
 

Dynamic Weight-Based Collaborative Optimization for Power 
Grid Voltage Regulation 

Cristian Cortés1, Hamed Valizadeh Haghi2, Changfu Li1 and Jan Kleissl1,2 

1 Department of Mechanical and Aerospace Engineering, University of California, San Diego 

(United States) 

2 Center for Energy Research, University of California, San Diego (United States) 

 

Abstract 

Power distribution grids with high PV generation are exposed to voltage disturbances due to the 

unpredictable nature of renewable resources. Smart PV inverters, if controlled in coordination with each 

other and continuously adapted to the real-time conditions of the generation and load, can effectively regulate 

nodal voltages across the feeder. This is a fairly new concept and requires communication and a distributed 

control logic to realize a fair utilization of reactive power across all PV systems. In this paper, a collaborative 

reactive power optimization is proposed to minimize voltage deviation under changing feeder conditions. 

The weight matrix of the collaborative optimization is updated based on the reactive power availability of 

each PV system, which changes over time depending on the cloud conditions and feeder loading. The 

proposed updates allow PV systems with higher reactive power availability to help other PV systems regulate 

their nodal voltage. Proof-of-concept simulations on a modified IEEE 123-node test feeder are performed to 

show the effectiveness of the proposed method in comparison with four common reactive power control 

methods. 
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1. Introduction 

Increasing presence of renewable energy in the power grid aims at reducing greenhouse gas emissions, among 

other benefits, like decreasing the fossil fuel dependency as an energy source for a government (Walling et al., 

2008). However, the proliferation of variable renewable distributed energy resources (DER), such as solar 

photovoltaic (PV), introduce power flow changes that cause voltage profile disturbances (Pecenak et al., 2018). 

This is especially an issue if the nominal peak capacity of DERs gets closer to or surpasses the distribution 

network’s load size. These problems come from the highly variable and intermittent unpredictable nature of 

renewable energy sources.  

In the case of PV systems, smart inverter (SI) control can help mitigate voltage problems by actively utilizing 

surplus capacity of the inverter. New standards, such as IEEE 1547 (IEEE Standard Association, 2018) and 

California Rule 21(California Energy Commission and California Public Utilities Commission, 2015), provide 

guidelines to use the capacity of these devices to inject or absorb reactive power to/from the grid. The real power 

of the inverter may also be curtailed to provide enough headroom for reactive power utilization under poor voltage 

scenarios. Real and reactive power control of SI can help regulate the voltage of PV node connecting to the grid, 

referred to as the point of common coupling (PCC).  

As an alternative to the costly traditional network reinforcement approach, real and reactive power control of SIs 

(agents) have been studied to resolve voltage disturbances caused by fluctuating renewable DERs. There exist 

different control strategies to use smart PV inverters for voltage regulation. The simplest one considers that every 

agent solves its own problem using only local information and applying the solution at its PCC, without any 

coordination with other agents connected to the same power grid. These are known as decentralized control 

approaches, like droop control (Katirarei et al., 2008; Kashani et al. 2019). These methods are effective only with 

few PV systems connected to the distribution network. However, if in the same power grid, the installed PV 

capacity gets close to the peak load connected to it (high PV penetration), some SIs agents can experience non-

optimal voltage. 
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To overcome issues from high PV penetration, other methods exploit coordination among SIs through 

communication. This type of approach has been proposed in phase 2 of California Rule 21 (CEC & CPUC, 2015). 

The centralized approach requires a central entity to collect data from all SIs, calculates the optimal operation of 

each SI (agent), and sends the commands back to each agent (Tsikalakis and Hatziargyriou, 2008; Li et al., 2019). 

