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Abstract 

Since 2005, the Brazilian National Institute of Meteorology (INMET) has developed and operated an extended 

automatic weather station network. There are about 564 stations currently in operation, each one providing hourly 

values of several meteorological parameters, including global solar irradiation (G). This long-term period (LT) of 

data is important to support research and development in the energy production sector, and to assist the development 

of the national energy matrix. However, due to interannual variability of meteorological variables, the use of typical 

meteorological year (TMY) data to represent a long-term dataset is crucial to ensure that risk analysis and simulation 

of solar plants are closer to reality. Thus, this paper presents a methodology to select the 12 representative typical 

meteorological months of each INMET station. The TMY for 441 cities obtained using Sandia method show that the 

process of constructing the TMY was well performed and the TMY dataset (including Brasilia’s TMY) should be 

considered representative. This fact is supported by the analysis using the average KSI index over all stations and 

other statistical parameters. In the end, the evaluate indicated that TMY have a good statistical similarity when 

compared with original climate datasets.   
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1. Introduction 

 
Due to the continental extension of Brazil, the country has extratropical, subtropical and tropical climate features 

(Garreaud et al., 2009). Heterogeneous topography and climatic fluctuations involving atmospheric systems in the 

temporal (interannual and interdecadal) and spatial scale directly impact the amount of energy produced from 

renewable sources in the country. Therefore, the climate characterization is extremely important to indicate favorable 

locations for energy applications and analyze the feasibility of such applications.  

According to Hirsch (2017), the financing of complex systems involving renewable energy with high initial 

investment, such as solar concentrators, requires detailed risk analysis. Such analysis should consider all effects that 

may have an impact on the thermal and economic performance of the plant. To that end, designers use different 

software tools that allow a realistic estimation of energy production and which require meteorological data as input. 

This data can be composed from different sources, such as ground measurements, satellite images and atmospheric 

models. Moreover, only one year of data is usually used in the energy simulation software in order to reduce data 

volume and speed-up the simulation (Cebecauer and Suri, 2015). However, due to the interannual variability of the 

meteorological parameters, it is necessary to use a dataset that represents one typical meteorological year (TMY) to 

avoid the possible extreme variations contained in a particular year or in a long-term period (Wilcox and Marion, 

2008).  

In the literature, although there are many approaches available for the construction of  TMY files, the commonly 

approach used to create such dataset is the Sandia method, proposed by (Hall et al., 1978). This datasets usually 

containing 8760 hourly records of meteorological parameters, that represent climate conditions of a determined 

region (Sawaqed, Zurigat and Al-Hinai, 2005; Yilmaz and Ekmekci, 2017). Originally, this method considered 

hourly data (air temperature, dew point, wind speed and global horizontal solar irradiance) measured over a long 

period of time to generate a single year of data that represents in a stable way the climate conditions of a given 

location. In other words, TMY represents the occurrence and persistence of a given climate pattern for 12 typical 

meteorological months (TMM) of a given location.  

In order to find the TMM, some procedures, such as the Finkelstein-Schafer (FS) statistic (Finkelstein and Schafer, 
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1971), are applied over the hourly dataset. For each month of the dataset, the FS is used to find the minor distance 

between the monthly cumulative distribution function (CDF) of each meteorological parameter and the long-term 

CDF of the respective parameter, identifying twelve candidate months to compose the TMY. Another important 

procedure is the use of weighting factors (WF) on the meteorological parameters. According to Hall et al. (1978), 

the attribution of weights is used to define which meteorological variables will be of greater importance for the 

selection of TMM. Thus, the WF values should be based on the type application for which the TMY is generated, 

and so, for solar energy applications, the maximum weight should be assigned to global solar irradiance (Kalogirou, 

2003). In addition, each change on the WF values or simply add a meteorological variable can generate a new TMY 

version. For example, the TMY2 (Marion and Urban, 1995) is a dataset of 239 TMY based on Sandia method, that 

includes direct normal solar irradiance to the variables list with same weight of the total horizontal solar radiation. 

