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Abstract 

Nowadays, due to the increasing integration of solar energy into electrical systems, it is necessary to improve 

methodologies used to analyze this type of technology. In this regard, a topic that has had permanent attention 

is solar irradiation forecast and photovoltaic (PV) plant energy production estimation. This study analyzes the 

performance of three methodologies commonly used in PV plant energy production estimation: Multiple 

Linear Regression (MLR), Artificial Neural Networks (ANNs), and Support Vector Machines (SVMs). 

Calculations lead to the conclusion that SVMs usually produce lower training errors. However, the CPU used 

by this type of algorithm is significantly higher than those required by ANN and MLR. Considering this, an 

MLR-based algorithm was developed to deliver training errors similar to those delivered by ANNs and SVMs, 

but with significantly less processing time and use of computing resources. The algorithm proposed (F-MLR-

solar2) is at least 1000000 times faster than SVM and 5000 times faster than ANN. Additionally, the proposed 

algorithm allows obtaining a simple equation that can be used analytically. 

Keywords: Solar energy, PV energy estimation, Support Vector Machines, Multiple Linear Regression.  

1. Introduction 

Today, human civilization requires abundant, clean, and safe energy supply at a reasonable cost. In response 

to this need, massive integration of renewable energies can provide a path to tackle current world issues. 

Abundant sources like solar energy and their implementation at residential, commercial or utility-scale level 

are showing a great potential and becoming an important economic activity. Photovoltaics has many 

advantages, one of them being the option to install just a few panels or thousands of them, or the possibility to 

inject electricity into the grid. However, PV plants can convert sunlight into electricity only during daylight. 

In addition, even at daylight, solar irradiance can change drastically in a minute (C.A.B. Vaz, L.N. Canha, 

2018). These issues are reflected in the non-optimal operation of a PV plant or, even more drastic, clouds 

passing over a large PV installation may produce strong instabilities in the electrical system (M. Ebad, W.M. 

Grady, 2016).  

Plant operation is exposed to external factors like variability of solar resources, weather and environmental 

conditions, soiling, and material degradation. Therefore, sensing the main influencing parameters as well as 

measuring electrical output values are needed. This action generates large datasets, which must be stored and 

processed. One way to deal with these data is to use machine learning methods, tools that have provided good 

results in problems of classification, energy estimation, irradiance prediction, and failure prediction, among 

others (Bishop, 2006). These approaches can be used for solar radiation estimation (Voyant et al., 2017) and 

PV plant production (Assouline et al., 2017). There is a broader view for categorizing machine learning 

methods, namely, supervised (Dacheng Tao et al., n.d.), semi-supervised, and unsupervised learning (Greene 

et al., 2008). While supervised approaches are based on datasets containing both input and output values, 

unsupervised approaches contain only inputs. Therefore, supervised methods are often used for solar energy 

applications. The unsupervised group can be used to find commonalities within a dataset. 

A great research effort has been made to develop methodologies to predict the production of a PV plant (J. 
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Antonanzas, 2016). The problem can be classified into methodologies oriented to production forecast with a 

short-term (1 min - 3 hours), medium-term (day-ahead), and long-term horizon and methodologies oriented to 

production estimation. Trigo et al. (2019) propose a methodology to estimate the hourly energy production in 

terms of energy yield, i.e, kWh/kWp, within infra hour time frame using a minimal knowledge of weather 

conditions. The methodology used was Multiple Linear Regression (MLR) applied to distinct technologies in 

different Chilean Regions.  

This study aims to compare three methodologies to estimate the hourly energy production of PV plants. The 

methodologies applied are MLR, Artificial Neural Networks (ANN) and Support Vector Machines (SVM). In 

addition, an efficient methodology is proposed to estimate PV plant production at a very low computational 

cost. 

2. Location, instrumentation, and photovoltaic (PV) system 

This section presents the main background of the photovoltaic installation used in this study. It also explains 

the procedures used to condition information measured.  

2.1 Climatology 

University of Almeria, UAL, (36°49′N 2°24′W) is located on the coastal area of Almeria city, southeastern of 

Spain. It is one of the Iberian Peninsula areas with the most hours of sunshine, 2965 per year.   