Although the centralized approach requires full communication between the central entity and each agent, 

coordination of SIs can also be achieved in a distributed manner, which can realize cooperation between different 

agents without a central entity. For the distributed coordination method, only communication between agents is 

required, and each agent assigns a parameter (weight) to each link connected to it to define the relevance of one 

link with respect to the rest. Several works have studied this type of coordination of SIs, considering different 

communication topologies. A distributed consensus algorithm using adjacent nodes communication is presented 

in Haque et al. (2019), which determines parameters for the amount of real power curtailed based on the PCC 

voltage by optimization. In Olivier et al. (2016), a five-step control approach is presented, which combines local 

regulation with distributed communication for reactive power dispatch and active power curtailment. In those 

works, fixed communication weights are used, which is not optimal for operation of a dynamic distribution 

network with variable renewable DERs.  

To the authors‘ best knowledge, this paper is the first one proposing an adaptive reconfiguration of the 

communication weights for coordinating SIs in a distributed fashion. To decide the fair utilization of each PV 

unit, the maximum amount of reactive power available each time step is considered. The algorithm utilizes a 

distributed collaborative optimization to determine optimal reactive power (curtailing real power if it is necessary) 

and achieves cooperation of SIs for voltage regulation. Effectiveness of the proposed method will be evaluated 

comparing voltage deviation at each PV system’s PCC from simulations. Other currently applied control methods 

are simulated as well to compare performances. OpenDSS will be used to perform the steady-state simulations 

of the distribution grid with MATLAB handling the control.  

2. Problem formulation 

To illustrate the problem to be solved in this paper, let's consider a simple case where two PV systems with 

different sizes (1500 kVA and 75 kVA) are connected to a distribution feeder (Figure 1). A clear day irradiance 

profile is used for both PVs. 

 

Figure 1 Two PV systems with smart inverters connected to IEEE 123 node test feeder. 1500 kVA is the rating of the SI rating on 

𝑷𝑽𝟏 and 75 kVA is the rating of the SI on 𝑷𝑽𝟐. 

Without any control (PV operating at unity power factor), the nodal voltage at 𝑃𝑉1 goes up to 1.03 p.u. around 

noon, and the nodal voltage at 𝑃𝑉2 is higher than 1.05 p.u. the entire time simulated (Figure 3). SIs can help to 

regulate the local voltage in this scenario with reactive power. A fixed control method like Volt-Var curve (Figure 

2) can be used to achieve this, which establishes a relation between the voltage at the PCC and the amount of 

reactive power that needs to be dispatch by the SI according to the deviation of the voltage from a reference value 

(𝑉𝑟𝑒𝑓). The Volt-Var curve needs parameters as input (IEEE 1457 default setting are used in Figure 2) to define 

𝑃𝑉1

𝑃𝑉2
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at which voltage level the SI should start dispatching reactive power, and at which rate this is going to increase 

when voltage deviation rises. 𝑄̅𝑚 is the maximum reactive power available on each SI and is going to be limited 

by the amount of active power that the inverter is currently injecting, according to the following equation: 

𝑄̅𝑚 = √𝑆𝑚
2 − 𝑃𝑚

2,      (eq. 1) 

where 𝑃𝑚 is the active power generated by the PV panels connected to the SI m, and 𝑆𝑚 is the inverter power 

rating. If more reactive power needs to be dispatched, the inverter can be set in Var-priority mode and active 

power will be curtailed to use that SI capacity in the additional reactive power needed. To assess the contribution 

of each SI connected to the distribution feeder, a reactive power fair utilization ratio, 𝛼𝑚, is defined as follows: 

𝛼𝑚 =
𝑄𝑚

𝑆𝑚
⁄ ,       (eq. 2) 

where 𝑄𝑚 is the generated reactive power for PV system 𝑚, and the inequality 𝑄𝑚 ≤ 𝑄̅𝑚 always holds. 

  

Figure 2 Volt-Var curve implemented in PV smart inverters to regulate the voltage at PCC using IEEE 1457 default setting. 

Voltage (V) in per unit, with 𝑽𝒓𝒆𝒇=2.4 kV, and reactive power (Q) to be dispatched on each case.  

