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Abstract 

The optimization of a photovoltaic-wind-battery hybrid renewable energy system (HRES) for a site in the 

Northeast region of Brazil is undertaken in the present paper. A yearlong of hourly measured weather and load 

profile data of the location were used and the chosen optimization method was Particle Swarm Optimization 

(PSO). The main goals of the study were to fulfill the electricity demand of the chosen site by designing an 

optimization problem based on the Net Present Cost (NPC). The basic configuration chosen for the problem is a 

photovoltaic-wind-battery system given the much favorable weather condition for solar and wind energy systems 

at the site. The results show that the PSO could size the system for the set of defined constraints, minimizing the 

total cost for the 4 scenarios proposed. The optimal results for the proposed case study showed that a hybrid 

renewable energy system is less costly than a single source photovoltaic-battery or wind-battery system for most 

scenarios. It is also shown the influence of the reliability factor in the cost function showing it to be a key parameter 

of decision and the importance of the wind turbine hub height in the optimization.  

Keywords: HRES, PSO, NPC, optimization, photovoltaic-wind-battery. 

1. Introduction 

Energy is vital in the age of modernization and economic development. The demand has increased exponentially, 

and the scarcity of conventional energy sources fuel has contributed to the promotion of renewable energy around 

the globe. One of the primary challenges nowadays is to meet the growing demand without exhausting the 

resources available to us (Goel and Sharma, 2017). Hybrid renewable energy systems, HRES, are energy 

generation systems composed of two or more energy sources that can be autonomous or grid-connected. Hybrid 

photovoltaic-wind-battery systems, with the complementary characteristics between the solar and wind energy 

sources can be, for certain locations, an unbeatable option for the supply of electrical loads (Diaf et al., 2007). 

Research shows that hybrid systems have been chosen as a reliable and suitable option that offers techno-

economic advantages compared to single-source renewable systems. 

The optimization process of a stand-alone hybrid renewable energy system using Particle Swarm Optimization 

(PSO) to a specific site in the Northeast region of Brazil is presented in this paper. The construction of the 

optimization function is discussed along with specific characteristics of the chosen site. The optimization process 

is done using classic methodologies present in the literature, and four scenarios are built to discuss and analyze 

the adopted optimization process and results obtained. The presented work has as main objective to present a 

simple, easy to build, and free algorithm to size a HRES for a site in the northeast region of Brazil. Other goals 

are to analyze the impacts of some aspects on the optimization function and propose important considerations to 

make the optimization process closes to the weather and techno-economic situation on the site. Particle Swarm 

Optimization (PSO) was chosen since it is easy to program in different program languages and software, and it 

presents great performance what permits a high number of executions in a small window of time. Section 2 

presents the characterization of HRES, section 3 gives a brief explanation of PSO, sections 4 and 5 the 

methodology, site and equipment’s costs and characteristics, section 6 the results and case study and section 7 de 

conclusion. 

2. Hybrid renewable energy systems  

Hybrid renewable energy systems (Fig. 1) are defined as systems composed of one or more renewable sources of 

energy, a management system, optional auxiliary source, and optional conventional source, designed to supply a 

ISES Solar World Congress 2019 IEA SHC International Conference on
Solar Heating and Cooling for Buildings and Industry 2019

 

© 2019. The Authors. Published by International Solar Energy Society
Selection and/or peer review under responsibility of Scientiic Committee
doi:10.18086/swc.2019.32.02 Available at http://proceedings.ises.org



 
load under a set of operational and constructive constraints. Conventional sources can be considered as grid 

interaction for on-grid system or micro-hydro, thermal or other kinds of generators for stand-alone systems. 

Auxiliary sources can be battery banks, hydrogen tanks, and even diesel generators that depending on the systems 

configurations can be applied as a conventional source or as an auxiliary one. HRES present lower emission of 

pollutants in comparison with conventional systems, high reliability with lower investments in comparison with 

conventional generation and single-source renewable system and fewer impacts in the network for on-grid 

systems.  

Optimization of HRES classifies as a global optimization problem and two different approaches can be taken: 

classic and meta-heuristic methods. On the one hand, classic methods can be very useful to obtain the optimal 

solution of problems, involving continuous and differentiable function, constrained or unconstrained, to reach 

minimum points. However, they are likely to get stuck in a local minimum. To overcome this, the method can be 

repeated many times with randomly chosen initial conditions, and the best result is considered a global minimum 

for the function. This increases computational time and there is no guarantee that the optimal solution will be 

found (Tezer et al., 2017). Given this characteristic, classic methods are not very often applied to HRES 

optimization. On the other hand, meta-heuristics are built as metaphors based on natural processes such as swarm’s 

intelligence and behavior and are equipped with the right tools to avoid local minimum of functions.  

