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Abstract 

Solar radiation forecasting has become a critical information technology to facilitate the integration of PV and 
thermal solar power plants into the electricity grid of any country. Artificial neural network (ANN) modeling of 
time series is known as a useful and effective forecasting tool to achieve this task, due to its ability to find non-
linear relationships hidden inside historical data. Unfortunately, fast cloudiness transients add a stochastic signal 
to the solar radiation time series, thus diminishing the effectiveness of this methodology. In this work, ANNs are 
trained to provide 1-day-ahead forecasts of global solar radiation under various cloud regimes. Nine years of 
data measured under diverse climates at eight stations from the U.S. SURFRAD network are used. Training 
periods of less than two years are found too short and result in larger errors. Using a training period of eight 
years, the forecast accuracy is found to depend on cloud fraction (and thus location), with RMS errors ranging 
from 10% up to 45%.  
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1. Introduction 
The increase in the use of clean energy sources grows exponentially every year. Solar energy has become a 
decisive part of the renewable energy market. Solar radiation can be collected and converted into electricity 
through the use of two mature technologies: solar-thermal power generation and photovoltaic (PV) power gen-
eration. Nevertheless, integration of these technologies into electrical networks is a new challenge, due to the 
variability of the incident irradiance. In order to facilitate solar-thermal and PV penetration, solar energy fore-
casting is thus required. In particular, forecasting of the incident global horizontal irradiance (GHI) is the first 
and most essential step in most PV power prediction systems. Among the different methodologies that exist to 
achieve this task, the use of time series forecasting models based on historical data of solar radiation has been 
widely employed for several decades (Diagne et al., 2013). Time series forecasting models rely on measure-
ments over a given period of time, where each data point, x(t), corresponds to a specific time t. These models 
then predict future outputs according to previous events. Compared with other forecasting techniques, time 
series forecasting is flexible and requires fewer data inputs. It is usually considered an appropriate methodology 
for forecasting over the short term, at least. 

Time series consisting of daily GHI values, H(t), are commonly used to provide one-day-ahead forecasts be-
cause of their value toward solving various decision-making problems involved in the electricity market and 
power system operation (Inman et al. 2013; Alsharif et al. 2019). Unfortunately, time series forecasting models 
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are site-dependent. This is a consequence of the stochastic variability of solar radiation coming from the differ-
ent local atmospheric and weather patterns, which are fairly specific to each location. In this respect, clouds are 
normally the main source of solar irradiation variability. Due to the difficulty of simulating such stochastic vari-
ability (López et al., 2008), the performance of time series forecasting is expected to be more or less dependent 
on cloud regime, in turn resulting into possible geographical limitations.  

In this work, the effect of different annual cloud regimes on the forecasting accuracy of the daily H(t) is ana-
lyzed with the goal of providing a general assessment of the suitability of using time series for solar radiation 
forecasting. To this end, GHI forecasting is undertaken by means of artificial neural networks (ANN) because of 
their known effectiveness, often performing better than other conventional algorithms based on linear models 
(Paoli et al., 2010). 

2. Experimental data 
2.1 Radiometric stations 

Historical data of daily GHI, ground albedo, air temperature, relative humidity, and pressure are obtained from 
1-min observations at eight U.S. stations of the NOAA Surface Radiation Budget Network (SURFRAD; 
www.esrl.noaa.gov/gmd/grad/surfrad/). These stations are: Alamosa (SLV), Bondville (BON), Desert Rock 
(DRA), Fort Peck (FPK), Goodwin Creek (GWN), Pennsylvania State Univ. (PSU), Sioux Falls (SFX), and 
Table Mountain (TBL). The measurement period used here is 2009–2017 for all stations, except SLV (2014–
2016). Figure 1 shows the geographical distribution of the stations. They operate in climatologically and topo-
graphically diverse regions, ranging in altitude from 98 m to 2317 m above mean sea level. In addition to the 
diversity of cloud regimes, these sites present different annual cycles of atmospheric turbidity, precipitable wa-
ter, and ground albedo (López and Batlles, 2004; López et al., 2007). Several quality tests are applied to guaran-
tee the reliability of the irradiance data (Gueymard and Ruiz-Arias, 2016). Additional information about the 
SURFRAD network has been reported by Augustine et al. (2000). 
 