It has the driest climate -semiarid to arid- not only of Andalusia and the Iberian Peninsula but also of the whole 

continental Europe in relation to geographic and dynamic factors already known. Average annual temperatures 

range between 15.5ºC and 19ºC, the upper end being the highest in Andalusia as a whole. Maximum annual 

averages are remarkably high - between 20.5ºC and 24.8ºC -, as a result of scarce maritime influence and 

frequent winds from the west, causing absolute summer values of up to 40ºC. Minimum average records are 

moderately mild, not below 10.6 º C inland - with occasional winter frosts - and up to 14 º C in warmer coastal 

locations. Rainfall records are generally below 350 mm/year. The torrential rainfall regime, with a very marked 

autumn maximum and extreme dryness during summer months fit into the pluviometric model of the 

Mediterranean macroclimate (Gómez-Zotano, 2015). Its climatology can be defined as a warm steppe climate 

with a warm summer, or BSh according to Köppen-Geiger classification (Peel, 2007). 

2.2. PV system 

On the roof of the CIESOL building there is a PV plant with a total installed capacity of 9.324 kWp connected 

to an electricity grid. It has 42 polycrystalline modules (mc-SI) of 222 Wp power each. The arrangement 

consists of three strings (14 modules in series) facing south with 22 degrees of inclination in operation since 

2009. See Fig 1. 

 

Fig. 1.  Upper view of the photovoltaic system located on the roof of CIESOL building, at University of Almeria, Spain. 

 

The cell model is A-222P with 13.63% efficiency. Its short circuit current (ISC) and open circuit voltage (Voc) 

are 7.96 A and 37.2 V, respectively. Current (Impp) and voltage (Vmpp) at the maximum power point are 7.44 
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A and 29.84 V, respectively. Temperature coefficients are -0.46%/ºC for Pmpp, -0.35%/ºC for Voc and 

0.05%/ºC for Isc. These parameters were obtained under laboratory conditions of 1000 W/m2, 25°C, and 

AM1.5 solar spectrum. 

On the other hand, variables recorded in the PV plant were irradiance in the inclined plane (G), ambient 

temperature (Tb), and output electrical power (Pout) in the inverter. The acquisition system corresponds to PLC 

National instruments. Measures were recorded every 5 minutes from January to December 2010, obtaining 

220736 samples. 

2.3. Data analysis 

First, data are filtered to eliminate atypical data that may cause errors in the generation of models.  New 

theoretical variables are then processed and calculated to create a more robust database. 

2.3.1. Normalized energy (nEac) calculation 

The power measured, Pout (W), is transformed into energy (Wh) and divided by the installed PV plant capacity. 

This allows obtaining a normalized pattern to compare PV plants of different sizes and technologies. The 

production curve was obtained by using the trapezoidal rule, where the equation used is shown by Eq. 1 

𝐸𝑎𝑐 =
(𝑃𝑜𝑢𝑡+𝑃𝑜𝑢𝑡+1)∗(𝑡𝑛−𝑡𝑛+1)

2
 .       (eq. 1) 

𝑃𝑜𝑢𝑡  is inverter output power (W) and 𝑡𝑛 is recording time (minutes). 

In order to normalize PV production, the energy obtained from (eq. 1) is divided by installed capacity (PPV) 

(see eq. 2). 

𝑛𝐸𝑎𝑐 =
𝐸𝑎𝑐

𝑃𝑃𝑉
         (eq. 2) 

2.3.2. Solar irradiation data 

To complement data measured, variables related to solar resource and the position of the sun are calculated. 

They are: zenith angle (Sza), zenith angle cosine (CosSza), and extraterrestrial irradiance (G0) (Iqbal, 1983). 

The zenith angle is formed from the local zenith vertical line to the normal line of the sun position and a 

reference point on the earth's surface (see Fig. 2).  With this information, the time and height of the sun position 

can be determined. 

 

Fig. 2.  Sun position. 

To calculate the zenith angle, the cosine equation of the zenith angle obtained by (eq. 3) can be used. 

𝐶𝑜𝑠𝑆𝑧𝑎 = sin(𝛿) sin(𝜙) + cos(𝛿) cos(𝜙) cos(𝜔),     (eq. 3) 

where 𝛿 is solar declination, 𝜙 is latitude, and 𝜔 is the hour angle. 