Between the many meta-heuristic methods, there are two different branches: the algorithms based on one solution 

being estimated at a time and the ones that process a whole population of solutions at a time, or iteration. The first 

kind can be classified as neighborhood or trajectory meta-heuristics and as examples, we have Simulated 

Annealing, Tabu Search, etc. The second can be defined as population-based algorithms, and commonly found in 

the literature are Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) (Tezer et al., 2017). GA, as a 

population-based algorithm, tests numerous solutions at a time and is very successful in finding a global minimum 

as is PSO. There are also many versions of both algorithms in the literature that have proven to be successful in 

single and multi-objective optimizations. Compared to other algorithms, PSO presents the simplicity of coding, 

easy use, low convergence time, minimum storage and, smaller dependence of the initial population (Kennedy 

and Eberhart, 1995). All advantages that contribute to making PSO a strong algorithm that is largely used for 

sizing HRES. 

In this paper, an optimization method is presented to perform the optimal sizing of an HRES for a site located in 

the Northeast region of Brazil. In this algorithm, one year of wind speed and solar irradiation data from the region 

is used along with one year of load profile. Photovoltaic and wind power are considered the primary sources that 

supply the load as a stand-alone system, and a battery bank is used as an auxiliary power source. The optimization 

is done using PSO and the main objective is to fulfill the electricity demand by considering the Net Present Cost 

(NPC) for the optimization, and the loss of power supply probability (LPSP) as a reliability factor. Thus, the 

optimization is approached as follows: evaluation of the conditions of the chosen site, definition of the system’s 

configuration, development of HRES model, sizing of the system components, simulation of operation and 

analyses. 

 

Fig. 1: Hybrid renewable energy system 

The advantages presented are associated with the complementary characteristics of sources that compose the 

system contributing for a more reliable and less costly system with no oversizing of components, and many 
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different possible configurations that can be thought for a HRES according to the weather in the installation site, 

available resources, engineer preferences of project, etc. 

In recent years, several researches have been performed to determine the capacity of hybrid renewable sources by 

different approaches. Diaf et al. (2007) present an optimal modeling approach for an autonomous hybrid PV-wind 

system. The method aims to meet the reliability requirements with the lowest value of Levelized Cost of Energy 

(LCE). The reliability factor applied is the Loss of Power Supply Probability (LPSP). Celik (2002) designs an 

optimal autonomous small-scale PV/wind HRES and realizes a techno-economic analysis comparing the HRES 

with PV or wind system.  8 years of data were used, and the months were classified as solar-biased, wind-biased, 

and even. The results show that a combination of technologies presents higher technical performance and lower 

costs. Belmili et al. (2012) present a review of tools used for HRES optimization and presents a new program 

based on models of generators, storage capacity model, LPSP and a proposed techno-economic algorithm with 

the aim of guarantee a reliable energy system with the lowest possible investment. Bashir and Sadeh (2012) 

present an optimal sizing of a wind-PV-battery system considering the uncertainty of wind speed and solar 

irradiance. The optimization is carried out by considering the Net Present Cost (NPC) method and the reliability 

index used is the Equivalent Loss Factor (ELF).  

For the optimization technique, Borowy and Salameh (1996) present a graphic optimization for a battery bank 

and PV array of a wind-PV HRES. Bashir and Sadeh, (2012) apply Genetic Algorithm, Bilil et al. (2014) suggests 

the use of the fast and elitist multiobjective genetic algorithm: NSGA-II. Alireza (2017) presents a new approach 

using Harmony Search (HS) named HS-II. Amer et al. (2013).  

There are many approaches proposed to reach the optimal operation of an HRES. Kaldellis (2010) states that there 

is not a globally accepted approach to address the problem. The optimization of HRES can be classified as a 

complex optimization problem with variables that can affect the application and success of any solution (e.g. 

weather characteristics of the site, technical details). Energy system models are generally used to represent energy-

related problems and are well applied for HRES optimization. One way to treat an energy model of an HRES is 

dividing into three specific problems: the problem of synthesis (configuration), the problem of design (sizing), 

and the operation problem. In the synthesis problem, the configuration of the system is addressed. What can be, 

but it is not restricted to, the technologies to compose the system (wind, photovoltaic, hydro), the capacity, backup 

system options, etc. This can be solved as an optimization problem on its own or as part of the complete problem. 

In the design problem, the sizing and the number of components is addressed. The problems of design and 

synthesis are often looked simultaneously because the structure and main dimensions of the system tend to be 

decided together. The operation problem is extensively used and concerns the strategies of operation adopted for 

the operation of the system. It attempts to simulate the system by iterative solutions. The complete problem may 

be addressed from different perspectives; economic and techno-economical are the most common ones and, 

among them, several subdivisions can be found. 

3. Particle swarm optimization  

Particle Swarm Optimization (PSO) is inspired by the social behavior of animals like flocking birds, insects or 

fishes. This idea was developed in the year of 1995 by the social-psychologist James Kennedy and by the electrical 

engineer Russel Eberhart (Kennedy and Eberhart, 1995). Particle Swarm Optimization (PSO) is part of a family 

of algorithms that aim to find a global optimization using techniques inspired by biological evolution known as 

evolutionary computation.  

The algorithm has a set of particles that flies through the hyperspace of the problem searching for the best solution. 

