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Abstract 

The ability of a system to endure and recover after extreme events, its resilience, is an aspect of its performance that 

is often neglected. There are abundant studies on the analysis of the resilience of systems in the fields of transportation 

and infrastructure. Its application in the design of energy systems is rather scarce and bounded to electric power 

systems. Considering the ongoing multisectoral transition toward renewable energy systems, we foresee the need for 

a resilience index that is suitable to be integrated into multi-vector energy system planning. For the sake of 

computational tractability, most optimization models for energy system planning aim at linearity. The goal of this 

work is to propose a resilience index that is suitable for multi-energy systems planning and that allows the modelers 

to maintain the linearity of the optimization problems. First, we review the existing literature on resilience indicators 

and further analyzed those that we considered could be adapted for our objectives. Then, we propose an indicator 

and provide an example of its application for the ex-post analysis of the resilience of a case-study system. Finally, 

we test the system under different scenarios for the recovery time and the level of damage in the components. The 

resulting resilience indicator behaves consistently among the scenarios and we expect that it will be easy to integrate 

it as an optimization goal in models for multi-energy system planning. Integrating this kind of indexes at the early 

stages of the planning process would allow modelers to conceive more robust energy systems for the future. 
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1. Introduction 

The need to mitigate climate change has fostered the use of renewable energies (Sawin, Rutovitz, and Sverrisson 

2018). For reaching high shares of renewables, coupling different energy sectors using multi-energy (heat, power, 

fuels) systems has proven beneficial in smoothing out the variability of renewable sources (e.g. photovoltaics PV) 

(Brown et al. 2018; Mancarella 2014). Multi-energy systems (MES) consider different energy vectors -like 

electricity, heat, and fuels- and coordinate the operation of the infrastructure to reach, for example, minimum costs. 

MES can improve economic and environmental performance as compared to classical configurations, where the 

supply of different forms of energy or services are treated separately (Mancarella 2014). MES, like any other system, 

are vulnerable to damage in extreme events, such as earthquakes, which may result in a disruption of the energy 

supply (FEMA 2015).  

The ability to recover from damage is called resilience. This term is widely used in multiple disciplines, including 

psychology, ecology, environment, among others. However, the shared use of resilience implies the ability of an 

entity or system to return to normal conditions after the occurrence of an event that disrupts its state (Hosseini, 

Barker, and Ramirez-Marquez 2016). To graphically represent resilience, the resilience curve is used. This curve 

represents the system’s health over time (Panteli and Mancarella 2015), as shown in Fig. 1. In the beginning, the 

system is in a steady state with health 𝑄0. In time 𝑡0, an event occurs, which causes a reduction of the system’s health, 

reaching the value 𝑄𝑒. After the event, the system starts a recovery state, until it reaches again the former steady state 

in time 𝑡𝑟𝑒𝑐. 
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Fig. 1: Graphic representation of a resilience curve. 

Some authors studied different ways to measure resilience, proposing metrics for different application areas (Bruneau 

et al. 2003; Zobel 2010). Literature reveals that there is no unique way to describe the concept, however, they agree 

on the ability to recover. Despite the recent works on resilience, resilience metrics for power systems have not been 

completely studied. In particular, a resilience indicator for coupled multi-energy systems has not been observed. This 

study aims at filling this gap. 

The goal of this work is, first, to provide a review of the academic literature on available resilience metrics. Secondly, 

based on this review, we will propose a new resilience indicator for multi-energy systems that can be used in the 

optimal planning of energy systems. The novelty of this study is the index definition and its area of application. It is 

aimed at being used in the design phase of MES, in linear programming optimization models.  

Section 2 shows a literature review of resilience metrics. Section 3 explains the proposed indicator and Section 4 

illustrates its ex-post application on a case study. Section ¡Error! No se encuentra el origen de la referencia. 

discusses the case study and the limitations of the indicator. Finally, Section 5 draws the conclusions. 

2. Review: Resilience indexes 

This section reviews the existing literature on resilience indexes. We revise 60 studies on resilience, then we select 

those that we considered that can be adapted to energy system planning and analyzed them in more detail. First, we 

show the field of application of the articles, then we offer more details on the selected ones.  

Resilience is applied to many engineering fields. In Fig. 2, we summarize the application area of the reviewed studies. 