The last version is an update from TMY2 and is called TMY3 (Wilcox and Marion, 2008). It’s had a more than 1000 

weather data files over USA and was generated by the National Renewable Energy Laboratory (NREL) from surface 

observations, models and satellite data of the National Solar Radiation Data Base (Sengupta et al., 2018).  

Other studies have been proposed to create new TMY, which propose new methodologies or modify the Sandia 

method in order to find the best weather dataset for different energy systems. For example, a TMY known as Design 

Reference Year (DRY) was proposed by Lund and Eidorff (1981) for Europe, and updated by Lund (1995). The 

DRY contains additional parameters such as diffuse horizontal irradiance (Gd), illuminance, longwave radiation and 

weather forecast data. Festa and Ratto (1993) modified the DRY to form a weather file to Ispra, Italy. They replaced 

the FS statistic with a Kolmogorov-Smirnov statistic, and used the relative frequency distribution to compare single 

month versus long-term frequency distribution of all the months. The study of Pissimanis et al. (1988) used the 

Sandia method to generate a TMY weather file to Athens. However, the authors modified the procedure to find five 

candidate years to form TMY by using the root mean square difference (RMSD) as primary selection criterion to 

hourly global horizontal irradiation. Later, also for Athens, Argiriou et al. (1999) produced seventeen weather files 

from different methodologies and compared the results to show that the best performing TMY was generated by a 

modified version of the Festa Ratto method, with an additional score system applied to the month with the minimum 

RMSD. Moreover, Cebecauer and Suri (2015) discussed the characteristics of TMY generation algorithms and 

conclude that simple methods to form TMY may not preserve the behavior of G and Gb when is considered specific 

solar energy technology. Cebecauer and Suri (2015) also suggest that to improve the financial and performance risks 

assessment for solar systems or electrical power output which should be consider a worst-case climate scenario. Due 

this, the authors defined a TMY construction considering a year with less-favorable solar resource (P90) and a year 

average climate (P50). In other words, P50, P90 or PXX meaning is a 50%, 90% or XX% of the probability of 

exceedance of G and/or Gb values, respectively. Therefore, P50 and p90 TMY should more appropriate for evaluate 

of CSP and CPV projects.  

Thus, the overarching aim of this work is to present the TMY generation method for the INMET network distributed 

over Brazil. For this the TMY3 method was applied over 564 INMET stations, and the results were compared with 

the long-term average of G and Gb. 

2. Data and method  

2.1 Weather data 

The meteorological data were obtained from The Brazilian National Institute of Meteorology (INMET), which is recognized as the 

National Weather Service and is linked to the World Meteorology Organization. Since 2005, the INMET has installed and operated 

about 564 Automatic Weather Stations (AWS) along Brazil (Moura, Tadeu and Fortes, 2016), as depicted on  
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Fig. 1. Although the AWS measure global horizontal irradiance and auxiliary meteorological variables (air 

temperature, relative humidity, wind direction and wind speed, precipitation and barometric pressure), for this work 

only the following meteorological parameters were considered: mean, maximum and minimum air temperature, 

maximum and mean wind speed, mean, maximum and minimum relative humidity, total daily global horizontal and 

direct normal irradiation. The time-series have hourly temporal resolution and about 13 years (2005-2018) of data. 

However, each station was installed in different dates, being operative during different periods of time, or being 

offline for a long time due to operational problems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Locations of the 564 INMET meteorological stations distributed over Brazil 

Table 1 shows the specifications of the sensors installed in the AWS network and used to measure the meteorological 

parameters considered in this study. The AWS were controlled by the QML201 datalogger (Vaisala company) and 

data were measured at 5 seconds intervals, averaged every 1 minute and temporarily stored. Then hourly average 

values were calculated and recorded, except for G, for which hourly totals were stored.  