Extraterrestrial irradiation (G0) is obtained from (eq. 4). With these data, the amount of solar resource can be 

obtained at the level of the atmosphere, which can help identify the atmospheric attenuation of the area. 

𝐺0 =  𝐼𝑠𝑐 ∙ 𝐸𝑜 ∙ cos (𝑆𝑧𝑎).         (eq. 4) 

The term 𝐼𝑠𝑐 is the solar constant measured in 1367 W/m2 and 𝐸𝑜 is the eccentricity of the sun – earth distance. 
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2.3.2. Performance ratio 

Performance ratio (PR) is the ratio of actual energy production to the theoretical yield of a photovoltaic plant 

(see eq. 5). With this variable, the energy loss ratio can be identified due to the dust deposited from the PV 

panels and obtain a real approximation of the system efficiency. 

𝑃𝑅 =
𝐸

𝑃𝑠𝑡𝑐
⁄

𝐺𝑖
𝐺𝑠𝑡𝑐

⁄
          (eq. 5) 

3. Methodologies 

This section describes the algorithms used for the comparative study of models for PV plant energy production.  

3.1 Multiple linear regression (MLR) 

Let 𝑇 = {𝑥𝑗 , 𝑦𝑗}
𝑗=1

𝑀
 be a dataset, where 𝑥𝑗 = [𝑥𝑗1 𝑥𝑗2 … 𝑥𝑗𝑛] ∈ ℜ𝑀×𝑛  is an 𝑛-dimensional input vector of real 

variables and let 𝑦𝑗 ∈ ℜ𝑀×1 be an output vector, 𝑀 being the amount of records. These sets contain the 

variables associated with PV plant energy production. The components of 𝑥𝑗  are usually solar irradiance, 

ambient temperature, solar zenith angle, and wind speed, among others; whereas energy production 

corresponds to variable 𝑦𝑗. The simplest way to build a prediction model for energy production is shown in 

(eq. 6), where 〈�⃗⃗⃗�, 𝑥𝑗〉 is the dot product between the vectors �⃗⃗⃗� 𝑦 𝑥𝑗. Thus, 𝑦𝑒 is the estimated energy produced 

by the PV plant. 

𝑦𝑒𝑗 = ∑ 𝑤𝑖𝑥𝑗,𝑖
𝑛
𝑖=1 + 𝑏 = 〈�⃗⃗⃗�, 𝑥𝑗〉 + 𝑏       (eq. 6) 

A way to find the solution to the least square problem is to minimize the squared error between measured and 

estimated values through (eq. 6). Thus, (eq. 7) shows the optimization problem that must be solved. 

𝑚𝑖𝑛 {∑ (𝑦𝑗 − 𝑦𝑒𝑗)
2𝑀

𝑗=1 }        (eq. 7) 

The solution to (eq. 7) can be found by solving the system of linear equations defined by (eq. 8) and (eq. 9), 

with 1⃗⃗ = [1 1 . . 1]𝑡 ∈ ℜ𝑀×1, vector of 1s.  

∑ 〈𝑥𝑘, 𝑥𝑖〉𝑤𝑘
𝑛
𝑘=1 + 〈𝑥𝑖 , 1⃗⃗〉𝑏 = 〈�⃗�, 𝑥𝑖〉, 𝑖 = 1, . . , 𝑛     (eq. 8) 

∑ 〈𝑥𝑘, 1⃗⃗〉𝑤𝑘
𝑛
𝑘=1 + 𝑀𝑏 = 〈�⃗�, 1⃗⃗〉,       (eq. 9) 

For PV plant production estimation problems, the number of unknowns required by MLR is usually low (less 

than 20). This fact makes the complexity of the problem be low, which allows to obtain the solution in a very 

short time, some milliseconds. Although there are databases with a high number of records (for instance, if 

records are taken every 5 minutes for 1 year, the number of records will be 105120), MLR can obtain the 

solution very quickly (some milliseconds) because these large databases are operated by making dot products 

such as 〈𝑥𝑘 , 𝑥𝑖〉, which are processed at a high speed. The only limitation could be the size of the computer 

memory. If so, the problem can be split into smaller problems and continue solving the sub-problem even on 

small computers. This technique is used in this study. 

