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Abstract 

This work presents a new one-minute diffuse fraction model based on the BRL-minute model, with a new 

predictor added to it and the use of a robust nonlinear regression method that can minimize the effects of outliers 

on the dataset without removing them. The presented model is also regressed using the BSRN and BOM data 

from many stations belonging to the same climate according to the Köppen-Geiger classification. A formal 

error analysis is also performed comparing the new model with the BRL and Engerer models. 

Keywords: Diffuse and direct irradiance, BSRN, Köppen-Geiger climate, Robust regression, Separation models 

1. Introduction 

Diffuse fraction models, or separation models, have been extensively studied since the initial developments in 

the 1960s by Liu & Jordan (1960). In general, these models are based on measured data from different stations 

in different climatic conditions, use different temporal scales (e.g. monthly, daily, hourly, minute) and make 

use of one or several predictors (independent variables) (Aler, Galván, Ruiz-Arias, & Gueymard, 2017).  

The developments in this area are driven by the need of accurate values of the three irradiance components, 

namely the global horizontal irradiance (𝐺), diffuse horizontal irradiance (𝐺𝑑) and direct normal irradiance 

(𝐺𝑏), which are fundamental for the correct design and performance assessment of solar energy systems. 

However, measuring these three components requires complex tracking devices and significant operational 

efforts, which lead to high costs. As a result, there are several stations measuring only global irradiance, mainly 

because it requires less operational efforts and costs. A common solution to overcome the absence of 

measurements of the other two components is to use some sort of separation model to estimate both diffuse and 

direct components from global irradiance observations. Several separation models have been developed using 

hourly irradiance data, however such models do not appropriately describe fast transient episodes in solar 

irradiance, which happen at time scales much smaller than an hour. As a result, these models are not adequate 

to meet the current demands of the industry (Gueymard, 2017a, 2017b; Gueymard & Ruiz-Arias, 2016). 

Gueymard and Ruiz-Arias (2016) reported an extensive validation study with 140 separation models using one-

minute data and reported that cloud enhancement events (CEE) and high-albedo effects intensify the errors in 

irradiance estimates of separation models. Based on new criteria to evaluate the robustness of a separation 

model and comparing each model’s performance within different climate zones, the authors recommended the 

development of separation models for each climate zone. The authors also concluded that models that consider 

variability and clear-sky irradiance as predictors tend to perform better. 

Recently, Starke et al. (2018) presented a logistical model for one-minute irradiance based on the BRL model. 

The proposed model, named the BRL-minute model, uses a piecewise function, defined by two sub-domains, 
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one for CEE and the other for non-CEE. The authors proposed a model for Brazil and another for Australia, 

using one-minute data from four BSRN stations and four stations of the Australian Government Bureau of 

Meteorology (BOM).  

The main goal of this study is to present the further developments of the BRL-minute model, as one-minute 

irradiance data from many stations spread worldwide were used to develop diffuse fraction models for climate 

zones from the Köppen-Geiger climate classification, following the suggestion by Gueymard and Ruiz-Arias 

(2016). Also, a new predictor was added to the model and a robust nonlinear regression method was used to 

account for the data heteroscedasticity and possible outliers. Finally, to assess the performance of the new 

models, a formal error analysis was performed, based on comparisons between this work and the models of 

Ridley et al. (2010) and Engerer (2015), which figured among the best performing models selected in the work 

by Gueymard and Ruiz-Arias (2016). 

2. Methodology 

The model proposed here is based on the work of Starke et al. (2018), which proposed a piecewise logistical 

model that can predict the fast transient phenomena observed in 1-min data. The division of the model in two 

parts aimed to separate diffuse fraction values that correspond to cloud enhancement from those that do not. As 

proposed by Starke et al. (2018), the variables 𝑘𝑇 and 𝐾𝐶𝑆𝐼  were used to determine the domain breakpoint, i.e. 

to identify whether a data point is a cloud enhancement event or not,. In this way, variables with physical 

interpretation are used to identify cloud enhancement events, thus the value of the domain breakpoint is not 

arbitrarily defined, nor does it need to be defined by the regression process. 