Tab. 1: Specifications of sensors installed in the AWS of the INMET network 

Parameter Sensor Company Model Accuracy Range 

G CMP6 Kipp & Zonen CMP 6 ± 20 W/m² 0 – 2000 W/m² 

Relative humidity HUMICAP180  Vaisala HMP155 ± 1 % 0 – 100 % 

Wind speed Windsonic Gill 1405-PK-021 ± 2 % 0 – 60 m/s 

Air temperature PT-100 Vaisala QMT103  ±0.1 °C - 50 – 60 °C 

 

2.2 Direct normal irradiance estimate 

As neither direct normal irradiance (Gb) or diffuse horizontal irradiance (Gd) were measured in the network, the BRL-

Brazil model (Lemos et al., 2017) was used to estimate the diffuse horizontal irradiance (Gd) and thus obtain the Gb. 

The BRL-Brazil model is an adjustment of the BRL separation model for Brazilian data, developed using measured 

G, Gb and Gd data from INPE (Brazilian Institute for Space Research) weather stations. The model estimates the 

diffuse fraction of solar irradiance using a sigmoid function, which takes as inputs the clearness index at the evaluated 

hour, the solar altitude angle, the apparent solar time, the daily clearness index and a persistence factor, defined as 

the average between the clearness index in the preceding and the following hours. The model has been shown to 

deliver better irradiance estimates in Brazil than other hourly separation models widely mentioned in the technical 

literature. 
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2.3 Quality control and gap filling 

In order to ensure data quality, automated tests were performed on time-series obtained from the INMET network. 

The quality control (QC) procedure employed for solar radiation is based in the quality checks proposed by Long 

and Dutton (2010). The procedure created by these authors is recommended by Baseline Surface Radiation Network 

(BSRN) (Driemel et al., 2018) and was developed to be an efficient procedure for regularly controlling operation of 

each automatic solar radiation station of the BSRN. Since Gb is estimated by G and Gd, all solar radiation data, in 

W/m², was discarded if G did not fulfill the following conditions: 

𝐺𝐻𝐼 > −2                                                                     (eq.  1) 

𝐺𝐻𝐼 < 1.20 𝐸0𝑛 cos1.2 𝜃𝑧 + 50   (eq.  2) 

𝐺𝐻𝐼 < 1.50 𝐸0𝑛 cos1.2 𝜃𝑧 + 100                                  (eq.  3) 

where 𝜃𝑧 is the solar zenith angle, in degrees, and 𝐸0𝑛 is the solar constant (1367 W/m²) adjusted for Earth-Sun 

distance along the year. 

A quality control procedure was also applied on the auxiliary meteorological, where suspect variables were removed 

by applying the criteria proposed by Fiebrich et al. (2010). Temperature data (𝑇, in °C) must lay inside a range that 

goes from -30°C to 50°C, and if two consecutive temperature values are equal, the values are discarded. Similar 

conditions apply to relative humidity (𝑅𝐻, in %) and wind speed (𝑊𝑆, in m/s). Those conditions are summarized by 

the following equations: 

𝑇 > −30 and 𝑇 < 50 ;  𝑇𝑡 ≠ 𝑇𝑡+1     (eq.  4) 

𝑅𝐻 > 3 and 𝑅𝐻 < 103 ;  𝑅𝐻𝑡 ≠ 𝑅𝐻𝑡+6  (eq.  5) 

𝑊𝑆 > 0 and 𝑊𝑆 < 40 ;  𝑊𝑆𝑡 ≠ 𝑊𝑆𝑡+10  (eq.  6) 

After applying the quality control, the time-series of each station contains “gaps” – missing data – that need to be 

filled before creating the TMY. Therefore, these missing data were identified and divided in three groups, according 

to the length of the gaps. The first group contemplates gaps length between 1 and 3 hours, which were filled by a 

linear interpolation, as proposed by Wilcox and Marion (2008). The second group considered gaps between 3 and 24 

hours, to preserve the diurnal cycle of the variables and fill larger gaps still contained within 24 hours. To this group, 

each hourly gap was fulfilled using the mean between the values of the previous and next day for that hour, as 

suggested by Liston and Elder (2006).  