3.2. Artificial neural networks (ANN) 

Let us consider a problem where, after an experiment has been conducted, information relating a variable to 

other n independent variables is available, that is, 𝑦 = 𝑓(𝑥) where 𝑓(𝑥) is a function relating n input variables 

𝑥 with an output variable y.  

Let ANN be the one shown in Fig. 3, with inputs x1, x2, and output y, and two hidden layers with three neurons 

each. The weighting factors connecting neuron i with neuron j is denoted as wij. (P. Isai, 2004): 
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Fig. 3: Artificial Neural Network with two inputs, two layers, and one output 

The output of the first layer is given by (eq. 10): 

ℎ𝑐1 = 𝑥𝑡𝑊1 = (𝑥1 𝑥2) (
𝑤13 𝑤14 𝑤15

𝑤23 𝑤24 𝑤25
) = (ℎ3 ℎ4 ℎ5).    (eq. 10) 

The output of each neuron can be affected by an activation function, so that, 𝑦𝑐1 = 𝑓(ℎ𝑐1), where 𝑓(𝑥) can be 

any function, for example 𝑓(𝑥) = 𝑥, 𝑓(𝑥) = 𝑥2, 𝑓(𝑥) =
1

1+𝑒−𝑥 (sigmoid), etc. 

By analogy, (eq. 11) gives the output of layer 2,   

𝑦𝑐2 = 𝑓(𝑦𝑐1𝑊2) = 𝑓 (𝑓(ℎ3 ℎ4 ℎ5) (

𝑤36 𝑤37 𝑤38

𝑤46 𝑤47 𝑤48

𝑤56 𝑤57 𝑤58

)).    (eq. 11) 

Finally, the output in the last layer is given by (eq. 12): 

𝑦𝑒(�⃗⃗⃗�) = 𝑓(ℎ9) = 𝑓(𝑦𝑐2𝑊3) = 𝑓 (𝑓(ℎ6 ℎ7 ℎ8) (

𝑤69

𝑤79

𝑤89

)) = 𝑓(𝑓(𝑓(𝑥𝑡𝑊1)𝑊2)𝑊3) (eq. 12) 

Numerically speaking, (eq. 12) shows that the output of a neural network is a sequential product of vectors by 

matrices. The network is completely characterized when the values of the input variables and the weighting 

coefficients are known. For the network above mentioned there is an 𝑛𝑣 = 𝑛 ∙ 𝑛𝑐1 + 𝑛𝑐1 ∙ 𝑛𝑐2 + 𝑛𝑐2 

coefficient, where n is the number of input variables and 𝑛𝑐1 and 𝑛𝑐2 are the number of neurons in layers 1 and 

2. These parameters are the unknowns of the problem. The structure defined in (eq. 10) – (eq. 12) can be used 

to find a prediction model for PV plant production. For this purpose, it is necessary to formulate an optimization 

problem. In this regard, the objective function can be defined as the mean squared error between measured 

values for a PV plant and the output delivered by ANN. The optimization problem to be solved is shown in 

(eq. 13): 

𝑚𝑖𝑛 {∑ (𝑦𝑗 − 𝑦𝑒𝑗)
2𝑀

𝑗=1 }.        (eq. 13) 

In eq. 13 the design variables are the weighting factors 𝑤𝑖𝑗 of the network and 𝑦 corresponds to energy 

produced by the PV plant, which was measured over a long period. Additionally, 𝑦𝑒 is the estimated energy 

produced by the PV plant which is obtained from the network defined in (eq. 10) – (eq. 12). 

Equations (10) – (12) were programmed in MATLAB, obtaining an algorithm that allowed training a network 

under the supervised learning scheme. The Nelder-Mead Simplex method was used as an optimization 

technique as it delivered the best results in the simulations. The program allows the use of up to two layers of 

a neural network and an arbitrary number of neurons per layer. It can be used as an activation function that can 

be linear, quadratic or sigmoid, the latter delivering the best results. 