A few changes were made to the original model, as the hourly clearness index (𝐾𝑇) was added as a model 

predictor. The reason of adding this predictor is based on the same logic used at the BRL model when the daily 

clearness index (𝐾𝑇
̅̅̅̅ ) was used as predictor – if it seems logical to use daily clearness index to classify similar 

days on an hourly model, therefore it also seems logical to use hourly clearness index to classify similar hours 

on an one-minute model. It is worth mentioning that there is no additional complexity of adding this predictor, 

since it is easy to obtain the hourly clearness index using the predictors already present on the model – one 

minute and daily clearness indexes. The subdomain intervals were also reorganized in a clearer form, where the 

first equation models the cloud enhancements events and the other equation models the other events. The model 

proposed on this work is given by, 

𝑑̂ = {

1

1+𝑒(𝛽0+𝛽1𝑘𝑇+𝛽2𝐴𝑆𝑇+𝛽3𝛼+𝛽4𝐾̅𝑇+𝛽5ψ+β6𝐶𝑆𝐼+𝛽7𝐾𝑇)
, 𝐾𝐶𝑆𝐼 ≥ 1.05 𝑎𝑛𝑑 𝑘𝑇 > 0.65

1

1+𝑒(𝛽8+𝛽9𝑘𝑇+𝛽10𝐴𝑆𝑇+𝛽11𝛼+𝛽12𝐾̅𝑇+𝛽13ψ+β14𝐶𝑆𝐼+𝛽15𝐾𝑇)
, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (eq. 1) 

where 𝑑̂ is the modelled diffuse fraction, 𝑘𝑇 is the clearness index at minute basis, defined as the ratio of the 

global horizontal irradiance (𝐺) to the horizontal extra-terrestrial irradiance at the top of the atmosphere (𝐺𝑜). 

𝐴𝑆𝑇 is the apparent solar time in hours, 𝛼 is the solar altitude in degrees, (𝐾𝑇
̅̅̅̅ ) is the daily clearness index and 

𝜓 is a persistence factor defined by Ridley et al. (2010). 𝐶𝑆𝐼 is the clear-sky irradiance in W𝑚−2, 𝐾𝑇 is the 

hourly clearness index and 𝐾𝐶𝑆𝐼  is the ratio of the measured G and the CSI. It is worth mention that the values 

of the breakpoint were maintained the same as the ones presented by Starke et al. (2018). Moreover, to avoid 

any confusion and misunderstanding, the CSI inputs to the Eq. (1) are now given in W𝑚−2, unlike the originally 

proposed by Starke et al. (2018), which were in MJ ℎ−1 𝑚−2. 

2.1. Irradiance Data 

The quality of any separation model depends on the limitations and experimental error of the measured 

irradiance, depending on the radiometer’s performance, radiometer calibration, station maintenance and 

instrument cleaning (Gueymard & Ruiz-Arias, 2016). To mitigate the impact of these factors on our model, 

only data from research-class stations were used.  
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The one-minute database used contains the three irradiance components measured with thermopile radiometers. 

Most of the stations (51) belong to the Baseline Surface Radiation Network (BSRN) and one station belongs to 

the Australian Government Bureau of Meteorology (BOM). A summary of all stations considered herein is 

presented in Table 1. It is worth mentioning that only data after the year 2000 is being considered, as most 

stations do not have one-minute irradiance measurements before that. 

2.2. Climate classification 

The Köppen-Geiger climate classification was used to classify the different stations considered on the present 

work. To do so, data provided on the work by Chen and Chen (2013) were used. The authors used global 

temperature and precipitation observations over the period of 1901–2010 to build the Köppen classification 

dataset on the interannual, interdecadal, and 30-year time scales. The result is a classification indicated by a 

letter code, where the first letter indicates the main climate type (A for tropical, B for dry, C for temperate, D 

for continental and E for polar), and the following letters denote the specific climate type. The reader is referred 

to the work by Chen and Chen (2013) for a more detailed description of the letters in the Köppen classification 

scheme. In the present work, the 30-year time scale was used, with data from 1981-2010, comprising most of 

the measurement period of the stations used. The Köppen climate of each station is also presented in Table 1. 