Each particle keeps track of its best solution and is called personal best (Pbest). Every new position the particle 

moves to is tested against the particle Pbest so far. If the current position of the particle presents a better solution 

(fitness), the Pbest of the particle is replaced by the current position. PSO also tracks the best value got by all the 

particles. This value is called global best (Gbest) and is equal to the personal best with the best fitness in the entire 

swarm. The final solution will be the Gbest that obtained the best fitness. The concept of PSO can be simply 

understood as acceleration each particle towards its personal best and the global best location until a certain 

number of iterations is done or a defined tolerance is obtained. Each particle moves based on the current position, 

the current velocity and distance between the current position to Pbest and the distance between the current 

position to the Gbest using Eq. 1. 
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𝑣𝑖,𝑗
𝑘+1 = 𝑤𝑣𝑖,𝑗

𝑘 + 𝑐1𝑟𝑛𝑑1(Pbest𝑖,𝑗
𝑘 − 𝑥𝑖,𝑗

𝑘 )

+ 𝑐2𝑟𝑛𝑑2(Gbest𝑖,𝑗
𝑘 − 𝑥𝑖,𝑗

𝑘 ) 

(eq. 1) 

where 𝑣𝑖,𝑗
𝑘  velocity in iteration 𝑘; 𝑤 is a weighting function defined as 𝑤 =  𝑤𝑚á𝑥 − 𝑘. 𝑥(𝑤𝑚á𝑥 − 𝑤𝑚𝑖𝑛)/

𝑀𝑎𝑥𝑖𝑡𝑒𝑐; 𝑟𝑛𝑑1 and 𝑟𝑛𝑑2 are random variables uniformly distributed between 0 and 1; 𝑥𝑖,𝑗
𝑘  is the current position; 

𝑐1 and 𝑐2 are weighting factors; Pbest𝑖,𝑗
𝑘  is the personal best of the particle; Gbest𝑖,𝑗

𝑘  is the global best of the 

swarm. 

The new position of the particle is calculated by the summation of the current position with the new velocity using 

Eq. 2.  

𝑥𝑖,𝑗
𝑘+1 = 𝑥𝑖,𝑗

𝑘 + 𝑣𝑖,𝑗
𝑘+1  (eq. 2) 

PSO is known as an algorithm easy to program given it has only a few parameters to adjust and presents good 

results with tough functions with many local minima. Also, to better attend the presented optimization problem, 

modifications were made in the conventional PSO equations to make the algorithm well suited for integer 

optimization variables. It can be done by rounding the variables at each iteration (Strasser et al., 2016).  

4. HRES model and optimization function 

Here, the steps to design the system’s model are presented. The first step consists of the configuration’s 

definition for the system; the second step is divided into the photovoltaic generation model, the wind generation 

model, and the state of charge of the battery bank; and, in the last step is the presentation of the cost function, 

reliability factor, the set of constraints, and the chosen operation strategies. 

4.1. System configuration 

The chosen configuration defined for the system a stand-alone photovoltaic-wind-battery system. This 

configuration was defined in consideration of the characteristics of the installation site, that are favorable to 

photovoltaic and wind systems. 

4.2. System design  

• Photovoltaic generation model 

The power output from the photovoltaic array is calculated using the equation (Alireza, 2017): 

𝑃𝑃𝑉 (𝑡) = I(t)𝑛𝑃𝑉𝑛𝑐𝑜𝑛𝑣𝐴𝑃𝑉  (eq. 3)  

where 𝑃𝑃𝑉 (𝑡) is the power generated at the instant t; I(t) is the solar irradiance at the instant t; 𝑛𝑃𝑉 is the 

photovoltaic panel efficiency; 𝑛𝑐𝑜𝑛𝑣 is the converter efficiency, and 𝐴𝑃𝑉 is the PV area. 

• Wind turbine generation model  

The power output from a wind turbine depends mainly on three factors (i.e. the power output curve, the wind 

speed at the installation site, and the hub height of the turbine tower). Therefore, choosing a model is extremely 

important (Yang et al., 2007). The most simplified model is presented in (Eq. 4) (Ren and Gao, 2010), (Athari 

and Ardehali, 2016): 

𝑃𝐺𝐸(𝑡)

=  

{
 
 

 
 𝑃𝑚á𝑥

(𝑉(𝑡) − 𝑉𝑐)

(𝑉𝑟 − 𝑉𝑐)
𝑉𝑟 ≤ 𝑉(𝑡) ≤ 𝑉𝑐

𝑃𝑚á𝑥 𝑉𝑟 ≤ 𝑉(𝑡) ≤ 𝑉𝑓
0 𝑉𝑐 ≥ 𝑉(𝑡) and 𝑉(𝑡) ≥ 𝑉𝑓

 

(eq. 4)  

where 𝑃𝐺𝐸(𝑡) is the power generated at the instant t; 𝑃𝑚á𝑥 is maximum power generated by the wind turbine; 

𝑉(𝑡) is the wind speed at the instant t ; 𝑉𝑐 is the cut-in speed; 𝑉𝑟  is the rated speed and 𝑉𝑓 is the rated cut-off speed. 

For the result calculated to be correct, 𝑉(𝑡) must be entered in the equation estimated for the height at which the 

wind turbine will be installed. The actual wind speed that will hit the wind turbine blades must be considered. 

