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Abstract 

Assessment of wind energy potential is extremely important before installation of wind turbine (WT) in any 

location. However, the intermittency of wind speed makes it more difficult to estimate the power potential. Thus, 

in this paper, two intelligent machine learning techniques namely neural network (NN) and adaptive neuro-fuzzy 

inference system (ANFIS) were employed to estimate the maximum power from the wind turbine and generates 

a reference torque to drive the rotor of PMSG. A comparative analysis for both NN based WT and ANFIS based 

WT is presented, while NN based WT estimated more accurate power than the ANFIS based WT. The NN based 

WT showed an error as low as 0.039% while ANFIS based WT shows 0.453%. Thus, the NN based WT model is 

selected and coupled with the PMSG system and is tested using wind data recorded at 100 meters height for Yanbu 

city, KSA. The PMSG was implemented with speed control mode using a PI controller which makes the NN-WT-

PMSG effectively tracks the reference rotor speed and torque and generate proportional electromagnetic torque. 

Keywords: Wind turbine, Wind Energy Conversion, Neural Network, Adaptive Neuro Fuzzy Inference System, 

PMSG Control 

1. Introduction 

Renewable energy (RE) had secured a prominent position in the global energy sector in response to the rise in 

electricity demand and carbon emission from conventional power generation. The RE market witnessed a total 

installed power capacity of 2,800 GW from Solar, Wind, Hydro, and other RE resources by 2020 (IRENA, 2021). 

The total wind capacity as of 2020 was around 733 GW, representing almost 26.2% of the total RE capacity. It is 

evident from Fig. 1 that the wind energy systems had significantly contributed to the modern RE market as well 

less assisted the energy market in minimizing the carbon emissions. For almost a decade China has been leading 

the wind energy market and stands top in 2020 with an installed capacity of 282 GW followed by the USA and 

Germany with 118 GW and 62 GW respectively (IRENA, 2021). The five leading counties in terms of wind 

installed capacity is shown in Fig. 2. These five countries also cover almost 72% of global installed wind capacity 

in 2020. 

 

Fig. 1: Installed capacity share from Wind energy and Rest of RE capacity 
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Fig. 2: Wind capacity leader based on the capacity installed in 2020 

Assessment of wind potential is a key step that drives the successful installations of wind turbines (WT) in any 

location. Kingdom of Saudi Arabia is an arid or desert land with a long period of summer than winter but has a 

high potential for the deployment of a wind turbine. With the ambitious target KSA Vision 2030, to meet 50% of 

its energy needs from renewables by 2030, which 16 GW is aimed to generate from wind plants (REPDO, 2019). 

The wind speed has been monitoring by King Abdullah City for Atomic and Renewable Energy (K·A·CARE) 

over time for selected sites within KSA such as Al-Jouf, Riyadh, Jeddah, Yanbu (K·A·CARE, 2021). The average 

wind speed in KSA at 100 meters height ranges between 5.3 m/s to 8.4 m/s (Ghamdi, 2020).  North of Yanbu city 

in KSA witness higher wind speed than any other location where the monthly average wind speed ranges between 

6.8 m/s to 11.43 m/s at 100-meter height (K·A·CARE, 2021). Dumat al Jandal plant located in Al-jouf has a 

planned capacity of 400 MW from wind generation emerged as the first utility-scale wind farm (Saudi Gazette, 

2020). Other wind farms are also under the predevelopment stage which includes Yanbu (850 MW) and Midyan 

(400 MW) projects as per the national renewable energy program (Rahman et al., 2021; REPDO, 2019). Thus, 

there is an extensive need to assess the potential of power generations in KSA utilizing wind resources.  

Today, the energy generated from wind turbines is not only used for off-grid and on-grid power generations but 

also other applications such as desalination (Campione et al., 2020). In the modern world WT are available in two 

different kinds of namely WT exist in the market based on their axis of rotation ie; the vertical axis and horizontal 

axis WT. Each type of WT has its pros and cons which are subjected to location, size, application, etc., (M. Saad, 

2014).  Further, the wind energy conversion system (WECS) is classified based on the type of generators used, 

permanent magnet synchronous generators (PMSG), and doubly-fed induction generators (DFIG) (Yin et al., 

2007). Due to its better efficiency and good power quality of variable speed wind turbine (VSWT) generators fed 

by PMSG are usually preferred. The wind turbine produces power while subjected to wind speed bounded by cut-

in and cut-out wind speed (Baseer, 2017). Over the years the wind turbines had witnessed significant 

improvements in their size, aerodynamics design, blade structure, overall efficiency (Fatehi et al., 2019; Zhu et 

al., 2019). However, wind turbine still poses the challenge related to the intermittency of wind speed which makes 

difficult for power system operators and designers to accurately size the wind turbine (Njiri and Söffker, 2016). 