3.3. Support vector machines 

SVMs are nonlinear models based on theoretical results from the statistical learning theory. This theoretical 

framework formally generalizes the empirical risk minimization principle that is usually applied for ANN 

training. An SVM classifier minimizes the generalization error by optimizing the tradeoff between empirical 

training errors and the so-called Vapnik-Chervonenkis (VC) dimension, which is a new concept of complexity 

measure Vapnik (2000). In this section, a very brief introduction to SVMs is presented.  
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Consider the training set defined in section 3.1, that is, 𝑇 = {𝑥𝑗 , 𝑦𝑗}
𝑗=1

𝑀
, where 𝑦𝑗 = {−1, +1} is a label that 

determines the class of 𝑥𝑗. SVMs employed for two classes of problems are based on hyperplanes that separate 

data so that all the points with the same label are on the same side of the hyperplane. An orthogonal vector �⃗⃗⃗� 

and a bias b, which identifies the point that satisfies 〈�⃗⃗⃗�, 𝑥〉 + 𝑏 = 0, determine the hyperplane.  Among the 

separating hyperplanes, there is one whose distance to the closest points is maximum. This hyperplane is called 

optimal separating hyperplane (OSH), for which the distance to the closest point is defined by 1 ‖�⃗⃗⃗�‖⁄ . The 

quantity 𝜌 = 2 ‖�⃗⃗⃗�‖⁄  is called margin. Thus, OSH is the separating hyperplane which maximizes margin 𝜌. 

The margin can be seen as a measure of the generalization ability. The hyperplane with the largest margin on 

the training set can be completely determined by the nearest point to itself, those being called support vectors 

(SVs) because the hyperplane (i.e. the classifier) depends entirely on them. 

In general, the binary classification using SVM is formulated as a problem of quadratic optimization, as shown 

in (eq. 14) and (eq. 15) (K. Muller, 20001). 

𝑚𝑖𝑛 {
1

2
‖�⃗⃗⃗�‖2 + 𝐶 ∑ 𝜉𝑗

𝑀
𝑗=1 }        (eq. 14) 

𝑠. 𝑡. 𝑦𝑖[〈�⃗⃗⃗�, 𝐾(𝑥, 𝑥𝑗)〉 + 𝑏] ≥ 1 − 𝜉𝑗 ,  𝜉𝑗 ≥ 0, 𝑗 = 1, . . , 𝑀 ,    (eq. 15) 

where 𝜉 is a slack-variable, 𝐾(𝑥, 𝑥𝑗) = 〈Φ(𝑥), Φ(𝑥𝑗)〉 is a kernel function, and C is a regularization constant 

that determines the tradeoff between the empirical error ∑ 𝜉𝑗
𝑀
𝑗=1  and the complexity term. A large C 

corresponds to the assignation of a higher penalty to the training error. 

The problem defined in (eq. 14) and (eq. 15) cannot be solved directly since �⃗⃗⃗� lies in the features space. This 

drawback is overcome when the dual optimization problem defined in (eq. 16) and (eq. 17) is set out. 

𝑚𝑎𝑥 {∑ 𝛼𝑗 −
1

2

𝑀
𝑗=1 ∑ 𝛼𝑗

𝑀
𝑗,𝑖=1 𝛼𝑖𝑦𝑗𝑦𝑖𝐾(𝑥𝑗 , 𝑥𝑖)}      (eq. 16) 

𝑠.t. 0 ≤ 𝛼𝑗 ≤ 𝐶, 𝑗 = 1, . . , 𝑀, ∑ 𝛼𝑗𝑦𝑗 = 0𝑀
𝑗=1       (eq. 17) 

Once vector �⃗�0, the solution of the maximization problem (16) and (17) has been found, the optimal separating 

hyperplane (�⃗⃗⃗�0, 𝑏0) has the expansion defined in (eq. 18) and (eq. 19): 

�⃗⃗⃗�0 = ∑ 𝛼𝑗
0𝑦𝑗Φ(𝑥𝑗)𝑀

𝑗=1         (eq. 18) 

𝑏0 =
1

|𝐽|
∑ (𝑦𝑗 − ∑ 𝑦𝑗

𝑀
𝑗=1 𝛼𝑗

0𝐾(𝑥𝑗 , 𝑥𝑖))𝑗∈𝐽 ,      (eq. 19) 

with  𝐽 = {𝑗: 0 ≤ 𝛼𝑗 ≤ 𝐶} 

Considering the expansion (eq. 20) of �⃗⃗⃗�0 and 𝑏0, the hyperplane decision function can be written as, 

