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Abstract 

FREESCOO is an innovative Desiccant Evaporative Cooling air conditioning system designed for ventilation, 

cooling, dehumidification and heating of buildings in residential and tertiary sectors. This paper presents the third 

generation of the façade version, which will be tested on field in Milan (Italy) within the Merezzate+ project 

supported by Climate-KIC. The adsorption bed used by the system is a finned heat exchanger packed with silica 

gel grains, which allows simultaneous dehumidification and cooling of the process air. The direct evaporative 

cooling process, operated downstream to the dehumidification, is realized using a rotary plate humidifier. The 

regeneration of the adsorption bed is done through low-grade heat around 60 °C and the only electrical 

consumption is for the fans and water recirculation. The unit has been designed in order to be integrated in the 

loggia of small apartments of roughly 47 m2. The result is a Seasonal Energy Efficiency Ratio around 10.7. From 

the primary energy savings perspective with respect to a conventional air conditioning, they can be up to 36% if 

the electricity generation is not renewable heavy or the district heating has a renewable energy quota. 

Desiccant Evaporative Cooling, air-conditioning, adsorption, thermal driven  

 

1. Introduction 

Building air conditioning represents a large contribution on the overall building sector energy consumption, in 

particular in Mediterranean countries (European Environment Agency 2016, European Environment Agency 

2016b). 

Historically, Desiccant Evaporative Cooling (DEC) systems based on an open thermodynamic cycle (Daou et al., 

2006) were studied coupled with available solar thermal energy, thus the name “solar cooling”. The DEC name 

derives from the two processes at the basis of the thermodynamic cycle. The first one is the air dehumidification 

process without reaching the dew point temperature, but by means of moisture sorption. The second type of process 

is the direct and/or indirect evaporative cooling. Thermodynamic cycles of this type can be implemented in 

refrigeration units based on desiccant wheels or solid or liquid beds. 

These refrigeration units require as inputs: water for the evaporative cooling, electricity to run the air fans and 

thermal energy for the sorption material regeneration. The regeneration energy is used to release the trapped water 

vapor, allowing the restart of the sorption cycle. The required temperature for the regeneration process changes 

wildly with the specific material chosen. In the case of DEC systems for solar cooling, one of the most used 

sorption materials is Silica-Gel, which can be regenerated even with relatively low-grade heat (60°C). 

This work presents the analysis of an innovative air-conditioning system based on a DEC cycle. Specifically, in 

the case study here presented is coupled with a 4th generation district heating system (Lake et al.,2017 e Lund et 

al. 2014), but it could work also by being coupled with a solar thermal field. The system is compact, so suitable 

for being installed on a building façade. The nominal cooling power is around 2.2 kW. Therefore, it can be used 
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for the air conditioning of small apartments, like the 47 m2 two rooms apartment here considered as case study. 

One of the key aspects of this concept is the design of the adsorption beds, which allow to increase the amount of 

sorption material, while reducing the regeneration temperature (Finocchiaro et al., 2016). The main features of the 

system are: use of water as refrigerant; use of a cooled adsorption bed; use of high efficiency evaporative cooling; 

use of low grade heat (60°C); overall high electrical efficiency (EER>9); being compact and plug & play. 

The work here presented is linked to the project “Merezzate+: a living lab for the integration of clean energy and 

sustainable mobility” financed by EIT Climate-KIC. The project aims at developing a new city model, based on 

the concept of “smart urban environment”. The proposed approach focuses on the city as a district, dealing with 

sustainability issues from a social, environmental and economic point of view in a comprehensive way taking 

actions on energy, mobility and circular economy, which are among the most impactful sectors on climate change. 

The approach will be demonstrated in the new district “REDO Smart District” in Cascina Merezzate Street (Milan, 

Italy). This site will become a “living lab” for the development, the feasibility and the implementation of an 

inclusive district that will be based on circular economy and low CO2 emissions. The project will include the 

construction of 800 apartments, 600 of which provided by the project partner InvestiRE SGR. 