 
Fig. 1: Geographical distribution of the test stations 

 

2.2 Sky condition classification 

To study the impact of cloudiness on the time series forecasting accuracy, each day is classified into three cate-
gories of sky conditions: clear, partly cloudy, and cloudy. In order to keep H(t) as the only measured variable, 
and to avoid the need for additional variables, the sky condition classification is exclusively based on the daily 
clear-sky index, Kc(t), calculated as the ratio between H(t) and the ideal daily clear-sky GHI. A number of clear-
sky radiation models can provide the instantaneous GHI, as reviewed in, e.g. (Gueymard, 2012; Sun et al., 
2019). For the present application, the simpler daily clear-sky model of López et al. (2007) is used to directly 
determine the daily clear-sky GHI, Hcs(t), and then the daily-mean Kc through: 

Kc = H / Hcs.  (eq. 1) 

Alamosa, CO 
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The inputs to the clear-sky model are as follows: day of year, site altitude z (in meters), and daily-mean values 
of precipitable water (PW), w, Ångström’s turbidity coefficient, β, and ground albedo, ρ. The latter three varia-
bles are derived from NASA’s MERRA-2 reanalysis model, which is recommended for this kind of application 
(Gueymard, 2019). PW and ρ are readily available from MERRA-2, but β needs to be calculated from the aero-
sol optical depth at 550 nm and the Ångström exponent (both provided by MERRA-2) using Ångström’s law. 

The main equation of the parameterized daily clear-sky model is: 

Hcs = 0.98 exp(0.07z / 8345.3)exp[ f (w,β )]HCD
g (w,β )h(ρ,β )   (eq. 2) 

where the functions f, g and h are expressed as 

f(w, β) = –0.249 w0.31225 + 2.81375β 2 – 2.5948β (eq. 3) 

g(w, β) = 1.00324 + 0.03483w0.28073  – 0.97226β 2 + 0.64794β  (eq. 4) 

h(ρ, β) = 0.98613 + 0.0705ρ – 0.15225β + 0.77513ρβ  (eq. 5) 

and HCD—the daily GHI corresponding to an ideal clear clean-dry (CD) atmosphere with neither aerosol nor 
water vapor—is obtained from López et al. (2007) as 

𝐻!! =
!.!"#$
!

𝐼!"𝐸!(1.019 − 5.5 10!!𝜑) 0.965 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠𝜑 (𝑠𝑖𝑛𝜔!" − 𝜔!" 𝑐𝑜𝑠𝜔!") − 0.0485𝜔!"  (eq. 6) 

where ISC is the solar constant, E0 the eccentricity of the Earth’s orbit, ϕ is the latitude in degrees, δ the declina-
tion, ωsr the hour angle at sunrise in radians, and HCD is expressed in MJ m-2. 

Figure 2 shows both the measured and the clear-sky GHI time series for the years 2009–2011 at the Bondville 
station (BON). The modelled values agree remarkably well with the measured GHI under clear conditions, tak-
ing into account the slight imprecision due to uncertainties in the w and ß inputs or in the model itself. The 
clear-sky index time series is also displayed in Fig. 2. Values slightly higher than one can be found because the 
input values used by the model, mainly w and β, can differ somewhat from the actual ones. (The MERRA-2 grid 
cell size is ≈55 km, which can induce local variance.) Nevertheless, Kc values close to unity represent clear-sky 
conditions and do not display any seasonal dependency. 

 
Fig. 2: Time series of both measured daily global irradiation at Bondville and modeled daily clear-sky global irradiation (top), and 

the corresponding daily clear-sky index (bottom). 

