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Summary 
The variability of and correlations between large-scale, distributed wind and PV generation across a northern 
US state is evaluated and contrasted.  We analyze three years of hourly-interval, time-synchronous data from 
the State’s wind fleet and distributed PV production simulated with SolarAnywhereTM.  Despite a 
significantly higher capacity factor (wind: 37% vs. solar: 16%), distributed wind exhibits more variability than 
solar at timescales longer than a day.  Though this longer-timescale variability is a key cost driver at high 
penetrations on the grid, it can be attenuated by blending the two resources owing to their strong seasonal 
anticorrelation. 
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1. Introduction 

Both wind and solar PV resources are intermittent, driven by weather and seasons.  Their high penetration in 
the generation mix implies mitigating intermittency and/or its impacts. The cost of the strategies and 
technologies to firm up these intermittent resources -- storage, geographic dispersion, overbuilding, and load 
flexibility – depends on their inherent variability (Perez et al., 2018).  

The variability of solar and wind resources has been and continues to be a frequent topic in the literature. Many 
contributions have analyzed and documented the synergy between the two renewable resources on multiple 
temporal and geographical scales -- e.g., Prasad et al., 2017. Several publications, including by the authors 
(Perez et al., 2016) have documented the spatial smoothing effect in relation to time scale,  and the possibilities 
of optimizing geographic dispersion to minimize variability -- e.g.,  Xuemei et al., (2018). The subject of long-
term (inter-annual) variability and future resource evolution is also a well covered topic -- Gueymard & 
Wilcox, (2011), Krakauer & Cohan, (2018). The issue of resource integration and variability mitigation at 
multiple time scales, either on the demand or the user-side, is a fast growing field of investigations including 
by the authors (Perez et al., 2013). These contributions tend to center on strategies to economically maximize 
renewables integration with e.g., storage and/or demand side management that can be informed by short term 
ramp/fluctuations forecasts --  e.g., Shahriari & Blumsack, (2018). 

Comparatively fewer studies have focused on the variability metric itself and on its underlying temporal and 
spatial fundamentals. The studies of Graabak & Korpas, (2016) on short-term variability characterization, Roy 
et al., (2018) on longer-term variability impact on islanded grids are two recent examples in this direction. On 
the solar front, the authors have contributed extensively to this subject by proposing variability metrics (Hoff 
& Perez, 2010) and quantifying the influences of temporal and spatial scales from minutes to years and from 
single locations to continents (Perez, 2018). 

In this paper, we take advantage of experimental data developed for a grid integration study in the State of 
Minnesota (MDC, 2019) to examine and contrast wind and solar resource variability on multiple time scales 
ranging from one hour to several months. 

2. Methods & Data 
Quantifying variability: Equation (1) states a widely used and accepted metric to quantify an intermittent 
resource’s power output variability for a given time scale ∆t – see, e.g., Hoff & Perez, 2010. 

Power Variability = σ(∆ρ∆t ) = √(Var[∆ρ∆t])  (1) 
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Where ∆ρ∆t is the difference in nominal power generation [the ramp] between two consecutive time intervals. 

Other indirect gauges of intermittency/variability often used by the utility industry include the resource’s 
capacity factor.  The capacity factor of a power plant or a fleet of power plants is the ratio between the mean 
power output and the rated (peak) power output of that plant or fleet. A high capacity factor is generally 
associated with low variability – e.g., a capacity factor of 100% implies an “always-on” resource, i.e., without 
variability. 

Quantifying correlation: Equation (2) states a widely used and accepted metric to quantify the correlation 
between to variable timeseries at a time-averaging interval ∆t – see, e.g., Hoff & Perez, 2010. 

Power Correlation = cor(∆ρsolar|∆t, ∆ρwind|∆t )  

= cov(∆ρsolar|∆t , ∆ρwind|∆t) ÷ [σ(∆ρsolar|∆t,), σ(∆ρwind|∆t)] (2) 

Where ∆ρsolar|∆t and ∆ρwind|∆t respectively reflect the differences in nominal solar and wind power generation 
[the ramp] between two consecutive time intervals.  