𝑓(𝑥, �⃗�) = 𝑠𝑔𝑛(∑ 𝛼𝑗
0𝑦𝑗𝐾(𝑥𝑗 , 𝑥𝑖) + 𝑏0𝑀

𝑗=1 ).      (eq. 20) 

SVMs can also be applied to regression problems by introducing an alternative loss function (SVR). The loss 

function must be modified to include a distance measure. Vapnik (2000) proposed an 𝜖-insensitive loss 

function that enables a sparse set of support vectors to be obtained. In this study SVR is used with an 𝜖-

insensitive loss function. The 𝜖-insensitive loss function is shown in (eq. 21). 

|𝑦 − 𝑓(𝑥, �⃗�)|𝜖 = {
0, 𝑖𝑓 |𝑦 − 𝑓(𝑥, �⃗�)| ≤ 𝜖

|𝑦 − 𝑓(𝑥, �⃗�)| − 𝜖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.    (eq. 21) 

3.4. Feature space 

As presented in the sections 3.1 and 3.3, linear regression and SVM use hyperplanes to identify a model for 

data values. The key point of the model is to find the �⃗⃗⃗� and 𝑏 coefficients of the hyperplane〈�⃗⃗⃗�, 𝑥𝑗〉 + 𝑏. This 

idea presupposes that data follow a linear law. When the data trend is non-linear, an alternative is to modify 

the feature space of the input data. In this case, input vectors need to be mapped to an input feature data space 

having a larger dimension (Vapnik, 2000). This concept is clarified with the following example. Let us suppose 

that a 2-dimensional space follows a quadratic law of form 𝑥1
2 + 2𝑥1𝑥2 + 𝑥2

2. A new feature space with 5 

dimensions can be defined. Its structure is the following:  𝑧1 = 𝑥1, 𝑧2 = 𝑥2 𝑧3 = 𝑥1
2, 𝑧4 = 𝑥2

2, 𝑧5 = 2𝑥1𝑥2. In 
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this way, data in the 2-dimensional space are mapped to the 5-dimensional space. Once they are in the new 

space, the problem is solved. In that case, the hyperplane to be determined has the following structure: 𝑓(𝑧) =

〈�⃗�, 𝑧〉 + 𝑏. 

The feature space is defined as follows: 

Φ(𝑥1, 𝑥2) = (𝑥1, 𝑥2, 𝑥1
2, 𝑥2

2, 2𝑥1𝑥2) = (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5).     (eq. 22) 

This methodology has been broadly used in SVM where Kernel concept was also developed, avoiding 

exhaustive mapping. In this case, the dot product between the vectors of the original space is required and 

Kernel is obtained from: 𝐾(𝑥, �⃗�) = 〈Φ(𝑥), Φ(�⃗�)〉. Equations (eq. 14) – (eq. 20) already include this 

methodology.  

In this study, the strategy of changing the feature space is applied to MLR. The objective is to evaluate how 

effective it is to use a change in the feature space for this case.  

The feature space of the input data for this study has a dimension of six and corresponds to the following 

variables: solar irradiance (𝐺), ambient temperature (𝑇𝑏), cosine of solar zenith angle (CoSza), solar zenith 

angle (Sza), extraterrestrial irradiance (𝐺0), and performance ratio (𝑃𝑅). Solar irradiance 𝐺 and ambient 

temperature 𝑇𝑏 are measured data, whereas CoSza, Sza and 𝐺0  are calculated theoretically. 𝑃𝑅 is obtained from 

measurements of the energy produced and 𝐺0  . Considering previous studies and simulations, feature spaces 

defined in Table 1 were selected for analysis. In the selection process, measured data were not eliminated, 

trying to reduce the number of variables as much as possible. 