 

Based on a visual inspection of the daily evolution of the measured GHI and the corresponding Kc values, the 
three types of sky conditions are then defined as:  

Cloudy day:  Kc(t) < 0.56 

Partly cloudy day:   0.56 ≤ Kc(t) < 0.93 

Clear day:  0.93 ≤ Kc(t). 
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Table 1 provides details about the number of days for each sky condition at each station. Figure 3 shows the 
daily evolution of 1-min values of GHI, direct normal irradiance, and diffuse irradiance for seven successive 
days at the Bondville station. The two first days (with Kc = 1 and 0.94, respectively) are considered clear days, 
despite the presence of clouds in the afternoon during the second day. For generalization purposes, cases corre-
sponding to Kc values in the range 0.93–0.96 are labeled “mostly clear days”. The fourth and seventh days (with 
Kc equal to 0.33 and 0.10, respectively) are totally cloudy. The fifth day, with Kc = 0.59, is almost cloudy. In 
general, it is found that cloudy days can be described with Kc < 0.56. Days with Kc values ranging between 0.56 
and 0.93 are affected by broken clouds and classified as partly-cloudy conditions. 
 

Tab. 1: Number of clear, partly cloudy, and cloudy days at eight U.S. SURFRAD stations. 
 

Station Lat. (°) Long. (°) Elev. (m) Clear days Partly cloudy days Cloudy days 
Bondville (BON) 40.052 –88.373 230 1075 1284 911 
Desert Rock (DRA) 36.624 –116.019 1007 2309 764 182 
Fort Peck (FPK) 48.308 –105.102 634 1104 1549 601 
Goodwin Creek (GWN) 34.255 –89.873 98 1181 1220 806 
Penn. State Univ. (PSU) 40.720 –77.931 376 691 1390 1175 
Sioux Falls (SXF) 43.734 –96.623 473 1173 1322 768 
Alamosa (SLV) 37.697 –105.923 2317 376 277 47 
Boulder (TBL) 40.125 –105.237 1689 1242 1539 490 
ALL STATIONS    —   —        — 9151 9345 4980 

 

 
Fig. 3: Daily evolution of 1-min measured values of global horizontal, direct normal, and diffuse irradiances during seven days at 
the Bondville’s station. The corresponding daily clearness index is also added for each day. All three categories of sky condition 

(clear, partly cloudy, and cloudy) are observed during this sequence. 
 

 
Fig. 4: Frequency of days corresponding to the three categories of sky conditions for the eight SURFRAD stations. 
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For the eight SURFRAD stations, Fig. 4 shows the frequency of days in each of the three categories defined 
above to characterize the cloud regime. DRA and SLV have the higher fraction of clear days in the period con-
sidered, reaching about 70% and 55% of the total number of days, respectively. These two stations are also 
rarely experiencing cloudy days, with a frequency of only ≈5%. In sharp contrast, PSU is the station with the 
lowest number of clear days (≈21%) and with the highest occurrence of cloudy days, accounting for almost 35% 
of the total number of days. The remaining stations are somewhere in between these extremes.  

Finally, for the purpose of developing and testing the forecasting models, each dataset is divided into two sub-
sets: (i) a training dataset; and (ii) a test dataset. For all stations, except SLV, the years 2009–2016 are used for 
training, and the year 2017 is used for testing. For SLV, whose measurements lasted only from 2014 to mid-
2016, the training dataset uses the period 2014–2015 and the test dataset uses the first half of 2016. 

3. Artificial neural network description 
The ANN used in this work is a multilayer feedforward network trained by means of the Levenberg-Marquardt 
algorithm. The inputs to the ANN consist of the values H(t – i), i.e., from the i previous days. The assumption is 
that GHI information lagging i days has still forecasting skill for day t. The ANN output is the 1-day-ahead 
value H(t + 1). Figure 5 shows the architecture of the multilayer perceptron network used here.  
 

 
Fig. 5: ANN model architecture. The ANN output is the 1-day-ahead forecasted GHI, HANN(t + 1). 