The power law can be used to estimate the wind speed at a wanted height, giving the wind speed at a knowing 
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height. Power law is presented in Eq. 5. 

𝑣(ℎ) = 𝑉𝑟𝑒𝑓 (
ℎ

ℎ𝑟𝑒𝑓
)

𝛼

 
(eq. 5)  

where 𝑣(ℎ) is the wind speed at the desired height ℎ;  𝑉𝑟𝑒𝑓  is the wind speed at a known height ℎ𝑟𝑒𝑓  and 𝛼 is a 

dimensionless constant that varies according to the geographical characteristics of the site. Typical values of 𝛼 

are presented in Tab.1. 

Tab. 1: Reference values of α 

Site characteristics  α 

Smooth surface, lake or ocean 0.1 

Short grass 0.14 

Undergrowth and Occasional Trees 0.16 

Bushes and occasional trees 0.2 

Trees and occasional buildings 0.22 – 0.24 

 

• Battery bank  

In HRES a common method to calculate battery banks’ capacity is the State of Charge (SOC). The SOC of a 

battery bank is defined as the capacity of the battery bank at an instant t, and it goes from SOC minimum that 

happens when the battery bank is at its lowest and cannot supply the load anymore and SOC maximum that means 

the battery bank is fully charged and cannot be charged at instant t.   

At any instant (t), when the total power output of the photovoltaic arrays and the wind generators is more than the 

energy demand, the battery bank can is charging (Eq. 6). If it is not at the SOC maximum. When the SOC 

minimum is reached, the batteries cannot be charged anymore. And, when the total power output is less than the 

energy demand at an instant t, the battery bank is discharging (Eq. 7) to supply the load unless it is at its SOC 

minimum and will not be able to be more discharged.  

𝐶𝑏𝑎𝑡(𝑡) =  𝐶𝑏𝑎𝑡(𝑡 − 1)(1 − 𝜎 ) + (𝑃𝐻𝑅𝐸𝑆(𝑡) −  
𝑃 𝑙𝑜𝑎𝑑(𝑡)

𝑛𝑖𝑛𝑣
)Δ𝑡𝑛𝐶ℎ𝑎 

(eq. 6) 

𝐶𝑏𝑎𝑡(𝑡) =  𝐶𝑏𝑎𝑡(𝑡 − 1)(1 − 𝜎 ) − ( 
𝑃𝑙𝑜𝑎𝑑(𝑡)

𝑛𝑖𝑛𝑣
 − 𝑃𝐻𝑅𝐸𝑆(𝑡))Δ𝑡𝑛𝐷𝑖𝑠𝑐ℎ 

(eq. 7) 

where 𝐶𝑏𝑎𝑡(𝑡) and 𝐶𝑏𝑎𝑡(𝑡 − 1) are the battery bank capacity at a time (t) and (t-1); 𝜎 is a constant related to the 

batteries self-discharge; 𝑃𝐻𝑅𝐸𝑆(𝑡) is and 𝑃 𝑙𝑜𝑎𝑑(𝑡) are the power output of the HRES and power consumed by the 

load at the instant (t); 𝑡 is the simulation step (Δ𝑡 = 1 ℎ𝑜𝑢𝑟); 𝑛𝑖𝑛𝑣 is the efficiency of the inverter efficiency; 𝑛𝑐ℎ𝑎 

and 𝑛𝐷𝑖𝑠𝑐ℎ are the batteries charge and discharge efficiency.  

The battery bank capacity is constraint by 𝐶𝑏𝑎𝑡 𝑚𝑖𝑛 ≤ 𝐶𝑏𝑎𝑡(𝑡) ≤  𝐶𝑏𝑎𝑡 𝑚𝑎𝑥 where 𝐶𝑏𝑎𝑡 𝑚𝑎𝑥 and 𝐶𝑏𝑎𝑡 𝑚𝑖𝑛  are the 

SOC maximum and minimum.  

4.3. System operation 

• Cost function 

A techno-economic optimization was chosen for this work. The cost function is constructed with the Net Present 

Cost (NPC) method. The NPC method is one of the most common methodologies to combine costs and has been 

applied to many fields. The costs considered in NPC calculation are the capital cost that is the initial cost of buying 

and installing a system, the operation and maintenance throughout the lifetime cycle, and the replacement cost for 

components of the system that the lifetime is inferior then the lifespan of the complete system.  The objective 

function of the optimization is the NPC function and is formulated as Eq. (8) (Bashir and Sadeh, 2012). The 

lifetime of the project is considered of 20 years and the optimization variables (N) are the number of wind turbines, 

photovoltaic arrays, and capacity of the batteries bank. Hence, the cost function is a function of these three 

variables with the previously defined costs considered for each variable. For the configurations proposed for this 

work, only batteries have a lifetime inferior of the system, hence, replacement costs are considered for batteries.  
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𝑁𝑃𝐶 =  ∑𝑁𝑖(𝐶𝐶𝑖 + 𝑅𝐶𝑖 . 𝐾𝑖 +𝑀&𝑂𝑖 . 𝑃𝑊𝐴(𝑖𝑟, 𝑅))

𝐿

𝑖=1

 

 

(eq. 8) 

where 𝐶𝐶𝑖 is the capital cost of equipment 𝑖; 𝑅𝐶𝑖 replacement cost of equipment 𝑖; 𝑀&𝑂𝑖  maintenance and 

operation of 𝑖; L is the number of sources (3: photovoltaic, wind and battery); 𝑁𝑖 is the number of each renewable 

source and batteries in the battery bank. 