The most studied field is infrastructure and transportation, while resilience in power systems accounts for a minor 

share. Although there are some studies that use resilience metrics in power systems, a resilience indicator for multi-

energy systems has not been observed. Accordingly, the indicator we introduce in the next sections aims at filling 

this gap. 

 

Fig. 2: Application area of the different metrics. 60 metrics analyzed. 

From the revised studies on resilience, we select some metrics that we consider can be adapted to the field of MES. 

The selected metrics are summarized in Tab. 1. The metrics are described with some specific features: type of extreme 

event, the application area, uncertainty considerations (deterministic or probabilistic), and time modeling (dynamic 

or stationary). In the following, we summarize the selected studies. 
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Tab. 1 Some resilience metrics proposed in literature 

Reference Resilience Metric Recover from Application area Deterministic/ 

probabilistic 

Stationary/ 

dynamic 

(Bruneau et al. 2003) 
𝑅 = ∫ [100 −𝑄 𝑡 ]𝑑𝑡

𝑡1

𝑡0

 
Earthquakes Infrastructure Deterministic Dynamic 

(Bruneau and Reinhorn 2007) 
𝑅 = ∫ [100 −𝑄 𝑡 ]𝑑𝑡

𝑡1

𝑡0

, 𝑄 𝑡 = 100 − [𝐿 ∙ 𝑓𝑟𝑒𝑐 ∙ 𝛼𝑅] 
Earthquakes Infrastructure Probabilistic Dynamic 

(Zobel 2010) 
𝑅 𝑋, 𝑇 = 1 −

𝑋𝑇

2𝑇∗ 
- - Deterministic Dynamic 

(Zobel 2011)  
𝑅 𝑋,𝑇 = 1 −

𝑋𝑇

2𝑇∗ +𝛼(
𝑋𝑇

2𝑇∗) 
- - Deterministic Dynamic 

(Afgan and Veziroglu 2012) 
𝑅𝑗 = ∑𝑤𝑖 ∫ [100 − 𝑞𝑖 𝑡 ]𝑑𝑡

𝑡1

𝑡0𝑖

 
- Power systems Deterministic Dynamic 

(Enjalbert et al. 2011) 
𝑅𝐿 =

𝑑𝑆 𝑡 

𝑑𝑡
, 𝑅𝑇 = ∫

𝑑𝑆 𝑡 

𝑑𝑡

𝑡𝑒

𝑡𝑏

 
Human accident 

occurrences 
Transportation Deterministic Dynamic 

(Chen and Miller-Hooks 

2011) 𝑅 = 𝐸 (∑𝑑𝑤

𝑤

/∑𝐷𝑤

𝑤

) 
Natural or human caused 

disaster 
Transportation Deterministic Dynamic 

(Franchin and Cavalieri 2015) 
𝑅 =

1

𝑃𝑑𝐸0

∫ 𝐸 𝑃𝑟 𝑑𝑃𝑟

𝑃𝑑

0

 
Earthquakes Infrastructure Probabilistic Dynamic 

(Rose 2007) 
𝑅 =

%𝐷𝐷𝑌𝑚 −%𝐷𝐷𝑌

%𝐷𝐷𝑌𝑚
=

𝑌𝐷 −𝑌0
𝑌𝑁 −𝑌0

=
𝐵

𝐴
 

- Economy Deterministic Stationary 

(Omer, Nilchiani, and 

Mostashari 2009a) 
𝑅𝑛𝑒𝑡𝑤𝑜𝑟𝑘 =

𝑉𝑖𝑛𝑖𝑡 −𝑉𝑙𝑜𝑠𝑠

𝑉𝑖𝑛𝑖𝑡

 
Undersea earthquakes, 

fish bites or ship anchors 
Networks Deterministic Stationary 

(Henry and Ramirez-Marquez 

2012) 𝑅 =
𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑡 

𝐿𝑜𝑠𝑠 𝑡𝑑 
=

𝐹(𝑡𝑟|𝑒𝑗)− 𝐹(𝑡𝑑|𝑒𝑗)

𝐹 𝑡0 − 𝐹(𝑡𝑑|𝑒𝑗)
 

External disruptive event Transportation Deterministic Stationary 

(Baroud et al. 2014) 
𝑅𝜑 𝑡𝑟|𝑒

𝑗 =
𝜑(𝑡𝑟|𝑒𝑗)− 𝜑(𝑡𝑑|𝑒𝑗)

𝜑 𝑡0 − 𝜑(𝑡𝑑|𝑒𝑗)
 