 

 
Fig. 6: ANN performance, in terms of percent RMSE of estimated versus measured H(t + 1) values for the GWN station, as a func-
tion of: (a) the number of hidden neurons and using an 11-day lag in the input vector; and (b) increasing lags with 4 hidden neu-

rons. The blue arrow shows the optimum case to be selected. Error bars denote the standard deviation of the 10-run mean. 

 

Several trials need to be undertaken first to determine the optimum number of hidden neurons Nh and lagging 
days i. For that, the GWN station is selected because it presents a similar number of days in each of the three 
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sky categories (Fig. 4). Repeating these trials at the seven other sites did not change the results (in terms of Nh 
and lags) described below. The maximum lag is initially set to i = 10, based on a preliminary analysis. Several 
networks with different numbers of hidden neurons Nh are trained and the best performing network among them 
is selected. The ANN forecasting performance is evaluated in terms of three common statistical indices: coeffi-
cient of determination R2, root-mean-square error RMSE, and mean bias error MBE. The latter two indicators 
are expressed in percent of the mean GHI for each station, and are additionally calculated for each class of sky 
condition separately. (Note that the mean GHI is specific to each data class.) To overcome potential differences 
in model performance that could be caused by the random initialization of the weights and the oscillating effects 
of local minima in the performance surface, ten training runs are undertaken for each ANN architecture, and the 
overall performance is reported as the mean RMSE and MBE of these ten runs. Standard deviations are also 
calculated to analyze the stability of the ANN predictions. For each Nh value, the ANNs predict unbiased results 
(MBE ≈0%). The RMSE for the training data decreases as Nh increases, as Fig. 6a shows. However, the opposite 
tendency is observed for the testing data, which is a consequence of overfitting—a known issue in ANN model-
ing. Based on the RMSE for the testing data, the best number of hidden neurons is then Nh = 4. Once the number 
of hidden neurons is fixed, the next step consists in optimizing the number of lag days. A procedure similar to 
the previous one is undertaken, but now varying the number of lags i. Figure 6b shows that the RMSE decreases 
when the lag increases from 0 to 7, for both the training and testing datasets. Beyond that point, the RMSE of 
the training data continues to decrease but the test values are then poorly forecasted. The explanation is that an 
increase in lag time leads to RMSE reduction as a consequence of overfitting of the training data, however asso-
ciated with a dramatic deterioration in forecasting skill with the test data. 

4. Results 
With the intention of evaluating the benefits of using the ANN methodology, the results are also compared with 
those obtained by means of the persistence model, used here as a naïve predictor. The persistence model sup-
poses that global irradiation at day t + 1 is best predicted by its value at day t (Diagne et al., 2013). 

 

 

Fig. 7: RMSE for 1-day-ahead forecasting of daily GHI using the persistence model and the ANN model, for the eight SURFRAD 
stations and as a function of the three sky conditions defined in the text. 

 

Figure 7 shows RMSE results for 1-day-ahead forecasting using persistence and the ANN model operated with 
seven successive days preceding the last day with measured data (i.e., eight successive days preceding the day 
being forecasted (t+1)), separately considering the three categories of sky conditions for the test data, as well as 
their combination (all-sky conditions). Under all-sky conditions, the RMSEs resulting from the persistence 
model range from 19% at DRA to 51% at PSU. As indicated in Section 2, DRA and PSU are at the two ex-
tremes regarding the number of clear and cloudy days. Still using persistence, the next second best performance 
with RMSE = 26% is at SLV, which has a high fraction of clear days and a low number of cloudy days, similar-
ly to DRA. On the other hand, locations where partly-sky and overcast-sky conditions predominate, such as SXF 
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or GWN, forecasts using persistence become inaccurate, with RMSEs larger than 45%. As could be expected, 
the performance improves during clear days and degrades during cloudy days. The RMSE increases to values 
higher than 100% when attempting to forecast cloudy days. Nevertheless, these higher RMSE values are also a 
consequence of the low mean values used to calculate the percent values. In any case, this suggests that the 
persistence model is not appropriate for sites with a high frequency of partly cloudy and/or cloudy periods. The 
large disparity of results between clear and cloudy days could be expected because, in the former case, the solar 
irradiance follows a smooth, easily predictable deterministic progression, whereas, in the latter case, the large 
variability added by the presence of clouds can be described by a stochastic, hardly predictable process.  