For converting replacement costs to present, 𝐾𝑖 is considered (Eq. 9): 

𝐾 =  ∑
1

(1 + 𝑖𝑟)𝑛.𝐿2

𝐿1

𝑛=1

 

 

(eq. 9) 

where 𝐿1 number of times each renewable component is replaced trough lifetime; 𝐿2 total lifetime of renewable 

component; 𝑖𝑟 is the interest rate, here 6 %; For components that lifetime is system’s lifetime, 𝐾 = 0. 

𝑃𝑊𝐴(𝑖𝑟, 𝑅) is used to convert maintenance and operation cost to preset cost and can be calculated using (Eq. 10): 

𝑃𝑊𝐴(𝑖𝑟, 𝑅) =  
(1 + 𝑖𝑟)𝑅 − 1

𝑖𝑟(1 + 𝑖𝑟)𝑅
 

 

(eq. 10) 

where 𝑅 is the lifetime of the HRES. 

 

• Power reliability analyses  

The resources characteristics (e.g. wind strength, solar irradiation) strongly influence energy production and 

because of their intermittency, and despite the fact the HRES is less intermittent than the single-source renewable 

system, a power reliability analysis is an important step in the design process and performance assessment (Singh 

and Fernandez, 2018). There are several methods to access the reliability of HRES and loss of power supply 

probability (LPSP) is the most popular method. LPSP is defined as the probability of an insufficient power supply 

occurs and consequently, the load is not attended (Askarzadeh, 2017). Therefore, an LPSP of 0 (0 %) would 

happen when the load is fully attended by the HRES and the probability of a loss of power is null, and a LPSP of 

1 (100 %) would happen when the load is not attended at all for the HRES (Eteiba et al., 2018).  LPSP can be 

calculated using Eq. 11 and is applied as one of the constraints in the optimization process. Thus, to assure the 

reliability desired for the design, LPSP must be equal or less than a specific 𝐿𝑃𝑆𝑃𝑚𝑎𝑥 . In the results section, some 

𝐿𝑃𝑆𝑃𝑚𝑎𝑥  values are tested in the optimization and their effects on the optimization process discussed. 

 𝐿𝑃𝑆𝑃 =  
∑ 𝐿𝑃𝑆(𝑡)Δ𝑡𝑇
𝑡=0

∑ 𝑃𝐿𝑜𝑎𝑑 (𝑡)Δ𝑡𝑇
𝑡=0

 
(eq. 11) 

where 𝐿𝑃𝑆(𝑡) is the loss of power supply that occurs during a time interval Δ𝑡 and 𝑃𝐿𝑜𝑎𝑑  (𝑡) is the power required 

by the load at interval Δ𝑡. 

• Operation strategies  

The power output of the system is the only source to supply the load demand and charge the battery bank. If 

𝑃𝐿𝑜𝑎𝑑  (𝑡) >  𝑃𝐻𝑅𝐸𝑆  (𝑡) and the battery bank capacity is somewhere between 𝐶𝑏𝑎𝑡 𝑚𝑖𝑛 and 𝐶𝑏𝑎𝑡 𝑚𝑎𝑥 , the battery 

bank will supply the load; If 𝑃𝐿𝑜𝑎𝑑  (𝑡) >  𝑃𝐻𝑅𝐸𝑆  (𝑡) but the battery bank capacity is at its minimum, the load will 

not be supplied what configures a loss of power supply; If 𝑃𝐻𝑅𝐸𝑆  (𝑡) > 𝑃𝑙𝑜𝑎𝑑  (𝑡) and the battery bank capacity is 

somewhere between 𝐶𝑏𝑎𝑡 𝑚𝑖𝑛  and 𝐶𝑏𝑎𝑡 𝑚𝑎𝑥 , the load will be supplied and the battery bank will be charged; If 

𝑃𝐻𝑅𝐸𝑆  (𝑡) > 𝑃𝑙𝑜𝑎𝑑  (𝑡) and the battery bank capacity is at 𝐶𝑏𝑎𝑡 𝑚𝑎𝑥 , the load will be supplied but battery bank will 

not be charged. 

5. Summarized methodology and optimization variables characteristics 

A site in Campina Grande-Paraíba, located in the Northeast region of Brazil, is assumed as the installation area 

for the system, therefore, wind speed and solar irradiation data for the city are used. The Northeast of Brazil was 

declared by the Brazilian Atlas of Wind Energy (2001) as one of the most promising places for wind systems 

installation because of its high potential estimated in 75 GW which is larger than the sum of the other four regions 
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of the country potential. In addition, the Northeast presents the greater solar potential in the country with 5.52 

kWh/m2 per day of solar irradiance (Brazilian Atlas of Solar Energy, 2006). Wind and solar energy are rising 

technologies in Brazil, and the wind generation is already responsible for 9.1% of the power generation in the 

country. The huge potential for renewable energies such as solar and wind in the region can be understood because 

of its geographic location, entirely within the earth’s tropical zone.  The region is the third-largest region of five 

and occupies 18.2% of the country’s territory with hot and semi-arid climate and vegetation varying from 

Caatinga, Atlantic Forest and parts of the Cerrado. Thus, given the stated conditions and project preferences, 

photovoltaic and wind were chosen as renewable energy sources of the proposed HRES with a battery bank as 

auxiliary and no conventional generation. 