The impact on the power system in terms of efficiency, reliability, the transmission was addressed (Albadi and 

El-Saadany, 2010; Shi et al., 2014).  

The power generated from the wind turbines is not only dependent on the wind speed but also several parameters 

such as tip speed ratio, length of the blades, wind direction, air density rotor speed, type of generator systems. To 

tackle the challenge of intermittency of wind speed, many researchers have employed several maximum power 

point tracking (MPPT) algorithms. The most common technique for MPPT algorithms are tip speed ratio (TSR) 

control, perturb and observe (P&O), power signal feedback (PSF) control, optimal torque (OT) control, and 

several other algorithms (Abdullah et al., 2012; Kumar and Chatterjee, 2016). Many control methods were used 

in the literature to name a few are pitch angle controller, grid side inverter controller, MPPT controller (Wang et 

al., 2014; Yin et al., 2007).  Machine learning techniques such as neural networks (NN) and adaptive neuro-fuzzy 

inference systems (ANFIS) are also used for estimating or predicting wind speed (Chang et al., 2017; Khosravi et 

al., 2018). Abo-Khalil and Lee proposed MPPT control of wind energy systems by estimating the wind speed 

based on support vector regression (Abo-khalil and Lee, 2008). This technique was found to be less effective with 

an error of 3.3%. However, forecasting the wind speed will only help to determine the wind power but since the 
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real system is coupled with the generator, it is extremely important to realize the overall effect on the WECS. On 

the other side, researchers have also developed control strategies for PMSG based wind turbines by using adapting 

sliding mode control to track the reference speed (Lee and Chun, 2019)  while Kim et al presented tuning methods 

for PI controller parameters of PMSG wind turbine (Kim et al., 2015).   

In this work, two intelligent techniques namely NN and ANFIS were employed to estimate the maximum power 

from the wind turbine and generates a reference torque to drive the rotor of PMSG. This was done by coupling 

the PMSG with the NN/ANFIS based WT models. The PMSG system operates in the speed control loop where 

the PI controller is fed with the error signal arising as a difference between the actual PMSG rotor speed and the 

reference speed generated from NN/ANFIS based wind turbine model. The performance of the proposed method 

is tested at first by subjecting experimental wind data from Yanbu city from KSA. The city is selected because it 

is the city with highest average wind speed and the government in KSA has already selected the city for future 

projects of a wind farm, which makes more important to assess the wind power potential. 

2. Wind Energy Conversion System (WECS) Modeling 

The WECS modeled in this work comprises a wind turbine coupled with PMSG and power conditioning units 

represented by ‘m’ as shown in Fig. 3. The rotor of the wind turbine is coupled with the PMSG rotor and then to 

power inverters. The brief model of each component of WECS is described in this section. 

 

Fig. 3 Simplified representation of WECS model 

2.1 Wind Turbine 

The kinetic energy from the wind is translated into rotational motion due to the design of the turbine blades. This 

mechanical form of rotational energy is converted into electrical energy by means of a turbine generator (Sohoni 

et al., 2016).  The expression for the theoretical mechanical power is given by (eq.1) 

Mechanical aerodynamic power (𝑃𝑚) =  
1

2
𝜌𝐴𝑉𝑤

3 𝐶𝑝(𝜆, 𝛽)                (eq.1) 

Where, 𝜌  is the density of air, 𝐴 is the swept area of the turbine blade, 𝑉𝑤 is the velocity of wind, 𝐶𝑝 is the 

coefficient of power defined by the function of   tip speed ratio (𝜆) and pitch angle (𝛽). (Eq. 2) describes the 

relation of tip speed ratio with turbine rotor speed 𝜔𝑟 , rad/sec ), wind speed and length of blade (𝑅). 