This power correlation allows us to see at which timescales the fluctuations in wind and PV output are likely 
to constructively or destructively interfere with each-other.  For instance, it is often said that the wind blows 
more strongly in the winter than in the summer and more strongly at night than during the day.  The sign of 
the correlation (negative or positive) at these different timescales will allow us to see whether or not this is the 
case in the area of study. 

Experimental data: We use three years’ worth of hourly statewide electricity production for both wind and 
solar (2014-2016). For wind, these experimental data consist of the actual metered production of the largest 
wind farms connected to the State’s power grid. The total installed capacity of these wind farms amounted to 
roughly 4.5 GW in 2016. Time/site-specific solar resource data are derived from satellite remote sensing via 
SolarAnywhere (2019) and integrated over the State to match the wind geographic distribution. The data 
reflecting both PV and wind production are normalized to reflect the output in watts of one kilowatt of each 
resource. 

3. Results 
Capacity factors: The annual capacity factor extracted from the state’s wind farms is nearly 37%. The simulated 
PV production amounted to 1,640 kWh per kW, i.e., a capacity factor of ~19%. Thus, using the capacity factor 
as measure of intermittency, wind is considerably less variable than solar in this considered Great Plains region, 
a region that has sometimes been called “the Saudi Arabia of Wind Power”. 

The seasonal capacity factor profiles are shown in Figure 1. Each point represents a 30-day moving average 
for the considered resource. Both wind and PV exhibit a nearly 1 to 3 excursion between minimum and 
maximum production periods. Interestingly, these seasonal production profiles are almost in opposition of 
phase, qualitatively suggesting that a combination of both technologies would be more stable on a yearly basis 
than either one, confirming many observations on this subject. 
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Fig. 1: Mean capacity factors for PV and wind using a 30-day moving average and a LOWESS smoother to highlight the trend 

 

Variability Metric: In Figure 2, we report the variability of statewide-distributed wind and solar resources 
derived from equation 1. We considered time scales ∆t ranging from one hour to one year, including all possible 
∆t groupings over the considered three-year period.  

Results show that for short time scales, below ~ 12 hours, the variability of PV is much higher than the 
variability of wind – a result of solar geometry-induced steep morning and afternoon ramps for PV. However, 
for longer intervals, the variability of PV is consistently lower than wind’s. Very long-term variability (∆t> 
several months) is comparable for both resources – this was qualitatively evident in Figure 1 where both 
resources showed comparable yearly min/max ratios. 

 
Fig. 2: σ(ρ) as a function of Δt for wind, PV and a 50/50 blend of the two.  

Correlation Metric: In Figure 3, we report correlation in change characteristics between the solar and wind 
resources at different timescales with timescales at which wind and solar are positively correlated highlighted 
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in blue and where they are negatively correlated highlighted in red. As with the variability characteristics, we 
considered time scales ∆t ranging from one hour to one year, including all possible ∆t groupings over the 
considered three-year period.  

Results show that as expected, wind and solar are negatively correlated at the sub-diurnal level, indicating the 
wind does blow when the sun does not shine at these timescales.  Of greater interest is near-perfect (-100%) 
seasonal anti-correlation seen peaking at roughly the half-year (6-month) mark.  As storage costs and or 
capacity oversizing costs needed to bridge this seasonal gap are expensive, blending these two resources in 
roughly even proportions will leverage this anti-correlation and therefore yield a significantly lower cost as a 
result. 

 
Fig. 3: Correlation between the changes in wind and solar resource at different time-averaging intervals.  Red indicates 

negative correlation between wind and PV and blue indicates positive correlation. 

4. Conclusions 
From a cost perspective, high penetration renewables are driven by longer periods of imbalance.  Although the 
variability of PV is very high for sub-diurnal timescales (owing largely to the rising and setting of the sun), the 
variability of wind is higher at nearly every other timescale.  The more these longer-timeframe variabilities 
can be mitigated, the cheaper the cost of serving load.  Wind and solar are strongly anti-correlated at the 
seasonal level in the state of MN, meaning that the imbalances that the grid has to deal with at higher 
penetrations of these two resources are significantly attenuated the more their relative capacity outlays are 
balanced.  As the seasonal imbalances are reduced, the amount of storage capacity required to ride over this 
variability is equally reduced, therefore greatly reducing the cost profile of achieving high renewable 
penetration in the state. 
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