A year (2017) of irradiance, wind speed, and load profile from the site was selected as a typical year for the 

optimization. For the city of the case study was found that the mean irradiance in the year was 402.31 w.m-2 and 

the mean wind speed was 3,51 m.s-1 and 5.01 m.s-1 at the height of the selected wind turbine. The data is presented 

in fig. 2 and were obtained from the national institute of metrology (INMET). In the institute website is possible 

to download up to a year of data from any of their weather stations and more data can be obtained by email request. 

The load profile data was provided by the Companhia Hidrelétrica do São Francisco (Chesf).  

 

Fig. 2: Weather and demand used in the case study  

In order to make the optimization as close as the site reality as possible, PV panels, wind generators, and batteries 

commonly used in Brazil were considered. Tab. 2 presents the costs considered in the algorithm which were 

calculated as estimations made from information obtained from projects that disclosed their cost per KW, quotes 

from sellers, and other works in the recent literature. The costs presented were converted to US dollars considering 

the value of the dollar in Brazil in December 2018. 

Tab. 2: Costs considered 

Economic 

parameter 

Unit PV panel 

 (250 W) 

Wind turbine 

(2400 W) 

Lead-acid battery 

(12 V 150 Ah) 

Capital cost US $/ unit 

 (US $ / kWh for batteries) 

725 8810 300 

Lifespan years 25 20 5 

Interest rate (𝑖𝑟) %  6 6 6 

𝑃𝑊𝐴(𝑖𝑟, 𝑅) - 0.2330 0.3118 0.7973 

Replacement cost US $/ unit 

 (US $ / kWh for batteries) 

- - 300 

maintenance and 

operation   

% 1 % initial 

cost 

3 % initial 

cost 

0.5 % initial cost 

maintenance and 

operation   

US $/ unit 

 (US $ / kWh for batteries) 

7.2 88.1 1.5 

 

 
P. de Oliveira Carvalho Malaquias et. al. ISES SWC2019 / SHC2019 Conference Proceedings (2019)



 
5.1. Summarized methodology      

•  Objective function and constraints 

Thereby, the final objective function is presented in (eq. 12), subject to the constraints (eq. 13 – eq. 16): 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝑀𝑖𝑛. 𝑁𝑃𝐶(𝑁𝑃𝑉 , 𝑁𝑊𝐺 , 𝑁𝐵𝑎𝑡.) (eq. 12) 

Subject to:  

 

𝑁𝑃𝑉
𝑀𝑖𝑛. ≤ 𝑁𝑃𝑉  ≤  𝑁𝑃𝑉

𝑀𝑎𝑥. (eq. 13) 

𝑁𝑊𝐺
𝑀𝑖𝑛. ≤ 𝑁𝑊𝐺  ≤  𝑁𝑊𝐺

𝑀𝑎𝑥. (eq. 14) 

𝑁𝐵𝑎𝑡.
𝑀𝑖𝑛. ≤ 𝑁𝐵𝑎𝑡.  ≤  𝑁𝐵𝑎𝑡.

𝑀𝑎𝑥. (eq. 15) 

𝐶𝑏𝑎𝑡 𝑚𝑖𝑛 ≤ 𝐶𝑏𝑎𝑡(𝑡) ≤  𝐶𝑏𝑎𝑡 𝑚𝑎𝑥 (eq. 16) 

𝐿𝑃𝑆𝑃 ≤ 𝐿𝑃𝑆𝑃𝑚𝑎𝑥  (eq. 17) 

Where 𝑁𝑃𝑉 , 𝑁𝑊𝐺  and 𝑁𝑏𝑎𝑡. are the number of PV panels; wind generators and, batteries. 𝑁𝑃𝑉
𝑀𝑖𝑛., 𝑁𝑊𝐺

𝑀𝑖𝑛. and 𝑁𝐵𝑎𝑡.
𝑀𝑖𝑛. 

are the lower bounds for the optimization variables; 𝑁𝑃𝑉
𝑀𝑎𝑥., 𝑁𝑊𝐺

𝑀𝑎𝑥. And 𝑁𝐵𝑎𝑡.
𝑀𝑎𝑥.  are the upper bounds of the 

optimization variables; 𝐶𝑏𝑎𝑡(𝑡) is the capacity of the batteries bank, 𝐶𝑏𝑎𝑡.  𝑚𝑖𝑛.  and 𝐶𝑏𝑎𝑡.  𝑚𝑎𝑥.  are lower and upper 

capacities of the battery bank; 𝐿𝑃𝑆𝑃𝑚𝑎𝑥  is the defined reliability index and 𝐿𝑃𝑆𝑃 is the calculated loss of power 

supply probability. 