𝜆 =
𝜔𝑟𝑅

𝑉𝑤
                      (eq.2) 

The power coefficient is also a function of 𝜆 and 𝛽, given by (eq.3), while the iterative tip speed ratio (𝜆𝑖) is given 

by (eq.4) 

𝐶𝑝(𝜆, 𝛽) = 0.22 (
116

𝜆𝑖
− 0.4𝛽 − 5) 𝑒

−12.5

𝜆𝑖 + 0.0068𝜆                     (eq.3) 

1

𝜆𝑖
=

1

𝜆+0.08𝛽
−

0.035

𝛽3+1
                       (eq.4) 

The mechanical torque (𝑇𝑚) generated from the wind turbine is given by (eq.5) 

𝑇𝑚 =
𝑃𝑚

𝜔𝑟
                                                              (eq.5) 
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2.2 Estimating of MPPT for turbine 

Maximum power from the wind turbine is achieved when the coefficient of power is the highest corresponding to 

the optimal tip speed ratio. Several kinds of literatures proposed that when the blade pitch angle is at zero, the 

maximum power at a given speed is achieved (Kim et al., 2015; Wang et al., 2014). Optimum tip speed ratio 

(𝜆𝑜𝑝𝑡) also determines the optimum rotor speed (𝜔𝑜𝑝𝑡) and which the turbine operates corresponding to maximum 

power (𝑃𝑚𝑎𝑥). Both the expressions for (Pmax) and (ωopt) are given by (eq. 6) and (eq.7) respectively. The 

relation between the turbine power and turbine speed is shown in Fig. 4. 

𝑃𝑚𝑎𝑥 =  
1

2
𝜌𝐴𝑉𝑤

3 𝐶𝑝𝑚𝑎𝑥(𝜆, 𝛽)                     (eq.6) 

𝜔𝑜𝑝𝑡 =
𝜆𝑜𝑝𝑡 𝑉𝑤

𝑅
                              (eq.7) 

 

Fig. 4 Relation between the turbine speed and the power generated from turbine 

2.3 PMSG 

A three-phase permanent magnet synchronous machine is having its stator winding connected in Wye to the point 

of internal neutral while the rotor can be salient pole or round. When a negative torque is provided the machine 

operates in generator mode. A three-phase sinusoidal model can be expressed in the d-q frame of reference 

(MATLAB, 2021a). The equations governing these models are given in (eq.8) to (eq.10). 
disd

dt
= −

Rsa

Lsd
isd + ωs

Lsq

Lsd
isq +

1

Lsd
Vsd                                (eq.8) 

disq

dt
= −

Rsa

Lsq
isq − ωs (

Lsd

Lsq
isd +

1

Lsq
ψp) +

1

Lsq
Vsq                                   (eq.9) 

Te =
3

2
∗

Ρ

2
[ψpisq + isdisq(Lsd − Lsq)]                              (eq.10) 

Where Vsd, Vsq, Isd and Isq are the d-q axis stator voltages and currents, respectively. Lsd and Lsq are the 

inductances of the generator. P is the number of poles, ψp  is the permanent flux, stator resistance is represented 

as Rsa and ωs is the generator’s electrical angular frequency. Te is the electromagnetic torque. 

2.4 Machine learning technique 

Several machine learning techniques have emerged over the decades but in this section, two technique, will be 

discussed considering their use in the approach. 

(i) Neural Network 

(ii) Adaptive neuro fuzzy inference system 

 

Neural network (NN): It is also known as artificial neural network (ANN) is an intelligent technique that resembles 

a human brain by interconnecting biological neurons or nodes to perform complex computation. They learn from 

a set of trained data and generates the ability to predict future events (Cao et al., 2018). In several engineering 

applications, some of the types of NN include feedforward neural network (FFNN), Convolution neural network 

(CNN), and recurrent neural networks. Typically, FFNN comprises a set of inputs layers, one or more hidden 

layers, and an output layer (MATLAB, 2021b). During the learning process input and output candidates need to 
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be explicitly defined and in this phase of learning weights are adjusted and the output is estimated by minimizing 

the error. Upon successful training of the process, testing can be performed to verify the accuracy of the learning 

process. In general, there are no limitations in selecting the number of input and output candidates. 

 

Adaptive neuro-fuzzy inference system (ANFIS):  This method is a hybrid learning process where the input and 

output data mappings are based on if-then rules (human knowledge) and stipulated input-output pairs (Jang, 1993). 