In aforementioned project, among the proposed solutions for clean heating and cooling, three FREESCOO façade 

3.0 prototype units are designed, prototyped and monitored on field. FREESCOO façade is synergistic with the 

adoption of a low temperature 4th generation district heating system, which allows the integration of renewable 

energy sources like solar thermal fields thanks to the low temperature required. 

The manuscript is composed by two main sections, at first the analysis of the cooling energy required by the case 

study apartment is presented and then the coupling of the apartment with an ad hoc dynamic TRNSYS model of 

the FREESCOO façade 3.0 is discussed. 

2. Apartment energy needs assessment 

In this section the input and output results from the dynamic simulation using TRNSYS 18 are reported. 

2.1 Climate analysis 

The weather file used for the simulation is a Typical Meteorological Year Type 2 and is based on the available 

Meteonorm data for Milano Linate (id 160800). In Figure 1 and 2 the temperature and absolute humidity frequency 

and cumulated frequency are shown for the period between May and September. The figures show that for 30% 

of the considered period the external temperature is above 22 °C and the external humidity is above 12 g/kg. The 

weather analysis highlights the need for cooling and dehumidification. 

 

 

Fig. 1: External dry bulb temperature, monthly frequency (bars) and cumulative frequency (line) for the period May-September 
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Fig. 2: Absolute humidity, monthly frequency (bars) and cumulated frequency (line) for the period May-September 

2.2 Apartment simulation model 

The case study apartment is a two rooms apartment at the fourth floor of the apartment building labeled E06. The 

apartment has only one façade towards the external environment with a Southeast orientation. The apartment 

adjoins two other apartments on the Southwest and Northeast sides and with the common area on the North-West 

side, where the stairs and elevators are located. 

The apartment was modeled using the dynamic simulation software TRNSYS 18. Figure 3 shows the modelled 

thermal zones and their boundary conditions. The apartment has a total area of 46.9 m2, which is divided in living 

room (23.4 m2) and bedroom (23.5 m2). Furthermore, a balcony (loggia) is present and considered as a solar 

shading by the model. The boundaries with the other apartments are assumed adiabatic, since the air temperature 

can be assumed similar. 

 

Fig. 3: Thermal zones scheme and boundary conditions 

The apartment building E07 in the surrounding of E06 was also modeled to account for the shading on the 

apartment under analysis. 
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The U-Value (U) of the building envelope components are reported in Table 1. They derive from the “REDO 

Smart District Milano” actual project. 

Tab. 1: Thermal transmittance (U) of the building envelope components 

Layer U (W/m2/K) 

External wall 0.215 

Common area wall 0.623 

Apartments dividing wall 0.254 

Apartment dividing wall 0.470 

Ceiling between apartments 0.443 

Common area floor 0.307 

Window 80x125+110 1.360 

Window 250x235 1.360 

 

60 W/person were considered for the internal gains due to people present in the apartment (33% convective and 

60% radiative heat transfer) and 40 W/person of latent heat gain. Two occupation profiles were identified, one for 

the living room and one for the bedroom according to (Dott et al., 2013). 

The internal gains due to appliances were also considered with a peak rate of 4.39 W/m2 according to (Dott et al., 

2013), 2/3 of the appliances gains were considered in the living room and 1/3 in the bedroom. Therefore, the final 

peak heat gains are respectively 5.87 W/m2 for the living room and 2.92 W/m2 for the bedroom. The profile trend 

between the two thermal zones is similar, therefore only the living room time series is shown in Figure 4. 

 

Fig. 4: Living room internal gain profile 

The model also accounts for air infiltration and natural ventilation. The air infiltration is set constantly at 0.05 

vol/h (volume air change per hour), while the natural ventilation is set at 0.25 vol/h at the external temperature 

and humidity condition. 

To assess the energy needs of the apartment and idealized heating and cooling system was setup. It is able to track 

the temperature and humidity set-points in the apartment. 

The Italian heating season is defined by DPR 26/08/1993 n. 412, depending on the climate area. Milan is located 

in the Climatic zone E, meaning that the heating season starts on the 15th of October and ends on the 15th of April. 