2.3. Clear-sky model 

The clear-sky irradiance (CSI) values needed in this work were calculated by the broadband simplified 

analytical version of the Solis model (Ineichen, 2008). This model estimates clear-sky irradiance at the 

evaluated site by multiplying the extraterrestrial irradiance (calculated using site latitude and longitude) by a 

correction factor that is a function of aerosol optical depth (AOD), atmosphere water vapor content (W) and 

site altitude. AOD and W values were taken from the CAMS Reanalysis dataset, which provides atmospheric 

composition data from 2003 up to 2017. For stations with data extending beyond 2017 (or before 2003), the 

information of the last (first) year is used as an approximation of the following (previous) years, as Starke et al. 

(2018) have shown that this approximation has a minor impact on the model performance. 

Some of the stations used in this work are placed in areas where the site elevation is much higher than the 

average pixel elevation for the dataset used, which caused inconsistencies when computing the CSI estimate. 

In order to address this problem, an altitude correction was implemented as described by Bright and Gueymard 

(2019) to equalize the reference altitude for all datasets and it is calculated using the equation:  

𝐴𝑂𝐷(ℎ) = 𝐴𝑂𝐷(ℎ0) × exp [
(ℎ−ℎ0)

𝐻𝑎
]                (eq. 2) 

Where 𝐴𝑂𝐷(ℎ) is the AOD at the station altitude ℎ, 𝐴𝑂𝐷(ℎ0) is the AOD estimate from the CAMS dataset 

with reference altitude ℎ0, which was obtained using the geopotential measurement for the considered pixel 

(Bright & Gueymard, 2019b), also available on the CAMS dataset, and 𝐻𝑎 is the scale height, whose value was 

adopted as a constant of 2100m, the value suggested by the referred authors for coastal sites. The same 

procedure was used to correct atmospheric water vapor content, by using W instead of AOD in the equation 

and the same scale height. 

2.4. Quality control 

The first quality checks applied to the solar data were the ones used by Gueymard and Ruiz-Arias (2016) in 

their extensive review. These checks ensure that the measured irradiance value is physically possible and that 

the three components of solar radiation are mutually coherent. Further quality checks were made based on the 

quality control methodology described by Lemos et al. (2017), such as the “Rayleigh limit test”, which 

guarantees that the measured diffuse irradiance is not below a minimum physically possible value. The 

“overcast test”, also listed by the referred authors, was applied as a lower allowable limit to G. 

The number of valid data points (i.e. qualified data) for each station is presented in Table 1. Stations with less 

than 262800 qualified data points (roughly the sunlight minutes within one year) were removed from the pool. 
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Table 1 – General information on the 52 stations whose data were available for this study, including, in order of appearance, a 

three letter code, the station complete name, latitude and  longitude in degrees, elevation in meters above sea level, the data 

source, the Köppen-Geiger climate and the number of valid data points after the quality control. 