The last group contained gaps greater than 24 hours, which were filled using ERA5 reanalysis data from ECMWF 

(European Centre for Medium-Range Weather Forecasts). The ERA5 consists in numerical methods combined with 

historical observations to estimate the state of the atmosphere over the globe with fine spatial grid and high time 

resolution, 31 km and hourly, respectively (ECMWF, 2017). According to Urraca et al. (2018), ERA5 has shown 

great potential to estimate variables, such as global horizontal irradiance, and for this reason it was considered for 

filling of large gaps. The data were extracted from the grid point closest to the INMET station location, given by its 

latitude and longitude.  

2.4 TMY development procedure 

The TMY3 algorithm consists in selecting, from different years, 12 individual months, which are concatenated in 

order to generate a typical meteorological year. For example, in Brasilia station there are 14 years of data. Therefore, 

all 14 Januarys are examined and one of them is chosen as the typical January. The same process is done for the other 

months. Since the concatenation of typical months can cause abrupt discontinuities at month interfaces, a smoothing 

of 6 hours on each side is recommended. In this work, the method used for smoothing is a moving average. Below, 

the steps of the Sandia method are detailed using Brasilia station as example. 

Step 1: Hourly data are used to produce daily parameters for the variables of interest. Short-term Cumulative 

Distribution Functions (CDFs) are then generated for the individual months, using the generated daily data. For 

example, in Brasilia there are 14 short-term CDFs generated for each of the 12 months. Additionally, long-terms 

CDFs are generated using the daily data from all years for the 12 months. Following the previous example, the long-

term CDF for January is generated from the 14 Januarys, concatenated together. The CDF generation process is 

repeated for each variable used in the TMY algorithm. Therefore, 12 long-term CDFs are produced for each variable. 

Since there are 10 meteorological variables of interest, 120 long-term CDFs and 1680 short-term CDFs are generated 

in total.  
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Step 2: Each short-term CDF is compared against the long-term CDFs using the Finkelstein–Schafer (FS) statistic in 

order to find 5 candidate months for each of month of the year. This comparison is done using the following 

expression: 

𝐹𝑆𝑥 =  
1

𝑁
∑ |𝐶𝐷𝐹𝑚(𝑥𝑖) − 𝐶𝐷𝐹𝑚,𝑦(𝑥𝑖)|𝑁

𝑖=1       (eq.  7) 

where 𝑥 is the meteorological variable, 𝑁 is the number of days of the month of interest, 𝐶𝐷𝐹𝑚 is the long- term CDF 

for the month 𝑚 and 𝐶𝐷𝐹𝑚,𝑦 is the short-term CDF for the year 𝑦 and month 𝑚. The weighted sums (WS) indicator 

used to select the five candidates’ months is calculated using the equation that follows: 

𝑊𝑆 =  ∑ 𝑤𝑥𝐹𝑆𝑥
𝑛
𝑥=1      (eq.  8) 

where 𝑛 is the number of variables, 𝑤𝑥 is the weight assigned to each variable 𝑥, which are presented in Tab. 2. The 

weights are assigned in this work according to the NSRDB TMY2 and TMY3 (Wilcox and Marion, 2008), using the 

relative humidity instead of the dew point. 

Tab. 2: The weighting parameters (𝒘𝒙) used by Sandia method and in this work. 