The remaining part of the year is considered as cooling season. 
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For the heating season, the temperature set-point is 20 °C from 7 a.m. to 9 p.m. and a setback temperature of 16 

°C in the remaining hours. For the cooling season, the temperature set-point is kept constant at 26 °C for the whole 

day, while the relative humidity set-point is 50%. 

2.3 Results 

The overall sensible heating demand resulting from the simulation of the apartment is 570 kWh (12.15 kWh/m2), 

the monthly distribution is shown in Figure 5 in orange color (Qsens,heat_25). The overall sensible cooling 

demand is 845 kWh (18 kWh/m2) shown in color blue in Figure 5 (Qsens,cool_25), while the latent cooling 

demand due to dehumidification is 273 kWh (5.83 kWh/m2) shown in color grey in Figure 5 (Qdehum_25). In 

Figure 6 and 7 are reported the heating and cooling demands frequency (bars) and cumulated frequency (lines). 

 

Fig. 5: Apartment monthly energy needs 

 

Fig. 6: Sensible heating load (Q_sens,heat_25) frequency (bars) and cumulative frequency (line) 
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Fig. 7: Overall cooling load (Q_tot,cool_25), sensible and latent, frequency (bar) and cumulative frequency (line) 

3. Overall system description and TRNSYS model 

From the technological point of view, the new concept FREESCOO façade 3.0 improves on the older version 

(Finocchiaro et al., 2016b e Beccali et al. 2018), because it can also work in closed-loop mode, recirculating all 

the process air, similarly to a conventional split air conditioning system. This allows the transfer of all the cooling 

power produced to the internal environment, reducing or neglecting the energy necessary for the fresh air 

treatment. Indeed, the fresh airflow rate can be adjusted and it is not coupled with the operation of the 

thermodynamic cycle, while in traditional DEC systems due to the open cycle approach, this is not the case. 

The system is ductable and characterized by a limited footprint, allowing it to be installed also on small balconies. 

In Figure 8, a visual rendering of the installation is shown. 

 

Fig. 8: 3D rendering of the FREESCOO façade 3.0 for vertical wall installation in the Merezzate+ case study 

About the processes inside the machine, Figure 8 and the following sentences describe it. 
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Fig. 9: Freescoo 3.0 summer cycle 

The process air passes in the cooled adsorption bed for its dehumidification and direct evaporative cooling process 

(points 3-4 in Fig.8). Thanks to the exchange of heat with the outside air, cooled as well by a direct evaporative 

cooling process,  the adsorption heat can be rejected to the external ambient (points 0-7 in Fig.9). 

The coupling of dehumidification and cooling steps allows increasing the energy performance of the whole process 

in comparison to standard desiccant rotor based DEC cycles. 

When the adsorbent material is saturated with moisture, this must be "reactivated" by means of an heat input. For 

the regeneration of the adsorption material, the cycle is now open to the ambient. A flow rate of ambient air (point 

0 in the right box of Fig.8) is drawn through a heating coil (point 8) and then through the adsorption beds for its 

regeneration. 

Two adsorbent beds are included in the Freescoo unit to ensure continuous operation of the system. While the first 

one is working to dehumidify the air, the other one is regenerated using heat from the heat distribution system. A 

network of air dumpers provides the automatic commutation between the two adsorption beds to guarantee a 

continuous process.  

In case of need of ventilation, an adequate air change can be guaranteed opening an air damper that permits to take 

part of the air form the ambient, which follows the dehumidification process and then enters the conditioned room. 

This additional small flow rate (50-70 m3/h) exfiltrates through windows and doors of the building. 

The nominal heating power of the system is 2 kW, while the nominal cooling power is 2.2 kW, the airflow rate 

range is between 0 and 700 m3/h. The maximum thermal power need is 2.7 kW for regeneration purposes and 2 

kW for heating, while the maximum electric power consumption is around 200 W. The ventilation flow rate can 

also be adjusted between 0 and 150 m3/h.  

In order to assess the seasonal performance of FREESCOO, a dynamic simulation model of the concept was 

realized through TRNSYS by coupling it with the apartment model. The overall system model is composed by the 

following blocks: 

• Weather data reader and solar geometry calculator; 

• District heating network; 

• Apartment model; 

• FREESCOO façade 3.0 (adsorption cooled beds and indirect evaporative cooler, fans, water circulators); 

• PID control of cooling power via air flow rate regulation. 

