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Abstract 

The characterization of the nominal power under real operating conditions is crucial for the correct evaluation of 

a photovoltaic generator. Several earlier studies proposed different methods based on empirical models for the 

estimation of the nominal power. These methods require experimental data obtained during optimal days under 

clear sky conditions and are not suitable for days deviating from these optimal conditions and, thus, generating a 

significant amount of noise in the data. In this sense, we propose a non-parametric statistical approach to filter out 

this noise to reliably estimate the real nominal power in the latter conditions. The period of study was 107 days. 

These were divided in two categories, clear and partly cloudy sky conditions. The results show that our statistical 

method allows to obtain the same nominal power under partly cloudy conditions as under clear sky. This was 

possible by applying a kernel density estimation to filter the outliers and the noise under cloudy conditions. 

Keywords: PV characterization, real PV power, testing in outdoor condition 

1. Introduction 

The costs of the installation of solar photovoltaic (PV) systems decreased up to 90 percent over the last years as 

the modules can easily be produced in a mass production process nowadays (Welter, 2019). Therefore, the 

production of electricity, using PV systems, has become cheaper than using gas-feed power plants and puts it at 

same level of black coal-feed power plants. The worldwide PV capacity installed at the end of 2018 was around 

500 gigawatts (Watson and Schmela, 2018). The forecast expects this capacity to double within the next three 

years. In this current scenario, the knowledge of the optimal state of the photovoltaic system at standard test 

conditions, STC (irradiance = 1000 W/m2; AM1.5 spectrum; cell temperature=25°C) is important for investors; 

since estimates of energetic projections are based on parameters extrapolated to STC (Markus Schweiger et al. 

2017) which enable the analysis of possible failures in the PV generator (Talavera et al., 2019). 

The nominal power (𝑃M
∗ ) is one of the most relevant parameters of the PV generator (Kumar et al. 2017). It can 

be defined as equivalent to the maximum power point under STC. The meaning of this parameter is that, on the 

one hand, it plays a key role in estimating energy yield, which is necessary for commercial projects, and, on the 

other hand, represents value for purchase-sale transactions (Talavera et al. 2016). 

At the module level this parameter is provided by the manufacturer’s datasheet and certificate which is associated 

with quality assurance procedures. After installation, this given parameter value may differ from the actual 𝑃M
∗  

value; due to initial degradation after being exposed to light and temperature (Marcus Schweiger et al. 2017). 

Under outdoor conditions,  the acquisition of the actual nominal power requires measurements of current-voltage 

(I-V) curves and extrapolation to STC in accordance the standard IEC 60891  (Reise et al. 2018).  

At the PV system level  and particularly for large PV plants, it is still an open question on how to reliably calculate 

𝑃M
∗  (de la Parra et al., 2017) taking into account the different system losses such as cabling, module mismatch, 

temperature, angular losses, soiling, among others. There are different methods described in the literature on how 

to obtain this value. As a first approach, one can take a few modules randomly and check the state at STC with a 

solar simulator. However, this value would not indicate or represent the real nominal power of the entire system.  

The more practical option in this case is to measure the 𝑃M
∗  in-situ under outdoor conditions using the current and 

voltage (I-V) curve or by measuring the maximum power point (MPP). In principle, the MPP models consider the 
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information available from the PV module datasheet. The MPP modeling has been applied more commonly than 

an I-V curve measurement because of the lack of commercial devices capable to measure the currents generated 

by the PV system (Muñoz et al. 2016). 

To calculate the 𝑃M
∗ , according to well-defined procedures by (Martínez-Moreno et al., 2012), it requires optimal 

testing condition or ideal environmental conditions to monitor irradiance and module temperature. This means 

sunny and clear sky conditions. This is established to avoid outliers in the operating conditions, which will 

introduce errors in the data processing. Notwithstanding, in several locations, where most of the time partly cloudy 

sky conditions are present, such optimal testing conditions may be seldomly given. When applying the methods 

proposed in the prior works, the data obtained under non-optimal conditions commonly cannot be considered due 

to the introduction of additional errors in the 𝑃M
∗  estimation.  

This paper aims to calculate the nominal power under partly cloudy day conditions, based on the approach given 

by (Martínez-Moreno et al., 2012). To achieve this, we introduce a statistical filtering procedure by applying a 

non-parametric approach in order to filter out noise and outliers. 

2. Experimental details 

The data in this paper was collected through outdoor measurements of a PV generator in operation located at 

Granada, Spain, which has been subject to prior other studies (Lomas et al., 2018; Muñoz-Cerón et al., 2018). The 

supposed nominal output power of this PV plant is 109.4 kW under STC according to the datasheet of the 

polycrystalline silicon modules. To assess the amount of solar irradiation (𝐺) received and the module temperature 

(𝑇m), two calibrated panels of the same technology and in the same angle as the plant’s modules were used. This 

plant was used as a test laboratory for research and outdoor monitoring by the IDEA group (Muñoz-Cerón et al., 

2018). 