 Sandia Method  This work 

Parameter Weight Parameter Weight 

Max dry bulb temperature 1/24 Max air temperature 1/20 

Min dry bulb temperature 1/24 Min air temperature 1/20 

Mean dry bulb temperature 2/24 Mean air temperature 2/20 

Max dew point 1/24 Max relative humidity 1/20 

Min dew point 1/24 Min relative humidity 1/20 

Mean dew point 2/24 Mean relative humidity 2/20 

Max wind speed 2/24 Max wind speed 1/20 

Mean wind speed 2/24 Mean wind speed 1/20 

Global horizontal irradiation 12/24 Global horizontal irradiation 5/20 

Direct normal irradiation Not used Direct normal irradiation 5/20 

 

For each of the 12 months, five candidate months are obtained. The candidates are the ones with the lowest weighted 

sums, representing the closeness to the long-term. The Fig. 2 shows the worst, the best, the chosen and the long-term 

CDF for total global horizontal irradiation of April. It is important to note that because of the weighs and the next 

steps of the algorithms, the best CDF (the one with the lowest FS value) is not necessary the one chosen to compose 

the final TMY. 

 

(a) 

 

(b) 

Fig. 2: Comparison of the short- and long-term CDF’s for April months, for Brasilia, considering total daily G (a) and Gb (b)  

Step 3 The absolute difference between the short-term (ST) mean and long-term (LT) mean are calculated in respect 

to temperature and total daily G for the five candidate months. The process is repeated considering not the mean, but 

the median, calculating another two differences. The candidates are then ranked in ascending order of their maximum 
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absolute difference. Note that four differences are calculated for each candidate, two for temperature and two for 

total daily G. Tab. 3 summarizes the absolute differences for the candidate years of April. 

Tab. 3: Absolute differences and ranking for April 

Step 4: The persistence of mean temperature and total daily G are evaluated by calculating the frequency and the 

length of runs above and below a fixed parameter for each candidate month. For temperature, determine the frequency 

(number of runs) and runs’ length above the 67th percentile and below the 33rd percentile, which represent respectively 

consecutive warm and cool days. For G, only the frequency and runs’ length below the 33rd percentile is evaluated, 

representing consecutive low-radiation days. Based on the persistence evaluation, a process of elimination occurs for 

each group of five candidates, in order to exclude months under extreme conditions. Tab. 4 shows the runs obtained 

for fist candidate year of Abril. The bold numbers in the temperature and total G indicate the values, below which 

the values under the 33rd percentile are found. In this case, runs above the 67th percentile for mean temperature were 

not found. The process excludes the months with most runs and the months with zero runs, if any is found. After the 

exclusion, the first month is selected from remaining months, ordered as the previous step. The selected month is the 

chosen month for the TMY. Repeating the process to the other set of five candidate, twelve months are selected and 

concatenated, in order to generate one typical meteorological year.  

 

Tab. 4: Runs obtained for the mean temperature and total daily G for April’s first candidate 

Day  Mean temperature (°C) Day  Total daily G (Wh/m²) 

30 
run length = 2 

18,550 3  1577,889 

29 18,550 23 
run length = 2 

2900,917 

3  19,783 24 3240,722 

24 
run length = 2 

19,958 8  3518,083 

23 20,000 16  4014,028 

28  20,327 25  4379,25 

25 
run length = 2 

20,519 12  4489,25 

26 20,773 22  4638,056 

16  20,871 21  4738,806 

4  20,942 9  4801,972 

27  21,008 6  4816,667 

12  21,229 27  4850,194 

 

2.5 Statistical analysis 

In order to evaluate if the generated TMY represent an annual typical behavior of G and Gb, two statistical analysis 

were performed. Firstly, the monthly averages calculated over the whole period (multi-years) were compared with 

monthly values obtained from TMY, which were done using the mean absolute error (MAE), mean bias error (MBE) 

and root mean square error (RMSE), defined as follows:  

MBE = 
∑ (𝑇𝑀𝑌𝑖−𝐿𝑇𝑖)𝑛

𝑖=1

𝑛
      (eq.  9) 

MAE = 
∑ |𝑇𝑀𝑌𝑖−𝐿𝑇𝑖|𝑛

𝑖=1

𝑛
      (eq.  10) 

RMSE = √
∑ (𝑇𝑀𝑌𝑖−𝐿𝑇𝑖)2𝑛

𝑖=1

𝑛
     (eq.  11) 

where 𝑇𝑀𝑌𝑖 and 𝐿𝑇𝑖 are the TMY mean and long-term mean, respectively, of the variable of interest for month 𝑖 and 