If the fixed Volt-Var curve in Figure 2 is implemented, both SIs will absorb reactive power to decrease the voltage 

at their PCC (Figure 3). Voltage in both PV systems changes a small fraction around noon, and no SI can reach 

1 per unit value with this control method (considering 𝑉𝑟𝑒𝑓=2.4 kV). Results for reactive power fair utilization 

ratio show the percentage of reactive power injected on each case. 𝑃𝑉2 is injecting around one third of its SI 

capacity; meanwhile, 𝑃𝑉1 uses only around 10%. Voltage and reactive power profiles for 𝑃𝑉1 illustrate that a 

control method better adjusted to its condition should fix its voltage. On the other hand, 𝑃𝑉2 hardly will dispatch 

enough reactive power to regulate its PCC’s voltage down to 1 per unit. Under this scenario, it is valued to propose 

new methodologies to improve voltage regulation controlling reactive power dispatch at each PV system’s PCC. 

In particular, cooperation between both SIs (using communication capacities) can be applied to manage the extra 

capacity of 𝑃𝑉1 to help voltage regulation at 𝑃𝑉2 node.  

 

Figure 3 Voltage profile (in per unit value) along a day for both PV systems under two different control conditions: no control 

(blue dashed line, No Ctl) and with the fixed curve (Volt-Var) as control (red line, F.C.). Reactive power fair utilization ratio 

profile (𝜶) for the fixed curve is included as well (dashed line, F.C.). Recall SI does not dispatch reactive power for no control 

case. 

V [p.u.]

Q

0.92     

        

     𝑆𝑚

−     𝑆𝑚
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3. Distributed optimization method 

The proposed method takes advantage of reactive power dispatch and real power curtailment capacities of SIs 

(agents). The communication capabilities of these devices allow us to implement a distributed collaborative 

optimization to minimize voltage deviation at each agent's PCC with reactive power. Additionally, information 

exchange and its implementation on each SI yield to a unified voltage profile from a cooperative control 

perspective. On the other hand, real power curtailment on each agent is performed to have access to the full 

inverter capacity, if it is necessary.  

As voltage deviation minimization is the goal of the method to be implemented, then the objective function can 

be defined as  

𝐹𝑣 = ∑ 𝑓𝑣𝑚𝑚 ,       (eq. 3) 

𝑓𝑣𝑚
=

1

2
( − 𝑉𝑚)2,      (eq. 4) 

where 𝑓𝑣𝑚
 is the objective function component associated with agent 𝑚 of the distributed network, and V𝑚 is the 

voltage at PCC of agent 𝑚. Maknouninejad & Qu (2014) proposes equation 3 can be minimized applying a 

distributed collaborative optimization using 𝛼𝑚 as the control variable, and, in this way, 𝛼𝑚 can be considered as 

an estimation of the optimal solution for that equation. At time 𝑡𝑘, the methodology establishes the agent 𝑚 

maintains 𝛼𝑚(𝑘) as its estimate of the solution. Then, it will calculate a new estimation for the next time step, 

𝛼𝑚(𝑘 +  ), using its own value from the previous time, and estimations performed by other units with whom 

there is communication, 𝛼𝑗(𝑘) (with 𝑗 representing all agents that exchange information with agent 𝑚). The 

mathematical formulation of this relation is defined as follow, 

𝛼𝑚(𝑘 +  ) = 𝑑𝑚𝑚𝛼𝑚(𝑘) + ∑ 𝑑𝑚𝑗𝛼𝑗(𝑘)𝑗≠𝑚 − 𝛽𝑚𝑔𝑚  (eq. 5) 

𝛽𝑚 >   is the step size gain for agent 𝑚, and 𝑔𝑚 is the gradient of 𝑓𝑣𝑚
 with respect to agent 𝑚’s state, 𝛼𝑚, and 

is calculated as Maknouninejad & Qu (2014) as follows 

𝑔𝑚 = −𝑄̅𝑚( − 𝑉𝑚)
𝑉𝑚

𝑄𝑚−𝑉𝑚
2𝐵𝑚𝑚

,     (eq. 6) 

where 𝐵𝑚𝑚 is the susceptance of node 𝑚 and it is defined as the sum of the imaginary parts of line conductances, 

corresponding to all lines connected to node 𝑚. This formulation for the gradient was derived using system power 

flow equations for real and reactive power. 