For the models of the adsorption cooled beds and the direct evaporative cooling process, semi-empirical based 

models have been derived starting from experimental data taken from prototypes tested in lab. In Table 2, the main 
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parameters that characterize the simulations are shown. In particular, the model used to simulate the adsorption 

bed is based on iso-thermal lines typical for regular density silica gel and other empirical parameters taking into 

account the thermal and moisture exchange effectiveness.  

Tab. 2: TRNSYS simulation parameters and hypothesis  

Description Value 

Weather file  Milano Linate .tm2 

Time step  0.25 h 

Cooling season 1st May to 30th September  

FREESCOO on/off 24 h/g 

Apartment cooling set-point 26 °C  

Fresh air flow rate 120 m3/h 

Volume of handled air 1 vol/h 

Cooling power modulation variable air flow rate  

4. Results 

4.1 Energy performance 

In the next section, the simulation results are reported for two weeks starting in mid-July. In Figure 10 is shown 

that the apartment internal temperatures always stay in between the upper and lower boundaries of the cooling set-

point temperature. Furthermore, the modulation factor of the FREESCOO refrigeration unit, which is proportional 

to the airflow rate, stays in between the minimum value to allow for the ventilation flow rate and at maximum 

around 70%. This means that the machine has still 30% cooling power to spare concerning the peak demand of 

the apartment. 

 

 
Fig. 10: Results shown for the period between mid-July and the end of July (x-axis), external air temperature (‘Text’, red, left y-

axis), internal air temperature (‘Tbui’, blue, left y-axis), external and internal absolute humidity (‘x_ext’, light blue, yellow, left y-

axis), modulation factor (‘Modul’, green, right y-axis), On-Off of the device (‘On’, dark green, right y-axis). 

In Figure 10, it is also shown that the refrigeration unit is also able to keep the absolute humidity below the 

maximum value via dehumidification. 
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Fig. 11: time horizon between mid-July to the end of July (x-axis), cooling power provided to the apartment (‘Qbui’, light blue, left 

y-axis), overall cooling power required for air conditioning (‘Qac’, green, left y-axis), heating power provided by the district 

heating (‘Qdh’, red, left y-axis) 

For the same two weeks in July the cooling power provided by the refrigeration unit and the heating power required 

are shown in Figure 11. One remark can be made on the cooling power required for air conditioning, which is 

similar to the required heating power by the machine, and only slightly lower, meaning that the thermal COP of 

the refrigeration unit is around 1. Furthermore, in some cases, FREESCOO is able to provide cooling power even 

without any direct heat consumption. This kind of performance is obtained thanks to the indirect evaporative 

cooling, which allows the reduction of the apartment air temperature by exchanging heat with the external air 

while in presence of water evaporation. This operation mode is activated every time the wet bulb temperature of 

the external air is below 20 °C. 

 

 

Fig. 12: time horizon between mid-July to the end of July (x-axis), electrical EER referred to the provided cooling power 

(‘EERbui’, blue, right y-axis), electrical EER referred to the air conditioning cooling power (‘EERac’, green, right y-axis), thermal 

COP (‘COPth’, light blue, right y-axis). 

Fig. 12 shows the global electric performance of the unit due to the air handling process of outside air (EER ac) 

and the performance related only to the cooling power delivered to the building (EER bui) which can benefit also 

from the free cooling and the indirect cooling process. The monthly energy performance of the system is reported 

in Figure 13. As an example, in July (Fig.13) the monthly electrical EER is around 11.2, while the thermal COP 
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is 1.3. In May the thermal COP increases considerably, this is due because in May the machine operates mostly in 

indirect evaporative cooling, requiring little to no heat from the district heating system.  