Tab. 1: Configuration and electrical parameters of the photovoltaic generator at STC 

Series connected modules per string 18 

Strings in parallel 32 

Current at the maximum power point (A) 257.6 

Voltage at the maximum power point (V) 574.2 

Power at maximum power point (kW) 109.4 

Power temperature coefficient (%/°C) -0.43 

The MPP tracking efficiency of modern inverters is usually greater than 99%, thus, the DC power at the inverter 

entry (𝑃𝐷𝐶) can be suitably assumed as the power at the MPP. Hence, 𝑃𝐷𝐶  was measured with a calibrated 

wattmeter YOKOGAMA WT1600 (uncertainty of measurement less than 0.5%). Table 1 contains a short 

description of the PV generator. The measured values (𝐺,  𝑇m, 𝑃DC) were recorded with a 60 seconds time step. To 

perform the 𝑃M
∗   analysis, we used measurements from March 27 to September 30, 2018.  

 

Fig. 1: Irradiance, module temperature and DC Power of two exemplary days under (a) clear sky and (b) cloudy sky conditions. 
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3. Method to calculate the nominal power 

The objective of this work is to calculate the nominal power under cloudy sky conditions. To do this, it is required 

to divide the data (𝐺,  𝑇m, 𝑃DC) into two categories. As a matter of example, the days of each category are 

represented in Fig. 1. The total number of days of data collected were 107. After applying a filtering procedure 

which distinguishes between both conditions, we obtained 37 days with clear sky and 90 days with cloudy sky 

conditions. 

3.1. Nominal power estimation under clear sky conditions 

The procedure suggested by (Martínez-Moreno et al., 2012) was followed and the 𝑃M
∗  was calculated for each day 

in clear sky conditions.. Experimentally, this procedure requires sampling of data at least every minute during one 

day of a clear sky and it uses the Osterwald equation to calculate the nominal power, see equation (1). This 

empirical equation describes the relationship between the maximum power point (𝑃𝐷𝐶) with the module 

temperature (𝑇𝑚) and the irradiance incident on the panel plane (𝐺) for irradiances above 800 W/m2.  

 𝑃𝐷𝐶 = 𝑃𝑀 
∗ ×

𝐺

𝐺∗
(1 + 𝛾(𝑇m − 25℃)) (eq. 1) 

Here 𝐺∗ is the irradiance under STC and 𝛾 is the temperature coefficient provided by the manufacturer module 

data sheet. The DC power is corrected to 25 °C (𝑃𝐷𝐶 → 𝑃(𝐺,𝑇→25℃)), as described by equation 2. 

 𝑃(𝐺,𝑇→25℃) =
𝑃(𝐺,𝑇m)

(1 + 𝛾(𝑇m − 25℃))
 (eq. 2) 

Second, the set of points (𝐺, 𝑃(𝐺,𝑇→25℃)) are linear fitted with equation (3) to obtain 𝑃M
∗  in an irradiance range of 

800 – 1000 W/m2. Fig. 2 (a) shows the linear fitting from which the nominal power is calculated for an exemplary 

clear sky day. 

 𝑃(𝐺,𝑇→25℃) = 𝑃𝑀 
∗ ×

𝐺

𝐺∗
 (eq. 3) 

Fig. 2 (b), also depicts the 𝑃M
∗  calculated in this way for the 37 days under clear sky conditions. The average value 

of 𝑃M
∗ =104.13 kW and a dispersion of 1.5% is indicated. The observed dispersion is consistent with the one 

reported by (Martínez-Moreno et al., 2012). Furthermore, it is plausible to derive the 𝑃M
∗  from a statistical point 

of view using the central limit theorem because there are more than 30 𝑃M
∗  values. The resulting 𝑃M

∗  was taken as 

a reference for the following proposed method for calculating 𝑃M
∗  with data of cloudy days.  

 

Fig. 2: (a) The linear fitting process for an exemplary day (2018-09-24) with clear sky conditions (b) the nominal power calculated 

for 37 individual days. These results present a mean of 𝑷𝐌
∗  (blue dotted line) and a 1.5% dispersion (red dotted line) 

3.2. Nominal power estimation under cloudy sky conditions 

The data obtained under cloudy sky conditions shows a considerable amount of noise and outliers, as seen in Fig. 

3 (a). When the procedure outlined in section 3.1 is applied, the linear fitting of these data results in a nominal 

power that considerably deviates from that obtained in clear sky conditions. Therefore, to estimate the 𝑃M
∗  in 

cloudy conditions, from the corresponding set of data, a subset of data needs to be filtered before applying the 
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procedure described in section 3.1. This subset of data should represent the working conditions of the photovoltaic 

system during moments of clear sky conditions, such as can be seen in Fig. 1 (b) at certain moments even during 

a cloudy day. 