On the other hand, 𝑑𝑚𝑗  (and 𝑑𝑚𝑚) are the communication coefficients, defined as 

𝑑𝑚𝑗 =
𝑤𝑚𝑗𝑠𝑚𝑗

∑ 𝑤𝑚𝑙𝑠𝑚𝑙𝑙
  𝑗, 𝑙 =    𝑀    (eq. 7) 

The coefficients 𝑠𝑚𝑗  and 𝑤𝑚𝑗  (in the same way that 𝑠𝑚𝑙   and 𝑤𝑚𝑙) belong to the communication topology matrix 

and the communication weight matrix, respectively, and they are associated with the physical connections existent 

on the distribution feeder. 𝑀 is the number of agents connected to the distribution grid, and 𝑠𝑖𝑗=1 represents the 

information exchange existence between agents 𝑖 and 𝑗 (similarly, 𝑠𝑖𝑗=0 means no communication between agents 

 𝑖 and 𝑗). From cooperative control theory, matrix 𝑆, which contains all 𝑠𝑖𝑗  associated with a particular distribution 

grid, must contain at least one globally reachable node as a minimum requirement in order to ensure convergence 

of the represented distribution network (Xin et al., 2011). In other words, the proposed method is robust under 

scenarios of variations and limitations of the communication network. On the other hand, matrix 𝑊 stores 𝑤𝑖𝑗 >

 ; each of them corresponding to the communication weight associated to the existing communication link 

between agent 𝑖 and 𝑗. This relation can be read as “how relevant the state of agent j in time step 𝑡𝑘 is for the state 

of agent 𝑖 in time step 𝑡𝑘+1, with respect to other agents connected to i in time step 𝑡𝑘.”  

This work proposes changing the communication weights along the time (dynamic weights), and their values will 

be set based on their capacity to determine the influence of one agent into another. This will be utilized to allow 

agents with reactive power available helping in the voltage regulation of another agent, connected to a different 

bus of the distribution grid, which doesn’t have enough reactive power capacity to do it independently. To 

implement this behavior, matrix 𝑊𝐷 is defined as follows 
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𝑊𝐷 =

[
 
 
 
 
 
 
 
 
 
 
 
 