Briefly, the methodology adopted in this paper is presented in Fig. 3. 

 

Fig. 3: Methodology 

6. Results and discussion  

In this section, the results are presented and discussed. The methodology was tested steep by steep as the algorithm 

was being built and, to avoid misleading results with the function stuck in a local minimum, each simulation was 

composed by ten PSO executions and the result for the simulation resulted from the best execution. Since there is 

a compromising to make the optimization method closer to the reality of the chosen site, four scenarios were 

proposed to analyze the impacts of some aspects on the optimization process. The scenarios are: Single source 

systems with different LPSP values, LPSP variation with fixed equipment characteristics, wind turbine tower hub 

height variation without cost variation and, wind turbine tower hub height variation with cost variation. 

 The main goal of the scenarios is to analyze the influence of aspects into the optimization process to provide a 

better understanding of it. This knowledge is considered extremely valuable in the decision-making process of 

executing a project or improving an optimization method.  For all the scenarios, the operation strategy is 

applied as defined in section 4 and summarized in section 5; Therefore, the set of constraints and the objective 

function are the same for the four scenarios. 

5.1. Single source systems with different LPSP values 
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In this first scenario, the costs of PV-battery and Wind-battery optimal systems are analyzed considering different 

values for the reliability index. In order to have the optimization algorithm work to provide a PV-battery system, 

the constraint of the number of wind generators (𝑁𝑊𝐺) was used. Its lower (𝑁𝑊𝐺
𝑀𝑖𝑛.) and upper bound (𝑁𝑊𝐺

𝑀𝑎𝑥.) were 

set to zero. The same thing was done to the constraint of the number of PV panels (𝑁𝑃𝑉) to use the algorithm to 

size a Wind-battery system. Thus, the system is configured only as photovoltaic-battery first and then wind-battery 

for different levels of loss of power supply probability (LPSP). The tower hub height considered in the simulations 

is 15 meters which is within the recommended height of installation range recommended in the manual from the 

manufacture. 

Tab. 3: Results for scenario 1 

LPSP ≤ 

Photovoltaic-battery system Wind-battery system 

Number of 

solar panels 

Bank of 

batteries 

capacity 

Total cost 

[US $] 

Number of 

wind 

turbines 

Bank of 

batteries 

capacity 

Total cost 

[US $] 

15% 49 51753 = 29 

units 

44,147.01 4 14720 = 8 

units 

40,307.84 

10% 53 58893 = 33 

units 

48,231.87 4 53106 = 30 

units 

46,641.53 

5% 61 64164 = 36 

units 

54,915.10 5 79869 = 45 

units 

60,527.18 

1% 75 110118 = 62 

units 

72,671.16 6 276383 = 154 

units 

102,421.75 

 

The results show a comparison between single-source systems for five different levels of LPSP. Going from a 

system that is 75% reliable to a system that is 99% reliable. Tab. 3 shows that the Photovoltaic-battery 

configuration presented lower costs for most of the reliability levels considered and, for the less reliable index 

(LPSP ≤ 15%), the Wind-battery system presented the lower cost.  

 Fig. 4 shows a graph with the costs and land occupied for the system for each of the tested LPSP values. 3/4 of 

an acre is used for a 1 MW wind turbine, therefore here a quarter of it is used for each wind turbine (758.7 m2), 

and the total area of the panel plus 10% for installation, is considered for each photovoltaic panel (2 m2). The area 

for storage is not considered. The results show that Photovoltaic-battery and Wind-battery systems with the same 

reliability occupy different extensions of land and its cost and availability could be factors that influence the 

project.  

The results for the first scenario show financial advantages for each of the configurations depending on the 

considered LPSP and available area. This first scenario will also serve as a comparison in the cost analyses of the 

three following scenarios.  
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Fig. 4: Area and costs for the systems for each LSPS considered  

5.2. LPSP variation with fixed equipment characteristics  

In this scenario, the lower bound of the optimization variables continues set to 0 but the upper bounds of the three 

variables were set to 300, thus the number of wind turbines, batteries and, photovoltaic panel for each case is 

decided by the optimization. Different levels of reliability are considered from 75% to 99% of reliability. The 

results are presented in Tab. 4. 

Tab. 4: Results for scenario 2 

Component  LPSP ≤ 

15% 

LPSP ≤ 

12% 

LPSP ≤ 

10% 

LPSP ≤   

8% 

LPSP ≤   

5% 

LPSP ≤   

3% 

LPSP ≤   

1% 

Number of 

wind 

turbines 

3 2 3 4 4 1 - 

Number of 

solar panels  

7 23 14 7 12 54 75 

Bank of 

batteries 

capacity  

19927 = 

11 units  

26780 = 

15 units 

25510 = 

14 units 

32278 = 

18 units 

54025 = 

30 units 

57439 = 

32 units 

110118 = 

62 units 

Total cost 

[US $] 

36,784.06 40,072.07 42,792.08 48,291.73 55,513.43 58,188.41 72,671.16 

 

The results for this scenario showed firstly that HRES configuration presents a smaller cost when compared with 

Photovoltaic-battery and Wind-battery systems presented in scenario 1. The relationship between the system’s 

reliability and cost can be also observed. As expected, for a system that has high reliability (99% of reliability or 

LPSP ≤ 1%), the system’s cost is 70% higher than the cost for a system with an LPSP of 15%. This result can be 

useful as decision-making tool to considering grid-connection (if available) or addition of a complementary source 

such as diesel generators. 