𝑛 is the number of months. For MBE with a positive value indicates overestimation and a negative value represent 

 | Mean ST – Mean LT | | Median ST – Median LT |  

Candidate years Temperature G Temperature G 
Maximum 

difference 

Sorted maximum 

differences 

10 0.2033 28.11 6.25×10-8 9.2555 28.11 28.11 

3 0.3275 120.62 0.6188 63.950 120.62 120.62 

4 0.1854 157.98 0.3156 401.84 401.84 238.51 

8 0.5196 235.72 0.5708 291.14 291.14 238.51 

13 0.7625 238.51 0.8229 69.022 238.51 401.84 
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an underestimation of the calculated values while MAE shows the absolute difference between 𝑇𝑀𝑌𝑖 and 𝐿𝑇𝑖. Thus, 

a value closest to zero is desirable because indicates a minor error. RMSE provides information about the global 

error by comparison between 𝑇𝑀𝑌𝑖 and 𝐿𝑇𝑖. A large value of RMSE indicates a wide deviation between 𝑇𝑀𝑌𝑖 and 

𝐿𝑇𝑖 while the best performance of the 𝑇𝑀𝑌𝑖 regarding absolute deviation occurs for lower RMSE values. 

The second statistical analysis uses the Kolmogorov-Smirnov (KS) to evaluate the TMY’s representativeness. The 

KS, that is a non-parametric and distribution free test, was proposed by Massey (1951) to compare the maximum 

difference between two cumulative (or probability) density distribution. Several studies have evaluated TMY using 

the KS test. For example, Huld et al. (2018) compared air temperature from three different datasets (measured data, 

TMY and TMY’s reanalysis). The integrated difference between the CDF of two datasets is called KSI (Kolmogorov-

Smirnov Integrated) and is a measure of dissimilarity between these two distributions. Thus, KS and KSI were 

calculated for G and Gb to determinate the similitude between the CDF from the TMY and the values on the long-

term CDF, considering the. The KS index is calculated as follows: 

𝑑𝐾𝑆 = max(|𝐶𝐷𝐹𝑇𝑀𝑌(𝑥𝑖) − 𝐶𝐷𝐹𝐿𝑇(𝑥𝑖)|)   (eq.  12)  

where, 𝑑𝐾𝑆 is the maximum value of the absolute difference between  𝐶𝐷𝐹𝑇𝑀𝑌(𝑥𝑖) and 𝐶𝐷𝐹𝐿𝑇(𝑥𝑖) with i = 1…n and 

n is the number of observations.  According to Massey (1951) for confidence level of 99% , the critical value CV is 

defined as: 

𝐶𝑉 =
1.63

√𝑛𝑒
                                                                       (eq.  13) 

the effective number of samples 𝑛𝑒 is defined by Nielsen et al. (2017): 

𝑛𝑒 =  
𝑛𝐿𝑇

𝑦

𝑛𝐿𝑇
𝑦

+1
𝑛𝑇𝑀𝑌                                             (eq.  14) 

where 𝑛𝐿𝑇
𝑦

 is the number of years of the long-term and 𝑛𝑇𝑀𝑌 is the number of samples of TMY. The KS ratio is 

expressed in percentage as the ratio of 𝑑𝐾𝑆 to its critical value as follows: 

𝐾𝑆 =  
𝑑𝐾𝑆

𝐶𝑉
 × 100                                             (eq.  15) 

According to Espinar et al. (2009), if 𝑑𝐾𝑆 is lower than a critical value CV, then TMY and long-term datasets have 

a similar distribution and statistically agree. In other words, the null hypothesis stating that the two CDF are coming 

from the same distribution is accepted. On the other hand, the KSI quantifies the difference between the two CDFs 

over the whole data set, not just considering the maximum absolute difference. This indicator is defined as follows:                                 

𝐾𝑆𝐼 =  
∫ 𝑑𝐾𝑆(𝑥)𝑑𝑥

𝑥𝑚𝑎𝑥
𝑥𝑚𝑖𝑛

𝐶𝑉(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
                                                    (eq.  16) 

3. Results 

The first exploratory analysis of the 564 AWS time-series from INMET Brazil network showed that there were 

approximately 9% of missing data over the whole database that includes all meteorological variables. Fig. 3a shows 

the classification of gap lengths of the missing data found before applying the quality control procedure.  