𝑄̅1𝑇

𝑄̅1
⁄ 𝑠12 ∙

𝑄̅1

𝑄̅2
⁄ 𝑠13 ∙

𝑄̅1

𝑄̅3
⁄

𝑠21 ∙
𝑄̅2

𝑄̅1
⁄

𝑄̅2𝑇

𝑄̅2
⁄

𝑠31 ∙
𝑄̅3

𝑄̅1
⁄ ⋱

… … 𝑠1𝑀 ∙
𝑄̅1

𝑄̅𝑀
⁄

𝑠𝑀3 ∙
𝑄̅𝑀

𝑄̅3
⁄ 𝑠𝑀3 ∙

𝑄̅𝑀

𝑄̅3
⁄ 𝑠2𝑀 ∙

𝑄̅2

𝑄̅𝑀
⁄

𝑠3𝑀 ∙
𝑄̅3

𝑄̅
𝑀

⁄

⋮ 𝑠𝑀3 ∙
𝑄̅𝑀

𝑄̅3
⁄

⋮ 𝑠𝑀3 ∙
𝑄̅𝑀

𝑄̅3
⁄

𝑠𝑀1 ∙
𝑄̅𝑀

𝑄̅1
⁄ 𝑠𝑀2 ∙

𝑄̅𝑀

𝑄̅2
⁄ 𝑠𝑀3 ∙

𝑄̅𝑀

𝑄̅3
⁄

⋱ 𝑠𝑀3 ∙
𝑄̅𝑀

𝑄̅3
⁄ ⋮

𝑠𝑀3 ∙
𝑄̅𝑀

𝑄̅3
⁄ ⋱ ⋮

… …
𝑄̅𝑀𝑇

𝑄̅𝑀
⁄

]
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑄̅𝑚𝑇 = ∑ 𝑠𝑚𝑗𝑄̅𝑗𝑗  is the total reactive power available considering all SIs in communication with agent 𝑚. Each 

element outside the diagonal in the matrix 𝑊𝐷 can be described as the relative reactive power available of a 

specific agent with respect to each of its neighbors, where weight equal to zero when no communication exists 

between those agents. In general, 𝑊𝐷 will assign a big number to 𝑤𝑖𝑗  if agent i has several times more reactive 

power available than agent j. On the other hand, elements in the diagonal of the matrix 𝑊𝐷 correspond to the 

fraction of total reactive power available considering all agents that are communicated with a specific agent, with 

respect to its own reactive power available. In the same way, a big number in the diagonal of 𝑊𝐷 means that agent 

experiences reactive power scarcity. 

The implementation of a distributed collaborative optimization on SIs can be interpreted as an adaptive Volt-Var 

curve that varies along the time based on the reactive power availability of each SI connected to a distribution 

grid. Then, each time step equation 5 will provide a new amount of reactive power that needs to be dispatch for 

an SI, based on its PCC voltage, maximum reactive power available, current reactive power dispatched, and 

susceptance. In the next section, to prove the effectiveness of the dynamic weights implemented on the mentioned 

distributed collaborative optimization, results combining the adaptive curve with different ways to define 

communication weights will be presented. 

4. Simulation study and results 

To show the effectiveness of the proposed method, proof-of-concept simulations are run on a modified IEEE 123 

node test feeder, with two PV systems connected: one with an inverter size of 1500 kVA and 1800 kW of PV 

panels (𝑃𝑉1) and the second one with a power rating capacity of 75 kVA coupled with 90kW of PV nominal 

capacity (𝑃𝑉2). They are connected to nodes 250 and 450, respectively; both PVs are 3-phase systems (Figure 1). 

The nominal voltage for IEEE 123 node test feeder is 2.4 kV. The irradiance profile used as input corresponds to 

clear sky day and it is shown in Figure 4. The peak load is 3.49 MW of real power and 1.92 MVAr of reactive 

power and changes along the day according to the load profile of Figure 4. To facilitate result interpretations, 

regulators were removed from the distribution feeder, and transformer control functions were disabled as well. 

In addition, a 1000 kVAr capacitor was added to node 450 in order to increase the voltage deviation at that node. 

The simulation time step selected was 10 seconds, SIs update their output every 20 seconds, and the simulation 

is carried out for 11 hours period of the day from 6:30 and 17:30.  

 

Figure 4 Global horizontal irradiance (left) and load (right) profile utilized for simulations. 
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In addition to one case where no reactive power is dispatched from any smart PV inverter, established as the no 

control case (No Ctl), four different control schemes implemented on each SI are simulated in this work. The first 

one uses fixed Volt-Var curve with parameters corresponding to the default settings of IEEE 1457 standard norm 

and it will be named fixed curve (F.C.). The other three control methods provide the reactive power generation 

based on the distributed optimization defined by equation 5 (adaptive curve, A.C.), but considering different 

communication topologies (no communication or communication) and methods to calculate communication 

weights (fixed or dynamic). One control method does not incorporate any information exchange between the SIs, 

and it corresponds to a full decentralized approach (adaptive curve with no communication, A.C.NoCm). The 

second control method incorporates communication between SIs but considers all communication weights fixed 

and equal to 1 (adaptive curve with fixed weights, A.C.F.W.). Finally, the last case implements the proposed 

method where communication exists between the agents with communication weights that changes along the time 

(adaptive curve with dynamic weights, A.C.D.W.). All methods presented modify parameters related to the AC 

side of the SI, then there is no modification applied to the MPPT control utilized by the PV panels connected in 

the DC side. Table 1 shows the agent estimation update for each control method implemented.  