Table 1: Selected feature spaces 

Name  Dimension Var 1 Var 2 Var 3 Var 4 

linearp 4 G Tb CoSza PR 

solar1 4 G Tb CoSza G∙ePR 

solar2 4 G Tb CoSza G∙PR 

poly2 14 (G, Tb, CoSza, PR)2 

 

2.5. Handling large volumes of data 

When long periods of measurements are analyzed, the size of databases grows exponentially. For a year in 

which data are collected every 5 minutes, the number of recorded values is 105120. Depending on the type of 

methodology used, MLR, ANN or SVM, this amount of information cannot always be managed with usual 

computers. For this purpose, the database can be split into various clusters and calculations can be performed 

separately. Thereafter, creating ensembles for the remaining coefficients is required. Two techniques were 

considered in this study. The first one consists of taking the average for the resulting �⃗⃗⃗� y 𝑏. The second one is 

to concatenate coefficients in a unique database. Results show that both methods provide similar results. 

Consequently, the method of concatenating weighters into a single list was used.  

4. Results 

4.1. Analysis with linearp feature spacing 

In this study, records from the experimental PV plant located at Solar Energy Research Center (CIESOL) in 

the south east of Spain were used. The input variables used for the training process are the feature space 

“linearp” that considered the following variables: Global Irradiance 𝐺, ambient temperature 𝑇𝑏, cosine of 

zenith angle 𝜃𝑧, and Performance Ratio 𝑃𝑅. The output variable, 𝑛𝐸𝑎𝑐 defined in (eq. 2), is PV plant energy 

production. 

To perform simulations with MLR and ANN methodologies, a program was developed in Matlab. For SVR, 

Toolbox Gun (1998) was modified in order to convert it into a more efficient code. ANN and SVR require 

numerical optimization, while MLR is solved analytically. This particularity of the MLR algorithm leads to a 

great difference in processing times. To obtain the minimum error in the estimation, the parameters of the 

ANN and SVR methodologies were calibrated by trial and error. ANN was configured with one hidden layer 
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of 8 neurons. For SVR, an Exponential Radial Basis (eRBF) Kernel function type was used, with parameter σ 

= 3. The upper bound parameter was defined as C=∞ and the ϵ-insensitive parameter of loss function was set 

to ϵ = 0. Table 2 shows the results of standard Root Mean Square Error (nRMSE) for different sample rates of 

each algorithm for the test data set. 

Table 2: Estimation errors for test data with different algorithms 

 

        (a) 3 clusters were used; (b) 2 clusters were used; 

Table 2 shows that SVR provides the lowest nRMSE for the analyzed cases. In order to have more information 

for analysis, Table 3 shows the number of variables that each methodology requires, along with the associated 

process times. 

Table 3: Resources required by each algorithm 

Algorithm 
Train 

data 

Input 

variables 
Unknowns 

Excecution 

time  [s] 
Solution method 

SVM 11901 4 23802 2.92E+04 Numerical optimization 

MLR 11901 4 5 1.56E-02 Theoretical solution 

ANN 11901 4 40 7.50E+01 Numerical optimization 

Table 3 shows the resources required to solve the problem with each methodology. Clearly, MLR is the most 

efficient from the viewpoint of computational cost and processing time. Its limitation is that it responds 

adequately insofar as data follow a linear trend. On the other hand, SVR requires a high computational load 

and high processing time. However, it allows achieving low errors. It is a machine designed for non-linear 

behavior. This characteristic is given by the Kernel functions. ANN is an intermediate methodology in resource 

use, being oriented to non-linear models. Its results are inferior to those of SVR. 

4.2. Exploring other feature spaces 

Table 2 shows that MLR nRMSE is quite away from what SVM and ANN deliver. In this section, the feature 

space is modified prior to solve MLR. The aim is to create a robust methodology having a high numerical 

performance and comparable to SVM and ANN results. Table 4 summarizes the results obtained with MLR 

for the different feature spaces defined in Table 1. 

Table 4 shows a significant improvement in MLR performance. For the case of feature space solar1, the mean 

error was reduced from 16.263% to 4.139%, where the hyperplane is defined by (eq. 23). 

ℎ = 𝑤1 ∙ 𝐺 + 𝑤2 ∙ 𝑇𝑏 + 𝑤3 ∙ 𝑐𝑜𝑆𝑧𝑎 + 𝑤4 ∙ 𝐺 ∙ 𝑒𝑃𝑅 + 𝑏.     (eq. 23) 

Likewise, for the feature space solar2, the mean error decreased from 16.263% to 2.534%, where the 

hyperplane is defined by (eq. 24). 