- Water resource Probabilistic Stationary 

(Barker and Ramirez-marquez 

2016) 𝑅𝜑 𝐸,[0, 𝑇𝐶] =

1
|𝐸|

∑ ∫ 𝜑 𝑡;𝑁, 𝐿, 𝐶 
𝑇𝐶
0𝐸

∫ 𝜑𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑡;𝑁, 𝐿, 𝐶 
𝑇𝐶

0

 

Terrorist attacks, natural 
disasters or manmade 

hazards 

Infrastructure Probabilistic Dynamic 
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Bruneau et al. (2003) propose an indicator to measure the size of the expected degradation in quality (𝑄) over time 

due to an earthquake. This metric is deterministic and dynamic. Later, Bruneau and Reinhorn (2007) improved the 

same index with a more detailed measure of functionality. It considers the loss function (𝐿), which is measured as 

the ratio of the actual loss, the recovery function (𝑓𝑟𝑒𝑐) after the time occurrence, which depends on the resources 

available during the recovery period, and the functionality recovery factor (𝛼𝑅). The second term considers 

probability fuctions from fragility curves (Masanobu Shinozuka et al. 2000), being a probabilistic index. 

Zobel (2010) proposed a simplification of the metric proposed by Bruneau et al. (2003). They calculated the loss 

function as a linear function and the total loss of functionality as the area of a triangle , in terms of the initial impact 

(𝑋) and the recovery time (𝑇). They also incorporated a time horizon (𝑇∗), which allows to represent resilience as a 

percentage (Zobel 2010). Later, Zobel (2011) adjusted this resilience function by giving different importance (𝛼) to 

the initial impact of the disaster event and to the recovery time, by adding a new parameter to adjust the slope of the 

resilience function. 

The metric proposed by Afgan and Veziroglu (2012) was also based on Bruneau et al. (2003) index. However, they 

developed a resilience index considering sustainability dimensions, which is a linear agglomeration function of 

products between indicators and the corresponding weighting coefficients (𝑤𝑖). 

Enjalbert et al. (2011) defined the concept of local resilience (𝑅𝐿) and total resilience (𝑅𝑇), where the local resilience 

is an instantaneous measurement of resilience and is the slope of the resilience curve (𝑆). It can be negative or positive 

if the performance decreases or increases, respectively. The total resilience is the sum of local resilience during a 

given period. 

Chen and Miller-Hooks (2011) developed a similar indicator to that of  Zobel (2010), measuring the fraction between 

the loss and total functionality. In this case, they define resilience as a fraction between the demand that can be 

satisfied after the event (𝑑𝑤)  and the pre-disaster satisfied demand (𝐷𝑤). 

Franchin and Cavalieri (2015) described resilience in a new field: civil infrastructure. Their metric is a measure of 

the reallocated population (𝐸 𝑃𝑟 ) due to an earthquake. They also considered uncertainty and vulnerability factors 

and how they affect resilience. 

All the above-mentioned metrics consider the behavior of the system over time to measure resilience. There are other 

stationary indexes (Baroud et al. 2014; Henry and Ramirez-Marquez 2012; Omer, Nilchiani, and Mostashari 2009b; 

Rose 2007), which measure the robustness of the system. These indexes are defined as a fraction between the system 

health after the event and before. They just differ in their application field. 

3. A new indicator 

In this section, and based on the literature review, we propose a new metric to measure the resilience of a multi-

energy system. First, we describe a multi-energy system with a generic superstructure. Later, we explain 

mathematically the newly proposed indicator. 

MES are systems where different energy vectors interact with each other. They consider different types of technology 

(as shown in Fig. 3): primary generation 𝑃𝐺, transformation technologies 𝑇𝑇 (from one type of energy to another), 

storage 𝑆 of the different energy types, and the process 𝐷 which demands energy. Examples of energy vectors are: 

heat, fuels, and electricity. There can be several technologies for the generation of one type of energy (e.g. 

photovoltaics PV and wind turbines for electricity generation). For the transformation technologies, in the generic 

model, every transformation is possible (e.g. heat to fuel, electricity to heat, etc.). Depending on the application, 

some of them might not be considered. 

 

Fig. 3: Model superstructure. 
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The proposed indicator considers the possible shortage of energy in the system due to an earthquake. This indicator 

requires as inputs the performance of the energy technologies (energy demand and supply over time, considering 

efficiency and generation profile for variable renewable energy), the energy demand, and the technologies behavior 

in the case of facing an earthquake, which includes the damage state and the reposition time (how long it takes for 

this technology to recover and be available again (FEMA 2015)). 