The ANN forecasting methodology improves the prediction accuracy in comparison with the baseline persis-
tence model at each site and under any annual cloud pattern. Figure 8 shows the reduction in RMSE that results 
from using the ANN model rather than persistence. In general, under all-sky conditions, the ANN model de-
creases the forecasting error by ≈2–10% in terms of RMSE, depending on location. This result is also observed 
under “clear” conditions. This can be explained by how loosely a clear day is defined here: The present defini-
tion can actually accept some cloudiness (as illustrated by day 2 in Fig. 3). At most stations, a large RMSE re-
duction is achieved by the ANN model during partly cloudy days, decreasing the RMSE by ≈2–18% relatively 
to the persistence model. When considering cloudy days, a better quality of predictions is observed at all sta-
tions, and, in particular, a significant improvement occurs at PSU, with an RMSE reduction of 18%. This specif-
ic site remarkably being the cloudiest, it can be concluded that the ANN performance depends on the amount of 
days affected by the presence of clouds. Hence, this improvement in daily global irradiation forecasting with 
ANN can be tentatively explained as a sampling effect: locations with only infrequent cloudy days need longer 
training time series than other locations with a higher frequency of cloudy days. The satisfactory results provid-
ed by the ANN model under partly cloudy days in comparison with the persistence model are then due to the 
availability of long time series corresponding to that category.  

In order to get a better understanding of the ANN benefits, the present performance results could profit from a 
comparison with those obtained using the novel forecasting skill metric proposed by Marquez and Coimbra 
(2013), which is well adapted to forecasting time series. This development is underway and will be reported in a 
subsequent and more general contribution. 

 
Fig. 8: Reduction in percent RMSE (compared to persistence) when using the ANN model relatively to persistence at each  

SURFRAD station and each type of sky condition. 
 

The question then arises as to how many years of training are needed to improve the results using the ANN 
methodology. Figure 9 shows the results of ANN performance at FPK when using training time series consisting 
of an increasing number of years. After 4 or 5 years, the RMSE has reached a stable level, with an improvement 
of ≈6% under all-sky conditions, compared to persistence. A similar finding is also obtained if only clear days 
are rather considered, leading to a slight improvement of ≈2% compared to persistence. In contrast, forecasts of 
partly-cloudy days are much improved (by ≈12% compared to persistence) using a longer times series of ≈7–8 
years. Conversely, the number of years used for the ANN training of cloudy conditions does not seem to have 
any effect at all. In any case, and to get the best performance under all possible conditions, time series of at least 
7–8 years should be used.  
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Fig. 9: RMSE when training the ANN with time series having an increasing number of years at the FPK station. The RMSE from 

the persistence model is also indicated (at year 0). 
 

Figure 10 displays scatterplots comparing the forecasted and measured H(t + 1) results at PSU, using either 
persistence or the ANN model, separately for the three classes of daily cloudiness. Good overall agreement is 
found when using ANN forecasting for partly cloudy days. Cloudy days, however, are affected by significant 
overestimation.  

 

 
 

Fig. 10: Comparison at PSU between forecasted and measured next-day GHI for the 2017 test year, and using (a) the ANN model 
and (b) the persistence model, according to three types of daily sky conditions: clear, partly cloudy, and cloudy. Statistical indicators 

of model performance are also provided. 
 