It was observed that approximately 60% of the missing data (9 % of all data) was found on G measurements, while 

the all auxiliary meteorological variables represented the remaining amount (40 %). The larger missing data on the 

G measurements can be explained by with higher sensitivity of pyranometer, regarding the presence of excessive 

dust in the air and that are deposited over the sensors, when compared to other sensors. It also can be noted that there 

were no gaps greater than 24 hours on G measurements due to replace by zero for nighttime gaps. 

The quality control procedure removed an additional 7 % of data that were classified as erroneous or suspect data. 

Therefore, the dataset contained 16 % of missing data, respective to 9 % before the QC and 7 % of data removed by 

que QC. Fig. 3b shows that, after the QC was applied, gaps between 1 and 3 hours represented 88% of the missing 

data, which were filled using a linear interpolation method. Moreover, 11,4% of the gaps were filled with mean 

between the previous and next day, since its lengths were between 3 and 24 hours. Consequently, more than 99% of 

the gaps were filled with statistical methods. On the other hand, larger gaps (greater than 1 day), which represented 

approximately 0,5% of set of gaps, were then filled with ERA5 data. Therefore, all gaps were successively filled. 
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(a) 

 

(b) 

Fig. 3: Length of missing data before (a) and after (b) data quality control for INMET – BRAZIL network 

 

To generate the TMY using Sandia method for 564 weather stations from INMET Brazil network, the procedures 

described in 2.5 section were applied. The first step consists of selecting only station that have more than 5 year of 

data, as considered by the Sandia method. This results that 441 of 564 stations fulfill this requirement and could be 

used to generate the TMY files.   

To assess the 441 generate TMY files the MAE, MBE and RMSE between the values of the monthly global horizontal 

and monthly direct normal irradiance obtained from the TMY and long-term data were calculated and depicted in 

Fig. 4 and Fig. 5. The individual biases calculated for each station indicate that there are more positive 

(overestimation) values for both solar variables. Regarding the magnitude of the MAE, 110 Wh/m² on average over 

all stations was recorded for G and 230 Wh/m² for Gb.  

(a) (b) 

Fig. 4: Mean bias error (MBE) for monthly G (a) and Gb (b) from TMY at each INMET Brazil station. The red (yellow) color indicate 

positive (negative) bias and the magnitude of the error is represented by size circle  

 

The results for RMSE between TMY and LT indicate that regions with high variability of climate tend to maximum 

RMSE. For example, the South and Southeastern of Brazil are influence by mesoscale and synoptic atmospheric 

systems and natural solar cycles (solar annual variability due four seasons well defined along whole year). The 

stations located in driest area of the Northeastern of Brazil where the total daily G is maximum, for instance, has a 

low RMSE. In other hand, stations operating over Northeastern of Brazil, but it's has a medium or high RMSE is due 

to the existence of dry and wet season of the region. According to Luiz et al. (2018) the dry season is due to the 

influence of Walker circulation cell while the wet season occur due to precipitation caused by Intertropical 

Convergence Zone present between February and April. The same can be seen for Gb (Fig. 5b), but an additional 

observation is that for all regions in generally there are smaller values of RMSE over Brazil when compared with G 

values. The reasons for this can be associated with the fact that the TMY monthly average for Gb is close to the long-

term average when compared with TMY monthly average and LT for G. 
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(a) (b) 