The indicator we propose describes the resilience of the system as a percentage that shows the energy that the system 

can supply after a disruptive event about the total energy demand in an evaluation horizon. To determine the energy 

that the system can supply, we need to measure the non-supplied energy (energy shortage) of each energy vector to 

obtain the total shortage. This is analog to the loss of energy expectation (LOEE) in power systems but extended to 

multi-vector systems using weighting factors and considering models for the recovery of the components after an 

extreme event. We evaluate the damage of each component of the system and count the energy demand that cannot 

be satisfied as a result of this damage. This is done for each vector and the total resilience is a weighted sum. 

As this indicator quantifies the possible energy shortage to the process, we need to know the behavior of each 

technology during the time, represented in their power capacity. This is illustrated in Fig. 4, where the maximum 

power available is described by 𝑃𝑎𝑣 𝑡 . This power can be mathematically described as follow: 

𝑃𝑎𝑣 𝑡 = {

𝑃𝑖𝑛𝑠𝑡                                           ,                 𝑡 < 𝑡0
𝑃𝑖𝑛𝑠𝑡 ⋅ (1 − 𝔼 𝑥 )+𝑚𝑡        ,    𝑡0 ≤ 𝑡 < 𝑡𝑟𝑒𝑐
𝑃𝑖𝑛𝑠𝑡                                           ,            𝑡 ≥ 𝑡𝑟𝑒𝑐

 (eq. 1) 

Where 𝑃𝑖𝑛𝑠𝑡 is the power of one technology previously installed, 𝔼 𝑥  is the expected failure value (share of the 

capacity that is not operative), 𝑡0 is the time of the day where the event occurs, 𝑡𝑟𝑒𝑐 the expected recovery time, and 

𝑇∗ the time period of the evaluation. 

 

Fig. 4: Power vs. Time  

The energy delivered or consumed by each technology changes over time. Fig. 5 a) shows in orange line a possible 

power delivered 𝑃 𝑡  from a technology, i.e. the power which was scheduled to deliver. But it got damage and now 

can deliver maximum 𝑃𝑎𝑣 𝑡  (blue line). Hence, the resulting operation of this technology after an event is 𝑃𝑟 𝑡  

(purple line), as it shows Fig. 5 b). 

 

Fig. 5: Power delivered or consumed by each technology due to an event. 

Mathematically, this is expressed as the minimum between both functions: 

𝑃𝑟 𝑡 = min{𝑃𝑎𝑣 𝑡 , 𝑃 𝑡 } (eq. 2) 

And in LP, the constraints are the following: 

𝑃𝑟 𝑡 ≤ 𝑃𝑎𝑣 𝑡   (eq. 3a) 
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𝑃𝑟 𝑡 ≤ 𝑃 𝑡  𝑃𝑟 𝑡 ≤ 𝑃𝑎𝑣 𝑡   (eq. 3b) 

We do the same procedure for each technology.  

To define the resilience of the system, we need to measure the non-supplied energy. Therefore, we measure the 

energy shortage  𝑆   in every time for each energy type  (𝑆 𝑃𝑖 𝑡 ), through an energy balance. This balance is the 

difference between the demand and the supply of that energy type. The energy demand is the sum of the demand of 

the process 𝑃𝐷
𝑖 , the demand of the transformation technologies 𝑃𝑇𝑇

𝑖,𝑗
, which demand   to produce   and the energy 

required by the storage load 𝑃𝑆
𝑙𝑜𝑎𝑑,𝑖

. The supply corresponds to the energy produced from the primary generation 

𝑃𝑃𝐺
𝑖 , the supply from the transformation technologies 𝑃𝑇𝑇

𝑗,𝑖
, and the energy given by the storage unload 𝑃𝑆

𝑙𝑜𝑎𝑑,𝑖
. This 

can be summarized in the next equation:  

𝑆 𝑃𝑖 𝑡 = (𝑃𝐷
𝑖 +∑ 𝑃𝑇𝑇

𝑖,𝑗
𝑗 +𝑃𝑆

𝑙𝑜𝑎𝑑,𝑖) − (𝑃𝑃𝐺
𝑖 +∑ 𝑃𝑇𝑇

𝑗,𝑖
𝑗 +𝑃𝑆

𝑢𝑛𝑙𝑜𝑎𝑑,𝑖) (eq. 4) 