 Code Station Lat. Long. Elevation Source Climate Data points 

1 ADL Adelaide -34,929 138,601 61,7 BOM C 444557 
2 ALE Alert 82,490 -62,420 127 BSRN E 860461 

3 ASP Alice Springs -23,798 133,888 547 BSRN B 3414376 

4 BAR Barrow 71,323 -156,607 8 BSRN E 571991 
5 BER Bermuda 32,267 -64,667 8 BSRN C 727767 

6 BIL Billings 36,605 -97,516 317 BSRN C 1326227 
7 BOS Boulder 40,125 -105,237 1689 BSRN C 443931 

8 BOU Boulder 40,050 -105,007 1577 BSRN C 685784 

9 BRB Brasilia -15,601 -47,713 1023 BSRN A 960528 
10 CAB Cabauw 51,971 4,927 0 BSRN C 2101994 

11 CAM Camborne 50,217 -5,317 88 BSRN C 1700709 
12 CAR Carpentras 44,083 5,059 100 BSRN C 3230394 

13 CLH Chesapeake Light 36,905 -75,713 37 BSRN C 2579937 
14 CNR Cener 42,816 -1,601 471 BSRN C 1362716 

15 COC Cocos Island -12,193 96,835 6 BSRN A 1795630 

16 DAA De Aar -30,667 23,993 1287 BSRN B 1046750 
17 DAR Darwin -12,425 130,891 30 BSRN A 2221262 

18 DOM Concordia Station -75,100 123,383 3233 BSRN E 1134106 
19 DWN Darwin Met Office -12,424 130,893 32 BSRN A 1797528 

20 E13 Southern Great Plains 36,605 -97,485 318 BSRN C 1839161 

21 EUR Eureka 79,989 -85,940 85 BSRN E 601728 
22 FLO Florianopolis -27,605 -48,523 11 BSRN C 737731 

23 FUA Fukuoka 33,582 130,376 3 BSRN C 1247060 
24 GCR Goodwin Creek 34,255 -89,873 98 BSRN C 303879 

25 GOB Gobabeb -23,561 15,042 407 BSRN B 1227162 
26 GVN Georg von Neumayer -70,650 -8,250 42 BSRN E 1820132 

27 ISH Ishigakijima 24,337 124,164 5,7 BSRN C 1369626 

28 IZA Izaña 28,309 -16,499 2372,9 BSRN C 1736789 
29 KWA Kwajalein 8,720 167,731 10 BSRN A 581434 

30 LAU Lauder -45,045 169,689 350 BSRN C 2479489 
31 LER Lerwick 60,139 -1,185 80 BSRN C 1285996 

32 LIN Lindenberg 52,210 14,122 125 BSRN C 2191444 

33 LRC Langley Research Center 37,104 -76,387 3 BSRN C 579563 
34 MAN Momote -2,058 147,425 6 BSRN A 2121929 

35 MNM Minamitorishima 24,288 153,983 7,1 BSRN A 1654583 
36 NAU Nauru Island -0,521 166,917 7 BSRN A 1602723 

37 NYA Ny-Ålesund 78,925 11,930 11 BSRN E 1786803 

38 PAL Palaiseau 48,713 2,208 156 BSRN C 1918094 
39 PAY Payerne 46,815 6,944 491 BSRN C 1568043 

40 PSU Rock Springs 40,720 -77,933 376 BSRN D 363090 
41 PTR Petrolina -9,068 -40,319 387 BSRN B 1199345 

42 REG Regina 50,205 -104,713 578 BSRN D 1875990 
43 SAP Sapporo 43,060 141,329 17,2 BSRN D 1284085 

44 SBO Sede Boqer 30,860 34,779 500 BSRN B 788147 

45 SMS São Martinho da Serra -29,443 -53,823 489 BSRN C 1040359 
46 SON Sonnblick 47,054 12,958 3108,9 BSRN D 431596 

47 SOV Solar Village 24,910 46,410 650 BSRN B 473645 
48 SPO South Pole -89,983 -24,799 2800 BSRN E 1126294 

49 SYO Syowa -69,005 39,589 18 BSRN E 1656897 

50 TAM Tamanrasset 22,790 5,529 1385 BSRN B 1595877 
51 TAT Tateno 36,058 140,126 25 BSRN C 3220673 

52 TOR Toravere 58,254 26,462 70 BSRN D 1894408 
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2.5. Regression method 

Boland and Ridley (2008) demonstrated the procedures for the construction of the logistical separation model, 

while Ridley et al. (2010) presented the method for building the BRL model using a nonlinear least-squares 

(NLS) regression method. However, the presence of outliers in the data can severely affect the results when the 

separation model equation is adjusted to measured data through a least-squares fit. Outlier removal methods 

have been presented by Younes et al. (2005) and Lemos et al. (2017), which consist of creating an envelope 

around plausible data, using specified functions. However, these methods require the individual inspection of 

each station’s data and site-specific knowledge of the climate and irradiance behavior. Therefore, building an 

envelope-based outlier removal procedure for a heterogeneous database such as the BSRN is an infeasible task. 