ℎ = 𝑤1 ∙ 𝐺 + 𝑤2 ∙ 𝑇𝑏 + 𝑤3 ∙ 𝑐𝑜𝑆𝑧𝑎 + 𝑤4 ∙ 𝐺 ∙ 𝑃𝑅 + 𝑏.     (eq. 24) 
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Table 4: MLR results for different feature spaces 

 

Finally, for space poly2, the error is reduced to 2.520%. The difference between poly2 and solar2 is 0.03%; 

however, poly2 has a dimension of 14. Despite the low error of poly2 and based on practical reasons, the 

chosen model solar2 defined by (eq. 23) has the advantage that a simple physical interpretation can be obtained. 

The simple methodology proposed competes in quality with results delivered by SVM and ANN. Table 5 

shows the nRMSE average for the different methodologies studied, adding also the results obtained with ANN 

Matlab Toolbox. 

Table 5: Comparison of sRMSE between algorithms 

MLR 

nRMSE 

Φ=solar2   

[%] 

SVM    

nRMSE       

[%] 

ANN   

nRMSE     

[%] 

ANNT(a)   

nRMSE    

[%] 

           2.5343             2.4120             5.6275             2.2584  

   (a) ANN Matlab Toolbox 

Table 5 shows that MLR with the modification of the feature space (F-MLR) included is competitive when 

compared to current methodologies, as it differs 0.27% with ANNT. However, F-MLR is 4.8 x 103 times faster 

than ANN and 1.825 x 106 times faster than SVM. 

4.3. Application of the proposed methodology to real plants 

In order to validate the proposed methodology, this section presents the application of F-MLR methodology 

to a life-size plant operating in the Chilean electricity system. Atacama Solar PV Plant is located at 2690 

m.a.s.l. in the Antofagasta region of Chile. The PV plant has an installed capacity of 23 MWp with single axis 

tracker North-South, containing 77520 polycrystalline modules of 300 Wp. The variables recorded in the PV 

plant were: irradiance in the plane of array G, ambient temperature 𝑇𝑏, and electrical power output (Pout). The 

record was measured every 15 minutes from January to December 2018, obtaining 14380 samples. The 

sampling rate was 15 min. Table 6 shows the results of statistical error analysis in terms of nRMSE.  

Table 6: Comparison of sRMSE between algorithms for Atacama Solar plant 

Indicator 
MLR 

Solar2 [%] 

MLR    

Poly2 [%] 

SVM      

[%] 

ANN           

[%] 

ANNT   

[%] 

nRMSE [%]         4.6974        3.8986          3.7500          4.6425          4.2224  

CPU Time [s] 0.002  0.109  2563.400  211.050  7.520  

Time ratio               1              73   1,708,933      140,700          5,013  

 

Results shown in Table 6 validate the conclusions reached in section 4.2. The F-MLR algorithm using the solar 

characteristic Solar2 achieves an error similar to that obtained with ANN and ANNT in a shorter process time. 

Fewer errors can be achieved by changing the characteristic space to poly2, but this means increasing the space 

dimension and process times. However, F-MLR-poly2 process time is significantly smaller than any 
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conventional algorithm. Finally, the last row in Table 6 shows the quotient between the CPU time used by an 

algorithm and the time used by F-MLR-solar2. So, these values show that F-MLR-solar2 is 5013 times faster 

than ANNT and 1708933 times faster than SVM. 

5. Conclusions 

In this study, the performance of three methodologies for PV plant energy production estimation was analyzed. 

Calculations reveal that SVMs usually deliver lower training errors. However, the CPU used by this type of 

algorithm is significantly higher than those required by ANN and MLR. This means that searching for smaller 

training errors requires high computational costs. Considering this aspect, an MLR-based algorithm was 

developed to deliver training errors similar to those delivered by ANNs, but with significantly less processing 

time and use of computational resources. As compared to SVM, the proposed algorithm is at least 1000000 

times faster, while compared to ANN it is 5000 times faster. Finally, as shown in (eq. 24) F-MLR-solar2 has 

a reasonably simple formula, which allows using it analytically. 
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