100 

de Keizer, A.C., Vajen, K., Jordan, U., 2011. Review of long-term fault detection approaches in solar thermal 

systems. Sol. Energy 85, 1430–1439. https://doi.org/10.1016/j.solener.2011.03.025 

de Keizer, C., Kuethe, S., Jordan, U., Vajen, K., 2013. Simulation-based long-term fault detection for solar 

thermal systems. Sol. Energy 93, 109–120. https://doi.org/10.1016/j.solener.2013.03.023 

Ghritlahre, H.K., Prasad, R.K., 2018. Application of ANN technique to predict the performance of solar 

collector systems - A review. Renew. Sustain. Energy Rev. 84, 75–88. 

https://doi.org/10.1016/j.rser.2018.01.001 

Graves, A., Mohamed, A.R., Hinton, G., 2013. Speech recognition with deep recurrent neural networks, in: 

ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. pp. 

6645–6649. https://doi.org/10.1109/ICASSP.2013.6638947 

Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural Comput. 9, 1735–1780. 

https://doi.org/10.1162/neco.1997.9.8.1735 

IRENA, 2018. Opportunities to accelerate national energy transitions through advanced deployment of 

renewables. 

Janssens, O., Van de Walle, R., Van Hoecke, S., Loccufier, M., Verstockt, S., Vervisch, B., Stockman, K., 

Slavkovikj, V., 2016. Convolutional Neural Network Based Fault Detection for Rotating Machinery. J. 

Sound Vib. https://doi.org/10.1016/j.jsv.2016.05.027 

 
C. Correa Jullian et. al. ISES SWC2019 / SHC2019 Conference Proceedings (2019)



 
Kalogirou, S., Lalot, S., Florides, G., Desmet, B., 2008. Development of a neural network-based fault diagnostic 

system for solar thermal applications. Sol. Energy 82, 164–172. 

https://doi.org/10.1016/j.solener.2007.06.010 

Kalogirou, S.A., Agathokleous, R., Barone, G., Buonomano, A., Forzano, C., Palombo, A., 2019. Development 

and validation of a new TRNSYS Type for thermosiphon flat-plate solar thermal collectors: energy and 

economic optimization for hot water production in different climates. Renew. Energy 136, 632–644. 

https://doi.org/10.1016/j.renene.2018.12.086 

Kingma, D.P., Ba, J., 2014. Adam: A Method for Stochastic Optimization. AIP Conf. Proc. 1631, 58–62. 

https://doi.org/10.1063/1.4902458 

Klein, S.A., 2018. TRNSYS: A transient systems simulation program v.18.00.0019. 

Leva, S., Dolara, A., Grimaccia, F., Mussetta, M., Ogliari, E., 2017. Analysis and validation of 24 hours ahead 

neural network forecasting of photovoltaic output power. Math. Comput. Simul. 131, 88–100. 

https://doi.org/10.1016/j.matcom.2015.05.010 

Levine, Y., Sharir, O., Ziv, A., Shashua, A., 2017. On the Long-Term Memory of Deep Recurrent Networks. 

Iclr2018 1–23. 

Lipton, Z.C., Berkowitz, J., Elkan, C., 2015. A Critical Review of Recurrent Neural Networks for Sequence 

Learning. Proc. ACM Int. Conf. Multimed. - MM ’14 675–678. https://doi.org/10.1145/2647868.2654889 

Lui, Y., Zhao, G., Peng, X., Hu, C., 2017. Lithium-ion battery remaining useful life prediction with long short-

term memory recurrent neural network. Annu. Conf. Progn. Heal. Manag. Soc. 1–7. 

Niu, G., 2017. Data-Driven Technology for Engineering Systems Health Management. Springer Singapore, 

Singapore. https://doi.org/10.1007/978-981-10-2032-2 

Ruiz, E., Martínez, P.J., 2010. Analysis of an open-air swimming pool solar heating system by using an 

experimentally validated TRNSYS model. Sol. Energy 84, 116–123. 

https://doi.org/10.1016/j.solener.2009.10.015 

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1988. Learning Internal Representations by Error Propagation, 

in: Readings in Cognitive Science. Elsevier, pp. 399–421. https://doi.org/10.1016/B978-1-4832-1446-

7.50035-2 

Souliotis, M., Kalogirou, S., Tripanagnostopoulos, Y., 2009. Modelling of an ICS solar water heater using 

artificial neural networks and TRNSYS. Renew. Energy 34, 1333–1339. 

https://doi.org/10.1016/J.RENENE.2008.09.007 

Srivastava, S., Lessmann, S., 2018. A comparative study of LSTM neural networks in forecasting day-ahead 

global horizontal irradiance with satellite data. Sol. Energy 162, 232–247. 

https://doi.org/10.1016/j.solener.2018.01.005 

Tijmen, T., Geoffrey E., H., 2012. Lecture 6.5- RMSprop: Divide the gradient by a running average of its recent 

magnitude [WWW Document]. COURSERA Neural Netw Mach Learn 42. 

 

 
C. Correa Jullian et. al. ISES SWC2019 / SHC2019 Conference Proceedings (2019)