One solution for building the separation models without removing the outliers in advance is to use robust 

statistics, i.e. a robust nonlinear regression method. The methods of the robust approach can be employed to 

produce reliable parameter estimates when the data follow an arbitrary, non-normal distribution, that is, when 

the data is heteroscedastic. As highlighted by Riazoshams et al. (2018), in real-life data, the homoscedastic 

assumption might not be correct for every dataset. This can happen because of the natural behavior of the data, 

or because the data is affected by some discrepancy on the observations – the outliers. 

  

(a) (b) 

Fig. 1 – Q-Q plots of the residuals of the regressions for Florianopolis/Brazil using (a) a NLS regression method and (b) a robust 

nonlinear regression method; The red dashed lines represent a normal distribution for each regression, while the blue markers 

represents the distribution for the residuals of each regression. 

In the case of the data from Florianopolis/Brazil, Fig. 1(a) shows that the residuals of the adjusted model that 

uses a NLS regression method , deviates a lot from a normal distribution, while Fig. 1(b) shows that when a 

robust least-square method is used, this discrepancy becomes a lot smaller, guaranteeing that the statistical 

indicators will be closer to the exact ones. Because of that, a robust nonlinear regression method, available in 

the MathWorks (2018) software MATLAB, was adopted to build the diffuse fraction models of the present 

study, i.e. determine the 𝛽𝑖 coefficients. An iterative reweighted least squares algorithm (Dumouchel & 

O’Brien, 1991; Holland & Welsch, 1977) is used in the software, which recalculates the weights at each iteration 

based on the residual of the observations of the last iteration. This approach reduces the influence of the outliers 

on the fit at each iteration, where the process continues until the weights converge. A weight function and a 

tuning constant need to be defined for the robust fitting. After testing different equations for the weight’s 

estimation, we decided to use the following logistic function, 

𝑤𝑖 =
tanh(𝑟𝑖)

𝑟𝑖
                    (eq. 3) 

where 𝑤𝑖  is the robust weight for the residual of the regression 𝑟𝑖 on the observation 𝑖. The tuning constant used 

was 1.205, the default given by the MATLAB function. Fig. 2 shows the estimated weights for the 

Florianopolis/Brazil dataset and it can be seen that the majority of high weight values are on a region 

comparable to the envelopes proposed by Younes et al. (2005), which is the reason for the robust method to 

 
C.M. Barni et. al. ISES SWC2019 / SHC2019 Conference Proceedings (2019)



work without the need of an outlier removal procedure. Even though this method does not completely remove 

the influence of obvious outliers, it assures that even values that may be improbable but are rightfully measured 

are considered on the diffuse fraction model. 

 

Fig. 2 – Observed clearness index (𝒌𝑻) and diffuse fraction (𝒅) correlation of 1-min irradiance data from Florianopolis/Brazil; 

The colormap denotes the estimated weight 𝒘𝒊 for each point. 

Also, since the proposed model is a piecewise equation, the regression method is used to estimate the model 

coefficients of each part of the domain. That is, for every dataset, the datapoints were split in two classifications, 

CEE or non-CEE, and each subset was individually submitted to the regression method in order to estimate the 

coefficients for each part of the final model and the weights for each datapoint. 

2.6. Building local and climate-specific models 

After the qualification procedure, the regression method was applied to the data from each individual station to 

create a locally optimized model, valid for that station. On the other hand, to create a model valid for a region 

(climate, country or “universal”) the data from individual stations had to be merged to a single data set, and 

then analyzed with the defined regression method to create a regional model. In both cases, two thirds of the 

local data were randomly selected to feed the model, while the remaining third was used to evaluate it. 

To build the climate models, we randomly selected the same amount of datapoints from each station belonging 

to the same broad climate zones in the Köppen classification (A, B, C, D and E), making the contributions from 

each station to the climate dataset to be equal. To each of these datasets a robust regression was made using the 

new proposed model and generating a set of coefficients for each, available on Table 2. 