To achieve this, first, the distribution of the measured data during cloudy days was studied. It was found that the 

data exhibits a non-parametric behavior since it presents registers of agglomerated data. The study of this type of 

non-parametric data can be done using a Kernel Density Estimation, KDE, (Trashchenkov et al., 2018). In order 

to visualize this behavior, exemplarily, the probability density or KDE for fixed irradiation of (990 ± 2) W/m2 was 

calculated and is depicted in Fig. 3(b). This kind of data distribution has been previously reported in the modeling 

of photovoltaic generators (Trashchenkov et al., 2018). Furthermore, this KDE has several peaks, the one with the 

highest value, marked with an arrow, is assumed to best represent the PV generator as if under clear sky conditions. 

The other minor peaks are most likely artifacts generated by clouds that pass above the generator and/or irradiance 

sensors. 

 

Fig. 3: (a) Data for 90 cloudy sky days. The red dotted line at 990 W/m2 is an exemplary cross section of the data for KDE depicted 

in (b) to find the representative PDC at the maximum indicated by the black arrow. 

Generally, the KDE is a tool with the purpose to study the data distribution by generating the Probability Density 

Function (PDF) without any prior assumption of the data distribution. The KDE is defined as the convolution of 

multiple kernel functions (Qin et al., 2016), as described by the following eq. 4. 

𝑓(𝑝) =
1

𝑛ℎ𝑑
∑ 𝐾(

𝑝 − 𝑝𝑖

ℎ
)

𝑛

𝑖=1

 (eq. 4) 

𝑓(𝑝) represents the estimated probability density, 𝑛 represents the sample size, ℎ is the bandwidth of the estimation, 

𝑑 is the dimension of the data space, 𝐾(𝑧) represents the kernel function of 𝑧.  

 

Fig.4: The corrected power at 25 0C after KDE filter applied in in difference to the unfiltered data of cloudy days condition  
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The type of kernel function has no significant effect on the estimation of KDE. Thus, for simplicity a Gaussian 

function can be considered for this type of data (Trashchenkov et al., 2018). In this work, a KDE in three 

dimensions is considered since there are three sets of input data. The latter avoids introducing further bias related 

to the calculation of the PDF via this method. 

Given the three data collected (𝐺, 𝑇m, 𝑃DC) at each instant of time. These were sorted by irradiance. Then, a set 

of measurements {(𝐺, 𝑇m, 𝑃DC)1 ,…., (𝐺, 𝑇m , 𝑃DC)n } is considered, where 𝑛 denotes the sample size in a defined 

interval of irradiance (∆𝐺 = 4  W/m2). This interval was chosen so that each sample contains at least 250 data 

points (Ren et al., 2014). For the 90 cloudy days, the sample size (𝑛) was 300 points to generate the KDE. 

After running the algorithm to calculate the KDE, a frequency distribution or the PDF is obtained. The maximum 

value (𝐺, 𝑇m, 𝑃DC) 𝑀𝑎𝑥 in the KDE for each set of measurements was defined as a representative value in clear 

sky conditions. The set of maximum values was then corrected in temperature by using equation 2. 

Fig. 4 shows the corrected power values after applying KDE filtering in contrast to the unfiltered data of cloudy 

days condition. Notice how there are no more outliers present after the KDE filtering. In addition, the error bars 

represent the standard deviation of the data used for the estimation of the KDE since they will be considered in 

the calculation of the nominal power. Finally, to obtain the  𝑃M
∗  in cloudy sky days, the values 𝑃(𝐺,𝑇→25℃) are fitted 

with equation 4, resulting in 𝑃M
∗  = (103.3 ± 0.25) kW. 

4. Results and discussion 

The estimation of the nominal power according to the method proposed by (Martínez-Moreno et al., 2012) is 

strongly sensitive to the dispersion of data and outliers which deviate from the ideal working conditions of the PV 

generator. Their origin is attributed to cloudy day conditions and could be explained by: 

(1) The temporal delay of the meteorological influence of the clouds on the measured parameters (Trashchenkov 

et al., 2018). For instance, a passing cloud can instantly affect G and PDC, however Tm slowly adjusts to the new 

irradiation state and the measurement system will not record representative values under steady-state conditions.  

(2) Passing clouds may introduce partial shading in the PV system and/or the irradiance sensor (Zhao et al., 2013) 

which would generate outliers in the measured data of power and irradiance. Particularly in relatively large power 

plants, such as the one under study, they may have a significant impact.  

(3) The uncertainty in determining the operating temperature of the PV generator could have instantaneous 

temperature differences of up to 10 K (Muñoz Escribano et al., 2018). 