Table 1 Agent estimation update formulation for each control method simulated. 𝒇(𝑽𝒎) represents the Volt-Var curve presented in 

Figure 2. 

Name Abbreviation Agent estimation update 

No control No Ctl 𝛼𝑚(𝑘 +  ) =   

Fixed curve F.C. 𝛼𝑚(𝑘 +  ) =
𝑓(𝑉𝑚)

Q̅m

 

Adaptive curve with no 

communication 
A.C. NoCm 𝛼𝑚(𝑘 +  ) = 𝛼𝑚(𝑘) − 𝛽𝑚𝑔𝑚 

Adaptive curve with 

fixed weights 
A.C.F.W. 𝛼𝑚(𝑘 +  ) =

 

 
[𝛼𝑚(𝑘) + 𝛼𝑗(𝑘)] − 𝛽𝑚𝑔𝑚 

Adaptive curve with 

dynamic weights 
A.C.D.W. 

𝛼𝑚(𝑘 +  ) = 𝑑𝐷
𝑚𝑚𝛼𝑚(𝑘) + 𝑑𝐷

𝑚𝑗𝛼𝑗(𝑘) − 𝛽𝑚𝑔𝑚, 

𝑑𝐷
𝑚𝑗 =

𝑤𝐷
𝑚𝑗

𝑤𝐷
𝑚1 + 𝑤𝐷

𝑚2

,𝑊𝐷 = [𝑤𝐷
𝑖𝑗] 

Figure 5 shows the voltage profile of each PV system with each tested control method. Although all of them 

reduce voltage deviation for both SIs, with respect to the no control case, the reference value is reached only on 

𝑃𝑉1 applying the A.C.NoCm method. The same method for 𝑃𝑉2 does not perform as well as on 𝑃𝑉1, and methods 

combining adaptive curve with communication provide better voltage regulation in 𝑃𝑉2. A.C.D.W. increases 

voltage deviation on 𝑃𝑉1 and decreases it on 𝑃𝑉2 with respect to A.C.F.W. 

As each SI is undersized by 17%, flat real power generation during the time interval 10:45 – 13:08 in Figure 6 

indicates inverter saturation. In addition, differences between each control method and no control profile in Figure 

6 represents the amount of energy curtailed on each case. For 𝑃𝑉1, almost no curtailment is registered for fixed 

curve control method, while some real power fraction is reduced with other methods, and adaptive curve with 

dynamic weights provides the lowest real power generation. For 𝑃𝑉2, adaptive curve methods with no 

communication (A.C.NoCm) and dynamic weights (A.C.D.W.) curtail 100% for the entire period, while there is 

only partial curtailment for F.C. and A.C.F.W. methods.  
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Figure 5 Voltage deviation (in per unit value) for 𝑷𝑽𝟏 (left) and 𝑷𝑽𝟐 (right) considering the no control case (No Ctl) and four 

different control methods: fixed control curve (F.C.), adaptive curve with no communication (A.C. NoCm), adaptive curve with 

fixed weights (A.C. F.W.), and adaptive curve with dynamic weights (A.C. D.W.). 

 

Figure 6 Real power generated for each PV system considering four the control methods plus no control case. NoCtl and F.C. real 

power results overlap in 𝑷𝑽𝟏. A.C.NoCm and A.C.D.W. real power results overlap in 𝑷𝑽𝟐. 