2.7. Statistical indicators of model performance 

Gueymard (2014) presented a complete review of performance indicators that can be used in radiation models 

for validations purposes. Among those, three statistical indicators were considered for the formal error analysis: 

normalized RMSE, normalized MBE, and the KSI. In the present work, two of those indicators have been 

slightly modified to be able to use weighted residuals, as in the following expressions, 

𝑛𝑅𝑀𝑆𝐸 =
100

𝑑̅
√

∑ 𝑟𝑖
2𝑛

𝑖=1

𝑛
                   (eq. 4) 

𝑛𝑀𝐵𝐸 =
100

𝑑̅

[∑ 𝑟𝑖
𝑛
𝑖=1 ]

𝑛
                   (eq. 5) 

where 𝑑̅ is the mean value of the diffuse fraction of the measurements data set, and 𝑟𝑖 is the residual of the 

measurement 𝑖, of a set of 𝑛 measurements, which, when using a robust regression method, can be defined as 

𝑟𝑖 =  √𝑤𝑖(𝑑𝑖̂ − 𝑑𝑖)                    (eq. 6) 

where 𝑑𝑖 is the actual value of the diffuse fraction calculated, 𝑑𝑖̂ is the estimated value of the diffuse fraction 
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for the point 𝑖, and 𝑤𝑖  is the weight estimated using the robust method for the point 𝑖. 

When using data without removing the outliers, the use of weighted residuals is a logical way to calculate the 

goodness of fit (GoF) of the regressed model, that is, how well the model can predict the main trend of the 

dataset it was created with, reducing the penalty for predicting a different value for an outlier. However, when 

using these indicators to evaluate the robust generated model performance on a different dataset, or another 

model where the weights are not available, setting the weights as 𝑤𝑖=1 for all points reduces Eq. (6)  to the 

standard residuals of the NLS method: 

𝑟𝑖 =  (𝑑𝑖̂ − 𝑑𝑖)                    (eq. 7) 

The third statistical indicator is the Kolmogorov–Smirnov test Integral (KSI), which was proposed by Espinar 

et al. (2009) as a measure to compute the differences between CDFs, and is calculated as follows, 

𝐾𝑆𝐼 =
100

𝛼𝑐
∫ 𝐷𝑛𝑑𝑥

𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛
                              (eq. 8) 

where 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the values that limit the independent variables, 𝐷𝑛 is the difference between the CDFs 

of the measurements and the estimated values, while 𝛼𝑐 is determined by 𝛼𝑐 = 𝑉𝑐(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛). The critical 

value 𝑉𝑐 is given by 𝑉𝑐 = 1.63 √𝑛⁄ ,, for a 99% level of confidence, on a population size of 𝑛 ≥ 35. As the KSI 

becomes closer to zero, the distributions can be considered equivalent, and for large values, the model is 

considered non-fitting to the dataset. It is important to note that two different large datasets may rarely be 

considered equivalent, as small differences between them can become huge when added. Also, for large 

populations, like the ones used in this work, the critical value tends to zero, in consequence 𝛼𝑐 tends to a small 

value and KSI will become a large value, possibly larger than 100 %. 

2.8. Other separation models 

In order to assess the performance of this new model, an error analysis is performed which is based on 

comparisons between our work and the models of Ridley et al. (2010) and Engerer (2015). The models selected 

for comparison are well known and are often referred to in the literature. Indeed, these models are among the 

ones selected in the review by Gueymard and Ruiz-Arias (2016) as the best performing separation models. 

3. Local adjusted models 

  

Fig. 3 – CDFs for the diffuse fraction in Florianopolis/Brazil. The continuous line represents the actual dataset, while the 

dashed line represents the results from the model generated using a NLS (left) and a robust (right) regression methods. 

In order to assess the improvements of the model when regressed using a consistent dataset, two regressions for 

each station on Table 2 were made, one using the NLS method and another using the robust method. Both 

regressions produce similar results, but the robust method suffers less influence from the points that do not 

follow the main trend, like occasional outliers. The results for Florianopolis/Brazil are presented on Fig. 3, 
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where the robust method generates a model whose CDF resembles the data points CDF more than the NLS 

adjusted model, especially on the clear sky region. 