 

Fig. 5. The three data sets under study: all data collected (black circles), data only in clear sky conditions (red dots) and data on 

cloudy days after the filter by the blue KDE method (open triangles). 

The identification of such anomalies are still controversially discussed since they are difficult to distinguish (Ding 

et al., 2018). However, from statistical point of view, the outliers can be defined as anomalous data that does not 

represent the steady-state operating conditions of the PV system. Hence, for the PV generator, the data point could 

be considered as an outlier value when the output power differs from data under clear sky conditions. The density 

of the measured data can show the regions where steady-state conditions occur. The exposure time of the 
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photovoltaic generator to clear or partly cloudy conditions influences this data density. 

The aim is to extract the clear sky conditions considering the data in cloudy conditions. To do this, statistical 

filters are found in the literature such as the 3-sigma rule, Hampel identifiers or boxplot rule outlier (Ding et al., 

2018). These filters consider that the data has a normal distribution (Zhao et al., 2013). However, in section 3.2 

Fig. 2 (b), The non-parametric behavior of the data was demonstrated in cloudy condition. 

In this work, data filtering is based on finding the maximum KDE value that is considered the stable-state of the 

photovoltaic generator in clear sky conditions. Fig. 5 depicts the different data sets considered for this study. (1) 

The entire data set collected from March 27 to September 30, 2018, including clear and cloudy sky days (black 

circles), (2) the data set for only clear sky days (red squares) and (3) the data set obtained from only cloudy sky 

days after applying our proposed KDE filter (blue, open triangles).  

To evaluate the calculation of nominal power in clear sky conditions, three approaches have been considered and 

compared: 

(1) The entire data set of measurements in clear sky conditions was considered for a single fit. This means all the 

points in red in fig. 5.In this sense, in fig. 6(a), the irradiance had been divided into a small grid (∆𝐺=4 W/m2) 

and it was treated under parametric statistics, 𝑁(𝜇, 𝜎2), with two parameters: the mean 𝜇 and variance 𝜎2 (𝜎 

is the standard deviation). The linear fit of the corrected power is shown in Fig. 6 (a). The result using equation 

3 is 𝑃M
∗  = (103.31 ± 0.04) kW. 

 

Fig. 6: (a) clear sky days with the corresponding mean and standard deviation. (b) Calculated distribution histogram collected 

from in the section 3.1 

(2) In section 3.1, the nominal power for each day of clear sky was calculated. The calculated average nominal 

value and the dispersion were calculated resulting in 𝑃M
∗  = (104.13 ± 1.56) kW. This indicates that if the 

nominal power is measured on any of the clear sky days, it will be in a 1.5% confidence range concerning the 

average value. 

(3) Additionally, from the section 3.1, the corresponding histogram was calculated for all daily obtained nominal 

power values. In fig. 6 (b), a normal distribution approach with the nominal value and one sigma error is used. 

the 𝑃M
∗  was calculated with the first sigma interval confidence. The result is 𝑃M

∗  = (104.13 ± 0.47) kW. 

As expected, the three approaches for clear sky conditions converge to similar 𝑃M
∗  values. The aim is to contrast 

the 𝑃M
∗  estimate in the entire measurement data that was divided into clear and partly cloudy days. In this sense, 

the approach (1) has been considered as a reference in favor of testing our estimation. Under partly cloudy 

conditions, the nominal power is calculated using the KDE filtering procedure, (103.3 ± 0.25) kW. This value is 

close to the values found in the three aforementioned cases. In this sense, the results on partly cloudy days show 

that the nominal power can be found within a range of acceptable error as under clear sky conditions.  
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5. Conclusions 

To estimate the nominal power in a photovoltaic generator, the methodology proposed by Martinez et. al. was 

applied. Different approaches have been tested from a statistical point of view. To achieve this, the data of 37 

days of clear sky and 90 days with cloudy sky conditions were collected. 

For partly cloudy days, we have proposed a statistical method to filter out the noise and outlier data points. This 

method is based on the probability density function with a Kernel Density Estimation (KDE) of the data without 

modifying it. In this approach, the KDE filter allows us to find values within the range of the values that are 

considered to correspond to the operation of the system in moments of clear sky conditions during partially cloudy 

days. 

After obtaining the filtered data in cloudy conditions, the 𝑃M
∗  was calculated at (103.3 ± 0.25) kW. For clear sky 

conditions, the 37 days were considered in a single fit, getting a value of (103.31 ± 0.04) kW. These results clearly 

show that this method can be used well for the estimation of nominal power in either clear and cloudy sky 

conditions. Also, they are within the level of uncertainty of the measuring standard instrument (Yokogawa, 2001). 

Finally, this statistical tool could be applied in the daily diagnostic and monitoring of photovoltaic generators, for 

example by presenting alerts whenever the nominal power reaches values outside the ranges considered for 

optimal operation. 
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