If this difference is positive means that there is an energy shortage if it is negative means that the system can supply 

the demand. So, the shortage is the maximum between this difference and zero: 

𝑆 𝑃𝑖
+ 𝑡 = max(0, 𝑆 𝑃𝑖 𝑡 ) (eq. 5) 

And in LP, the constraints are the following: 

𝑃𝑟 𝑡 ≤ 𝑃𝑎𝑣 𝑡   (eq. 6a) 

𝑃𝑟 𝑡 ≤ 𝑃 𝑡  𝑃𝑟 𝑡 ≤ 𝑃𝑎𝑣 𝑡   (eq. 6a) 

The total energy shortage is summed over time: 

𝑆 𝑖 = ∫ 𝑆 𝑃𝑖
+ 𝑡 

𝑇∗

𝑡0
d  (eq. 7) 

With this shortage, we can calculate the resilience for this energy vector as one minus the fraction between the energy 

shortage and the demand of that vector: 

𝑅𝑖 = 1 −
𝑆ℎ𝑖

𝐸𝐷
𝑖  (eq. 8) 

As it is a multi-vector energy system, the total resilience is the sum of the weighing of all resilience: 

𝑅𝑇 = ∑ (𝑅𝑖 ⋅
𝐸𝐷
𝑖

∑ 𝐸𝐷
𝑖  𝑖

) 𝑖 =
∑ 𝐸𝐷

𝑖 −∑ 𝑆   𝑖

∑ 𝐸𝐷
𝑖  𝑖

 (eq. 9) 

4. Application of the resilience indicator 

In this section, we study the application of the proposed index. We use a study case of a fully renewable multi-energy 

system and we discuss the obtained results. Then we study the behavior of the indicator on different scenarios for 

damage and recovery time. 

The topology of the study case is presented in Fig. 6. This is a simplification of a previously reported system (Moreno 

et al. 2018). It consists of a fully renewable multi-energy system that supplies the energy demand for a copper mine, 

which demands energy in the form of electricity, heat, and hydrogen. Specifically, our case of study considers PV 

for the primary generation of electricity, lithium batteries for electricity storage, and hydrogen storage. In the 

transformation technologies, we consider a heating rod to produce heat from electricity and an electrolyzer to produce 

hydrogen using electricity. 

 
Fig. 6: Structure of the system for the case study. 
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installation and operation (Moreno et al. 2018). We will measure the resilience of this system with the proposed 

indicator. This exercise measures the resilience of the system as it is, without considering the possibility of adapting 

the operation or oversizing components in the design. In other words, this is an ex-post analysis where the resilience 

index has not been integrated into the optimization model for the system’s design. 

To study the application of the indicator we use an evaluation time  𝑇∗  of 3 months and the process-demand is 

shown in Tab. 2. For the damage and the recovery time of each technology we assigned values (as it is shown in  

Tab. 3) and later we do a multi-scenario analysis to study the behavior of the indicator with different inputs for the 

fraction of damage and the recovery time.  

The values were obtained by adapting the data from HAZUS method (FEMA 2015) for a PGA (peak ground 

acceleration, a measure of the intensity of an earthquake) of 0.6g (similar to the earthquake in Chile in 2010). We 

used the expected values for the damage state and recovery time (see Tab. 3). As the recovery function is linear in 

our model, these parameters completely define the function. 

Tab. 2: Demand of each energy vector and total demand in a time horizon of 3 months. Values in (GWh). Obtained from (Moreno et al. 

2018) 

Electricity Demand 874 

Heat Demand 40 

Fuel Demand 46 

Total Demand 960 

 

Tab. 3: Damage fraction and recovery time of each technology (FEMA 2015).  

 PV Electrolyzer Heating Rod Li-Battery H2 Storage 

Damage fraction 0.91 0.79 0.85 0.79 0.81 

Recovery time (h) 5472 2255 10141 2255 2313 

Tab. 4 shows the resulting resilience value for each energy vector and the total system resilience. 

Tab. 4: Resilience of each energy vector and total resilience. 

Electricity Resilience 63% 

Heat Resilience 27% 

Fuel Resilience 64% 

Total Resilience 62% 

We can see that the resilience for the heat vector has the lowest value. This is because there is only one technology 

to provide heat and it has a long recovery time. This low value does not have a big impact on the total resilience 

because the heat demand in the case study is low. The energy vector that has the highest weight on the total resilience 

is electricity because it has the highest demand. 