We also performed a formal error analysis using the statistical indicators presented on section 2.7 for each 

model. The benefits of the proposed methodology – a robust regression method – can be seen on Fig. 4 on the 

top, which depicts the KSI indicators of the estimated data created by each local adjusted model. The proposed 

methodology is consistently better than the NLS method, resulting in lower values of KSI, therefore, the models 

created by the robust regression provide estimates with better similitude to the measured data. This is achieved 

because this method reduces the influence of outliers, providing a set of coefficients that gives better estimates. 

Fig. 4 – Comparison between KSI (top), nRMSE (middle) and nMBE (bottom) error indicators for each station when using a 

NLS or a robust regression method. The black markers represent the robust method and the blue markers represent the NLS 

method. The stations are grouped by climate. The lines between each marker are presented just to ease the visualization. 

The middle and bottom plots on Fig. 4 present the goodness of fit of the regressions performed by the robust 

and NLS methods, in terms of the nRMSE and nMBE. As mentioned before, when using the robust method 

these indicators were calculated using the weighted residuals. Thus, the influence of the large values of residuals 
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caused by the outliers are reduced, thereby providing a “real” measure of accuracy of the models. 

The nRMSE values calculated by the models created using the robust method are significantly lower than the 

ones calculated by the models created using the NLS method, obtaining results lower than 20%, with some 

exceptions from climate B and E, and reaching less than 10% in some cases. It is important to note that if no 

weights are employed on the calculation of the nRMSE of the models created using the robust approach, it will 

result in values similar to the ones observed for the models created by the NLS method, which demonstrates 

that the differences between the nRMSE values obtained with the two methodologies are due to the existence 

of the outliers on the dataset, and that the proposed methodology is a feasible solution to create diffuse fraction 

models without having to deal with the problems caused by them. 

Fig. 4 also shows on the bottom plot the nMBE calculated using the models created with the two methodologies, 

resulting in larger biases for the robust approach than for the NLS. This behavior is expected, because the 

models created with the robust method are created to be biased to the main trend, allowing it to ignore the 

outliers, while the models created with the NLS tends to fit the outliers. The weighted residuals tend to reduce 

the influence of outliers on the nMBE, but it does not remove it completely. On the other hand, it also can be 

observed that the robust approach tends to remove some atypical behavior – large values of nMBE observed at 

some station with the models created with the NLS regression method (e.g. TAM, BOS, BOU, IZA, SON, SPO, 

SYO) – which may be due to the large amount of outliers on the dataset. In general, the proposed methodology 

produces models with bias lower than one percent. 

4. Climate zone models 

As the main objective of this work, we created diffuse fraction models for each major Köppen-Geiger climate. 

As described on section 2.6, we merged the data for each major climate and regressed the model coefficients to 

each of these datasets. The coefficients generated by the robust regression are available on Table 2. 

Table 2 – Set of coefficients generated for each climate model 

Coefficients 
Climate model 

A B C D E 

𝛽0 0,42564 -0,34423 0,36991 1,04274 1,20864 

𝛽𝟏 -3,59398 -3,40409 -3,45296 -4,02595 -5,76996 

𝛽𝟐 -0,00165 0,00870 0,00401 0,00033 -0,00067 

𝛽𝟑 -0,01270 -0,03086 -0,02946 -0,03336 -0,08691 

𝛽𝟒 1,76296 2,22625 1,43024 1,44008 1,63921 

𝛽𝟓 0,78023 0,71716 0,80691 0,76189 0,60128 

𝛽𝟔 0,00230 0,00317 0,00314 0,00341 0,00611 

𝛽𝟕 1,15743 1,84879 1,63014 1,49343 3,30922 

𝛽𝟖 -6,97014 -6,52494 -7,22087 -7,73779 -11,23789 

𝛽𝟗 6,05413 6,38235 6,80208 7,27602 10,07770 

𝛽𝟏𝟎 -0,00197 0,01248 0,00263 -0,00033 0,00711 

𝛽𝟏𝟏 0,00004 -0,01927 0,01965 0,09402 0,50304 

𝛽𝟏𝟐 2,97457 1,95447 2,41274 2,06922 1,77769 

𝛽𝟏𝟑 1,07312 0,76189 0,81176 0,99505 0,30251 

𝛽𝟏𝟒 -0,00093 0,00044 -0,00278 -0,00784 -0,03284 

𝛽𝟏𝟓 2,79782 2,57401 3,30092 3,76271 5,93868 

After that, we reapplied each model for all the data in each station that belonged to that climate to perform a 