 

Fig. 13: Monthly energy performance of FREESCOO façade 3.0 

 

Tab. 3: Seasonal performance summary FREESCOO façade 3.0 

Qc,ac kWh 1099 

Qc,bui kWh 1521 

Qdh kWh 715 

Eele kWh 142 

EERac - 7.7 

EERbui - 10.7 

COPth,bui - 2.13 

water consumption l 2136 

 

 

4.2 Operational costs 

In order to quantify the economic and energy savings of the proposed concept, Table 4 summarizes the calculations 

relative to the primary energy savings due to nonrenewable energy sources and economic savings. The new 

concept was compared with a traditional air conditioning system, based on a vapor compression cycle, and having 

a SEER (Seasonal Energy Efficiency Ratio) equal to 3, same fresh air change rate and a ventilation consumption 

equal to 75% with respect to the FREESCOO system. In Table 4, three specific cases are reported. In reference 

Case 1, the primary energy conversion factors for nonrenewable energy were (fP,nren) 1.07 for district heating and 

1.95 for electricity. In reference Case 2, the electricity factor was chosen as 2.5 according to the typical number 

used for the EU. In reference Case 3 the hypothesis of introducing a 30% renewable quota to the district heating 

generation for example produced by solar thermal leading to a primary energy conversion factor of 0.75.In terms 

of money savings, for all cases the use of freescoo permits to save 44% of the total costs due to the operation of 

the conventional air conditioning system. The results show that the convenience in terms of primary energy savings 

is strongly related to the renewable quota of the heat used to drive the freescoo unit and the specific characteristics 

of the grid. 

 

Tab. 4: Operational energy and economic savings 
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Cooling energy provided kWh 1521 
  

Electricity used kWh 142 
  

District heating heat used kWh 715 
  

     
       

case 1 case 2 case 3 

Primary energy factor district heating kWh/kWh 1.07 1.07 0.75 

Primary energy factor electricity kWh/kWh 1.95 2.5 1.95 

District heating renewable quota 
 

0% 0% 30% 

Thermal energy cost  €/kWh 0.076 
  

Electricity price  €/kWh 0.25 
  

     
     

Energy savings section     

Traditional air conditioning system 
    

SEER 
 

3 
  

Total electrical consumption kWh 649 
  

Total Primary energy consumption kWh 1 266 1 623 1 266      
FREESCOO façade 3.0 

    

District heating Primary Energy kWh 765 765 536 

Electricity Primary energy kWh 277 356 277 

Total Primary energy consumption kWh 1043 1121 814 

Primary energy savings kWh 223 502 452 

Primary energy savings % 18% 31% 36% 

    

Economic savings section 
   

Traditonal air conditioning system 
    

Heating and cooling cost € 127 127 127 

Ventilation cost € 36 36 36 

Total cost € 162 162 162 

FREESCOO façade 3.0 
    

District heating cost € 55 55 55 

Electricity cost € 36 36 36 

Total cost € 90 90 90 

Savings € 72 72 72   
44% 44% 44% 

5. Conclusions 

In the project Merezzate+ sponsored by Climate-KIC, an innovative high-efficiency air conditioning system, 

named FREESCO façade 3.0 is being developed, realized, installed, monitored and optimized. FREESCOO façade 

3.0 is based on a DEC (Desiccant Evaporative Cooling) thermodynamic cycle. The system uses mainly low-grade 

heat to work (60°C), with a smaller contribution of electricity for ventilation and water for the humidification 

process. One of the crucial aspects of the system are the new adsorbent beds developed, which allow the packaging 

of a large amount of adsorption material, while also reducing the regeneration temperature. The other main features 

of the system are use of water as a refrigerant; use of high efficiency evaporative cooling; high electrical Energy 

Efficiency Ratio (EER > 10); lastly, it is compact and plug & play. In this manuscript, the advantages of this new 

concept were proven in a simulation case study located in Milan. The system will be coupled with a 4th generation 

low-temperature district heating system, which allows the introduction of renewable energies, such as solar 

thermal fields. The results of the simulation prove that the design of the refrigeration unit being developed agrees 

with the energy needs of the case study apartment. From the primary energy savings perspective for a conventional 

air conditioning system, they can be up to 36% if the electricity generation is not renewable heavy or the district 

heating has a renewable energy quota. From the economic perspective, the new concept allows up to 44% 

economic savings with compared to a traditional system. 
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