Figure 11 shows the time series of 1-day-ahead GHI forecasted by the ANN model and the corresponding meas-
ured GHI at the DRA and PSU stations. A good overall agreement is observed at DRA. This is a consequence of 
two effects: (i) an extensive time series of clear days exists at that site, and such forecasts are typically accurate; 
and (ii) even though the ANN learning ability decreases due to the random nature of cloud effects, there are only 
a few cloudy days there, so that the overall performance is not affected. At PSU, the ANN reproduces the varia-
bility in the time series acceptably well. However, it is neither able to correctly predict the maximum GHI val-
ues (during very clear days) nor the minimum GHI values (during dense overcast days). Considering the low 
MBE observed at that site (Fig. 10), it is likely that this issue is site-specific and a consequence of the dataset 
characteristics. A possible remedy, that remains to be investigated, would be to use a longer GHI time series for 
training. 
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Fig. 11: Time series of 1-day-ahead GHI forecasted by the ANN model and the corresponding measured GHI at DRA (top) and PSU 
(bottom) using the test data (year 2017).   

 

At SLV, the ANN forecasts perform similarly to the persistence model despite the relatively large fraction of 
clear days. This is apparently caused by the small amount of data that was available for training—only one year 
and a half. Hence, it can be concluded that an ANN model does require long training time series to improve 
performance relatively to persistence and to achieve reasonably accurate forecasts under all possible sky condi-
tions.  

To evaluate the effect of the amount of data in each of the three types of sky conditions on the ANN model 
performance, a second ANN model is developed for the GWN station, but now using the same number of clear 
days, partly cloudy days, and cloudy days. The total training GWN dataset of the initial model had 864 clear 
days, 1098 partly cloudy days, and 694 cloudy days. For the new ANN model, the number of days correspond-
ing to clear and partly cloudy categories is reduced to 694 (the same as the number of cloudy days) by means of 
a random selection. The performance of this new ANN model, evaluated in terms of percent RMSE for the test 
data year, amounts to 29%, 23% and 102% respectively for clear, partly cloudy, and cloudy cases, comparative-
ly to 26%, 19% and 112% for the original model. It is thus found that the new ANN model improves the fore-
casting skill during cloudy days but at the expense of performance degradation under clearer conditions, just 
because of their lower number of training days.  

Finally, other ANN trials have been undertaken using additional exogenous inputs, such as daily mean values of 
temperature, relative humidity, atmospheric pressure, or direct irradiance during the last few days. As a result, 
the ANN overfitted the training datasets, consequently precluding the proper forecasting of the test data. This 
suggests that the exogenous variables selected in this preliminary evaluation do not add any significant infor-
mation compared to historic GHI data. Further tests, now underway, will involve other exogenous variables, as 
well as more advanced ANN architectures, including multi-stage ANN (Kemmoku et al., 1999), hybrid models 
(Blaga et al., 2019), and multimodel ensembles (Zemouri et al., 2019). 

5. Conclusions 
Using eight radiometric stations providing high-quality irradiance data in the USA, this work has shown the 
capability of ANN models to provide 1-day-ahead forecasts of daily GHI with satisfactory results. Improved 
statistical results have been found in comparison with the conventional persistence model. For cloudy days, the 
ANN model performance is not as good (in relative terms) as that under clearer conditions because of the rela-
tive lack of data and the lower irradiance. During cloudy periods, the forecast results are improved only at those 
stations where such days are frequent. With the present database of eight reference stations in the USA, almost 
all stations have a high frequency of partly cloudy days. It is here shown that this is a condition needed in order 
for the ANN methodology to perform better than the simple persistence model. It is also shown that, to guaran-
tee accurate and well-balanced ANN forecasts, it can be beneficial to rearrange the training dataset so as to 
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select a similar fraction of days in each of the three cloud regimes defined here. In this sense, eight years of 
daily data may not be enough to obtain very accurate predictions.  

Finally, the addition of times series of exogenous inputs (in the form of common meteorological variables) has 
been found disappointing because it does not improve the current ANN model, possibly because it has a simple 
architecture. More efficient architectures, possibly involving other machine-learning techniques, are expected to 
improve this situation. Nevertheless, the ANN-based method introduced here for the forecasting of daily GHI 
values appears useful as an input to other existing methodologies aimed at forecasting the 1-day-ahead PV pow-
er production and/or to improve their results. Further research will evaluate the optimum number of years that is 
necessary to maximize the forecasting performance of GHI under various cloud climates. 
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