formal error analysis. Since we applied each climate model to each station and compared the performance with 

other models, the error indicators were calculated without any weights. Therefore, the errors presented herein 
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consider the outliers present in the datasets.  

Fig. 5 shows the formal error analysis of the proposed climate models, BRL model, Engerer model, and GoF 

of the locally adjusted models, presented here as the best estimation for that station. Significant improvements 

for climate B, D and E can be observed on Fig 5 at the top and middle plots, where the proposed climate models 

perform significantly better than the BRL and Engerer models, two “universal” models. 

 

 

 

Fig. 5 – Comparison between the KSI (top), nRMSE (middle) and nMBE (bottom) error indicators for the climate (black), BRL 

(red), Engerer (lighter blue) and locally optimized (darker blue) models. The stations are grouped by climate. The right axis 

represents the values for climate E only. The lines between each marker are presented just to ease the visualization. 

In the middle of Fig. 5 the climate models proposed produce nRMSE values lower than the values observed on 

the other models on most occasions. It can be observed that the proposed models perform significantly better 

for climate B and E, showing that our model can behave much better than any of the other compared models. 

Regarding the nMBE, the climate models present lower bias when applied in each station, especially for climate 

C, showing nMBE values closer to the ones observed on the local adjusted models, when compared to the BRL 

and Engerer models. However, there are some stations where the climate models presented unusually high 
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nMBE (e.g. IZA, PTR, TAM), which could indicate that the station doesn’t belong to this climate or doesn’t 

behave like the other stations on this climate. This result indicates that there may exist a better way to classify 

stations with similar behavior, perhaps using cluster analysis or machine learning techniques. 

The main advantage of the proposed methodology is depicted on the bottom plot of Fig. 5, in terms of the KSI. 

It can be observed that, in general, the climate models have KSI values like the ones observed on the local 

adjusted model, which shows that the climate models estimate diffuse fraction values with the same similitude 

observed on real data. Unfortunately, some exceptions can also be observed, which can reinforce the idea that 

a particular station doesn’t behave like the other stations on the proposed climate. 

When comparing the KSI of the proposed model and the one for the BRL model, it is expected to see a 

significant improvement, as the BRL model was developed using hourly data, which does not capture 

satisfactorily the CEE. However, even when compared to a minute model as the Engerer, it still holds better 

results in most cases, mainly on stations from climate B and E. 

5. Conclusions 

Even though information about the three components of solar irradiance is extremely important for designing 

and assessing the performance of solar energy systems, measuring them is expensive, and requires significant 

operational resources and efforts. In order to obtain this information, a common practice is to use some sort of 

separation model to estimate both diffuse and direct components from global horizontal irradiance. Having this 

in mind, this study provides a separation model based on a logistical function derived using 1-min data that is 

reliable and accurate worldwide. To do so, we propose a new version of the BRL-min model, adding 𝐾𝑇 as a 

new predictor. Also, instead of generating one set of parameters for a “universal” model, we propose that for 

each climate a different set of parameters should be used. Lastly, we introduce the use of a robust nonlinear 

regression method in order to adjust the coefficients to the irradiance data, reducing the effects of outliers on 

the dataset, while preserving all the already qualified data for each station. Other regression methods could have 

been used in this case, e.g. a support vector machine regression, which is also capable of handling outliers and 

could bring up promising results. 

The results presented show that the proposed model performs equally well or better than the original BRL and 

Engerer models for most stations, figuring as a strong alternative for the separation models which can be 

considered as the best available today. 
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