Reactive power fair utilization ratio for each SI is presented in Figure 7. While no method utilizes full 𝑃𝑉1 inverter 

capacity to dispatch reactive power, A.C.NoCm and A.C.D.W. methods use full SI capacity to absorb reactive 

power in 𝑃𝑉2. This behavior indicates 𝑃𝑉2 reactive power scarcity to regulate its voltage. Under this scenario, 

methods with communication demand more reactive power absorption from 𝑃𝑉1 than methods-based on local 

measurements. In other words, the extra reactive power absorbed by 𝑃𝑉1 in methods with communication is 

dispatched to contribute to the voltage regulation in 𝑃𝑉2. Additionally, A.C.D.W. method requests a higher 

amount of reactive power absorption than A.C.F.W., which indicates dynamic weights are incorporating 𝑃𝑉2 

reactive power scarcity to the solution and making 𝑃𝑉1 absorbs even more reactive power than the case of fixed 

weights. 

Figure 8 shows a comparison between all methods considering objective function final result, for each control 

method applied, in two ways: adding 𝑓𝑣 for all agents connected to the distribution grid for each time step, and 

the final objective function result across the entire time period squared (𝐹𝑣
2). Adaptive curve methods show an 

important improvement in voltage deviation across the day with respect to F.C. and no control methods. In 

particular, A.C.D.W. provides the lowest voltage deviation for the entire time period, where main differences 

occur during daylight. This difference comes from the additional reactive power absorbed by 𝑃𝑉1, which 

decreases voltage deviation in 𝑃𝑉2 with a small increment in the deviation of 𝑃𝑉1 voltage.  

Results for average losses along the time period in active and reactive circuit elements are presented in Figure 9. 

All control methods implemented decreased the losses in comparison with No Ctl but the highest variation is 

lower than 20%. A.C.NoCm obtained the smallest losses among all methods.  

Percentages of real power curtailed with each method on each SI with respect to the No Ctl case are presented in 

Figure 9 as well. Results presented on this figure show the same behave observed in Figure 6: all A.C. methods 

increased the amount of curtailment; and A.C.D.W. obtained the highest amount of energy curtailed on both SIs, 

which is consistent with the method that requested reactive power the most. In addition, 𝑃𝑉2 curtailed all the 
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reactive power generated along the day for A.C.NoCm and A.C.D.W. methods. These results suggest future work 

should incorporate some curtailment minimization in equation 4 to improve the solution.  

 

Figure 7 Reactive power fair utilization ratio (𝜶) dispatched from each SI for the no control case, and the four control methods 

tested. 

 

Figure 8 (Left) Sum of all objective function elements from each agent (𝒇𝒗, equation 4), for each time step for all control methods 

plus no control case. (Right) the objective function results squared (𝑭𝒗
𝟐
, equation 3), adding the entire time period for each method 

tested. 

 

Figure 9 (Left) Average of the total losses for the active and reactive circuit elements for all control methods. (Right) Percentage of 

active power curtailed for each method on each SI with respect to the No Ctl case. 

 

5. Conclusion 

A distributed collaborative optimization technique with dynamic communication weights is proposed to regulate 

the voltage across a distribution power grid with high PV penetration. The main idea is to make the control 

structure adaptive to generation and load changes. Proof-of-concept simulations on a modified IEEE 123-node 
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test feeder with two PV systems compare the effectiveness of the proposed approach to the existing techniques: 

fixed control curve, adaptive curve with no communication, and adaptive curve with fixed weights. Case studies 

show that the dynamic weight-based approach results in the lowest voltage deviation reducing losses with respect 

to No Ctl case, and without increasing losses significantly with respect to the other methods implemented. 

However, the main disadvantage of A.C.D.W. is the high amount of curtailment applied on each SI. This can be 

improved in future work incorporating a term for curtailment on the objective function. More realistic scenarios, 

with real feeder models and numerous PV systems, will also be studied. Irradiance profiles with high variability 

along the day will be incorporated in future work as well, to test oscillations and power quality impacts of the 

proposed method. 
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