5.3. Wind turbine hub height variation without cost variation 

In this scenario, the height of the wind turbine varies between 15 m and 35 m, covering the range for installation 

suggested in the manual. By varying the installation height, a higher wind speed affects the wind turbine blades 

and consequently more power is generated. However, choosing to use higher towers considerably increases the 

costs of a project depending on the chosen hub height, the site characteristics and, the wind turbine itself. 

Installation height is also limited by safety settings provided by the equipment manufacturer.  

Therefore, to evaluate the installation wind turbine height effects, scenarios 3 and 4 were constructed. The 

optimization was performed for both scenarios considering an LPSP value less than or equal to 5%. Scenario 3 

considers only the effects of increasing the wind turbine hub height and scenario 4 considers the costs effects of 

increasing the height of the wind turbine. Tab. 5 shows the results for this scenario. 

Tab. 5: Results for scenario 3 

Component  15 m 20 m 25 m 30 m 35 m 

Number of wind turbines 2 3 4 3 3 

Number of solar panels  35 18 - 9 4 

Bank of batteries capacity  42228 = 24 

units 

35584 = 20 

units 

37757 = 21 

units 

29243 = 16 

units 

33472 = 19 

units 

Total cost [US $] 51,506.26 47,361.04 44,108.94 39,774.57 36,838.91 

 

Scenario number three results show that increasing the wind turbine hub height can be very beneficial for lowering 
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the costs and an even more interesting option when photovoltaic arrays installation area is limited given the fact 

that at higher heights the wind turbines will produce more power. For the height of 25 meters a bigger number of 

wind turbines is selected in the optimization and in higher heights than 25 meters a smaller number is chosen. 

This happened because at 25 meters some wind speed data values were between the rated speed of the wind turbine 

and the cut-off speed. Higher than 25 meters, a large percentage of the wind speed data is bigger than the cut-off 

speed, which reduces the power generated by the wind turbines. 

5.4. Wind turbine tower height variation with cost variation 

In this last scenario, the conditions of the previous scenario are repeated with the addition of the consideration of 

increasing installation costs while varying the wind turbine hub height. Here, installation costs (capital cost of the 

wind turbines) are increased by 5% each time the installation height increases. Tab. 6 shows the results for scenario 

4. 

Tab. 6: Results for scenario 4 

Component  15 m 20 m 25 m 30 m 35 m 

Number of wind turbines 2 2 2 3 3 

Number of solar panels  35 30 26 8 4 

Bank of batteries capacity  43120 = 24 

units 

41245 = 23 

units 

39940 = 22 

units 

33563 = 19 

units 

33472 = 19 

units 

Total cost [US $] 52,435,42 49,439.57 47,269.46 45,442.54 43,941.23 

 

The last scenario presents a more realistic approach to investigate the impacts of tower hub height in the 

optimization, given the fact that the hub height affects costs directly. The costs of the systems with higher wind 

turbine hub, for example, 35 meters, are approximately 30% higher than the costs for the system with the same 

configuration in scenario two. Although the costs can increase, the height of installation is a component that should 

be considered in the optimization of systems for lower costs and especially when installation area may be 

restricted. 

7. Conclusion 

A methodology for the optimal sizing of a photovoltaic-wind-battery hybrid renewable energy system for a site 

in the city of Campina Grande-PB (Brazil) is presented. The method is based on a techno-economic analyses 

realized considering the net present cost as a cost function and the loss of power supply (LPSP) as a reliability 

factor. State of charge of the battery bank is the adopted method for the sizing of the battery bank and along with 

the LPSP factor used as a constraint for the optimization.   

An analysis of four scenarios was developed, in which different conditions were simulated and analyzed. The 

results showed that the proposed method could optimize a hybrid renewable energy system under different 

constraints and considerations with good performance. The good performance of the algorithm is attributed to the 

use of particle swarm optimization, which is well suited to the problem and performs with high speed. 

For the case study, the first scenario showed a comparison for two single-source systems: a photovoltaic-battery 

system and a wind-battery system. For the different loss of power supply probability (LPSP) presented the wind-

battery system presented better results (lower costs) for LPSP’s of 15, 10 and 5% and the photovoltaic-battery 

system presented lower costs for an LPSP of 1%.  The second scenario showed that a hybrid renewable energy 

system (HRES) is less costly in comparison with a single-source system. Scenario two also presented the 

relationship between the reliability factor and the system’s cost. When considering an off-grid system, reliability 

is very important because the power generated by the system and supplied by the battery bank are the only sources 

available to supply the load demand. Therefore, it is important to balance the reliability required from the load 

characteristics (that is, the nature of the load) with the system’s components in the system’s configuration 

steep.  Scenarios three and four presented the variation of the wind turbine hub height and its effects on the 

optimization.  
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