The value of resilience also depends on the time horizon (which is an arbitrary decision) and the PGA of the 

earthquake. A value of 62% of resilience for this case, means that for a PGA of 0.6, this system can provide the 62% 

of the total energy demand in three months. This is equivalent to a blackout that lasts one month, which we consider 

would be a long period of time.  

To study the behavior of the indicator with different inputs for the damage state and recovery time, we do a scenario 

analysis. We vary the values of these parameters by ±20% and study the resulting total resilience in each case.  The 

results are shown in Tab. 5. 

Tab. 5: Total resilience of the system for different scenarios for the deviation from the original parameters . 

  Deviation of the damage 

   -20% 0 +20% 
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-20% 79% 66% 58% 

0 77% 62% 52% 

+20% 75% 59% 48% 

We can observe, as it is expected, that the highest resilience value is reached with the lowest damage and recovery 

time, reaching 79%. Conversely, the minimum resilience value is obtained when the damage and the recovery time 

increase. Tab. 6 shows the percentual change on resilience for every scenario, as compared to the original resilience. 
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We can see that the highest growth, when both parameters decreased, is 29%, but when we increase both parameters 

in the same percentage, the resilience decrease by 22%. Also, we can notice that changing the damage state causes a 

higher percentual change than varying the recovery time. For example, increasing the damage by 20% decreased 

resilience by 15%, while increasing the recovery time in the same percentage, resilience decreased just by 5%. 

Tab. 6: Comparison of the total resilience values in Tab. 5 as a deviation from the original resilience value. 

  Damage 

   -20% 0 +20% 

R
e
c
o

v
er

y
 

ti
m

e
 

-20% +29% +7% -6% 

0 +24% 0% -15% 

+20% +21% -5% -22% 

The system in the case study depends fully on solar PV for primary energy generation, so it is important to consider 

the weather. In the present analysis, the time of the earthquake 𝑡0 was fixed in the first hour of the year (00:00, 

January 1). Since the case study is in Chile (southern hemisphere), that is in the summertime. Then, the availability 

of solar energy is higher than at other times of the year. To compensate for the reduced capacity factor in winter, the 

system has more installed capacity of PV than it requires in summer. This would lessen the impact of losing 

generation capacity during this season. In other words, it should be harder for the system to compensate the same 

damage in solar generation during winter than during summer. Analyzing the effect of the timing of disruptive events 

on the resiliency of highly solar multi-energy systems is an interesting topic for further research, which could be 

tackled using the proposed indicator. 

As 

There 

Also, 

The 

In contrast to other resilience metrics, this indicator can be easily integrated into the planning process. This is because 

of the linear nature of the index. Using LP is common practice in energy systems planning. This allows for 

computational tractability in large scale problems. Including our index allows modelers to keep the optimization 

linear. It can be included, for example, as an optimization goal. However, to use it in planning decisions, it needs 

some minor adaptation. For example 𝑃𝑟𝑡≤ 𝑃𝑎𝑣 𝑡   (eq. 3a) is no longer needed, as the power 

delivered should be just less than the power available and the installed capacity.𝑃𝑟 𝑡 ≤ 𝑃 𝑡   

5. Conclusions 

The resilience metrics that are available in the scientific literature differ in the event the system recovers from, the 

application area, if it considers uncertainty or not, and if it considers the time and dynamics of the system. The 

literature review has shown a lack in the study of resilience metrics for power systems, specifically, there is no study 

observed for multi-energy systems. Accordingly, we propose a resilience indicator for multi-energy systems that can 

be easily integrated into linear optimization models for energy system planning. Some hurdles are identified in the 

implementation of this kind of resilience index. Specifically, in the consideration different forms of uncertainty, the 

definition of the temporal scope, and the weighting criteria. 

To study the application of the developed indicator, we use a case study and to study the indicator behavior, we do a 

scenario analysis, changing the damage and reposition time in ±20%. The damage state causes the highest variation 

in the system resilience (around ±20%), while varying the reposition time causes a variation form around ±6%.  

The proposed indicator can be integrated into the planning process, using it, for example as a target in an optimization. 

Therefore, in the future, we expect to integrate this indicator in real case planning, through a multi-objective 

optimization, considering two targets: costs and resilience. This allows us to give different importance to each target 

and analyze the trade-off of planning with resilience. 
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