Fig. 5: Root mean square error (RMSE) for monthly G (a) and Gb (b) from TMY at each INMET Brazil station is represented by size 

circle. The irradiance is represented by gradient of colors 

 

The results for KSI are displayed in Erro! Fonte de referência não encontrada. and provide information on the 

similitude between the CDF of the TMY and long term data of each INMET station. The smaller KSI values indicate 

that the TMY generated from the Sandia method is close to the long-term behavior, while larger values of KSI 

indicates that the TMY CDF’s deviates of the long-term data. The magnitude of the KSI values found in this paper 

is similar to that presented by Espinar et al. (2009). KSI values was below 33% for G and 44% for Gb and the average 

magnitude over all stations was 14% (G) and 18% (Gb). Furthermore, higher G and Gb were found mainly in the 

northeastern part of Brazil where the larger KSI values are also concentrated. In this study, the higher distance 

between the CDF (higher KSI values) can be explained by the high year-on-year variations of the meteorological 

variables used to form the TMY. In other words, in regions where the weather data varied significantly from year to 

year were observed large KSI values. On the other hand, the south region of Brazil is where generally the smallest 

values of G, Gb and KSI can be found.  

 

(a) (b) 

Fig. 6: Kolmogorov-Smirnov Integrated (KSI) for monthly G (a) and Gb (b) from TMY at each INMET Brazil station is represented 

by size circle. The irradiance is represented by gradient of colors. 
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Finally, an analysis was made for Brasilia’s TMY. In this work, the Sandia method was applied to 14 years of data 

from Brasilia and Fig. 7a presents monthly average values for G and Fig. 7b for Gb. The curves in each figure are the 

TMY (blue), the 14 years long-term average (green) and the monthly average to each year (black solid line). It is 

possible to note that both the TMY and the long-term curves reproduce the trend of the monthly variability shown 

by each year of the data, although for some months the TMY curve overestimates with relatively larger deviations 

from long-term average. However, the proximity between TMY and long-term values is not mandatory and depends 

on the cumulative probability distribution function obtained for the variable under analysis.  

 

 

(a) 

 

(b) 

Fig. 7: Average monthly (a) global horizontal irradiance and (b) direct normal irradiance for Brasília city. The blue line represents 

the TMY monthly average, green line the long-term monthly average and the distribution of monthly averages of the multi-year series 

are described by black solid lines 

 

Fig. 8 presents a comparison between the TMY and long-term CDFs for city of Brasilia. The selection of the most 

appropriate month (TMM) to form the TMY shows that there is a good agreement between TMY CDF and LT CDF 

for both solar variables with a minimum TMY deviation from the long-term CDF, mainly for smaller G and Gb 

values. This result was expected because the Sandia method-TMY3 was designed to preserve climate statistics 

especially for G and Gb where the maximum weights are assigned to these variables. 

 

 

(a) 

 

(b) 

Fig. 8: TMY and long-term CDFs comparison for G (a) and Gb (b) for Brasilia station 
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4. Conclusions 

 The increased use of clean energy sources in Brazil indicates that there is still a great potential for solar energy 

applications in the country. In this context, in order to provide a weather files to use in computer simulation for 

design and research on buildings and energy systems we have presented the generation of the typical meteorological 

year using data from the largest weather station network in Brazil, operated by INMET. In developing TMY was 

considered Sandia Method that is widely adopted to establish typical weather files. Now, Brazil has a database with 

TMY for 441 cities, generated from measured data (including Gb estimated), to support solar studies on continental 

scale. The monthly profiles of the weather data were compared to the long-term weather data using statistical analysis 

such as the MAE, MBE, RMSE and KSI. The results show that the process of constructing the TMY was well 

performed and the TMY dataset (including Brasilia’s TMY) should be considered representative. For example, the 

analysis of the average KSI index over all stations (14% for G and 18% for Gb) indicated that TMY have a good 

statistical similarity when compared with original climate datasets. Those interested may contact the authors for an 

electronic version of Brazil-TMY.  
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