It combines the neural network and fuzzy logic principles with the advantage of seeking benefit from both 

frameworks. The architecture of ANFIS comprises five layers. The first layer accepts the input values by defining 

some membership functions also called fuzzification. The second layers are the rule layer where a set of rules are 

generated. The third layer normalizes the layer which is provided to the fourth layer. Finally, the fifth layer is the 

defuzzification layer to return the final output. The Takagi-Sugeno cannot accept only single-output (MATLAB, 

2021c). 

3. Methodology  

In the proposed methodology of a NN or ANFIS based WT coupled with a PMSG system, the following steps 

are followed. 

1. Generating a data set from a wind turbine. 

2. Training NN and ANFIS model 

3. Implementing speed control of NN/ANFIS based wind turbine PMSG model 

Upon successful completion of the above three steps, the developed strategy is used to explore the wind energy 

potential for Yanbu city of KSA. 

3.1 Data set generation of wind turbine 

The data set for a wind turbine is generated by using the model eq.1- eq.4. As the mechanical power obtained 

from the wind turbine is a cubic function of wind speed as well as an indirect function of tip speed ration (λ), a 

range of wind speed is selected from 3-19.5 m/s and the range of tip speed ratio is selected from 0.1 - 14. Both 

the wind speed and tip speed ratio were classified into 280 samples, to generate a matrix to obtain a 280×280 

matrix for power. Each row of the power matrix represents the power at one point of wind speed with 280 samples 

of tip speed ratio. Thus, from each row, a maximum power point is obtained which corresponds to the optimal tip 

speed point. Similarly, the optimum turbine speed is obtained at the optimal value of tip speed ratio. Finally, as 

an output of this wind turbine model, 280×1 matrix for maximum power (Pmax)  and optimum rotor speed 𝜔𝑜𝑝𝑡 is 

selected. 

 

3.2 Training if NN and ANFIS 

The training for both NN and ANFIS starts with defining the inputs and outputs for the model. Clearly, from the 

data set generation process, sampled wind speed is selected as input while the matrix for maximum power (Pmax)  

and optimum rotor speed 𝜔𝑜𝑝𝑡 is taken as output.  

 

3.2.1 NN training:  

In the process, single input and dual output is selected and the model are trained by using a backpropagation 

algorithm. Ten neurons were selected in the hidden layer between the input and output layer as shown in Fig. 5. 

Upon successful training process is completed the model becomes a neural network wind turbine model which is 

capable to estimate maximum power and optimal speed at any wind speed defined within the limits. 

Wind Speed 
(Vw)

10 input neurons Outputs

Input Layer
Hidden Layer Output Layer

Pmax

ωopt  
 

Fig. 5 Simplified representation of Neural network wind turbine model 
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3.2.2 ANFIS Training 

The training process of ANFIS is also similar to NN in terms of defining input and output. However, the ANFIS 

model is a bit complex than NN as it only accepts a single output, unlike NN. As a result, two ANFIS structures 

were created one for maximum power output and the second for the speed output.  The ANFIS power model is 

formed by using 10 membership functions in the intermediate layer while the ANFIS speed model is formed by 

using 5 membership functions. The simplified ANFIS wind turbine model is depicted in Fig. 6 

Wind Speed 
(Vw)

5 Input 
Membership 

function

Outputs

10 Input  
Membership 

function

Set of Rules

Set of Rules

5 Output 
Membership 

function

10 Output 
Membership 

function

Pmax

ωopt  

ANFIS Speed Model

ANFIS Power Model

 
Fig. 6 Simplified representation of ANFIS wind turbine model 

3.3 Control Strategy for NN/ANFIS based wind turbine 

The strategy to control of PMSG based NN/ANFIS wind turbine in such a way that the torque output generated 

from the NN or ANFIS based wind turbine model is coupled to a permanent magnet synchronous machine. The 

negative torque is provided to the machine to operate in generator mode. The PMSG is connected to other power 

conditioning units such as the PWM inverter and provides the electromagnetic torque (Te). The strategy 

implemented to control is presented in Fig. 7. The speed control method adopted is modeled in the d-q frame of 

reference. Two control loops were designed, the first outer loop is to control the PMSG rotor speed while the inner 

loop is to control the PMSG stator current. Hence in the outer loop by means of PI controller a reference direct 

axis current (𝑖𝑞𝑟𝑒𝑓) is generated by feeding back the error signal from the difference of NN/ANFIS model and 

PMSG. The reference quadratic axis current (𝑖𝑑𝑟𝑒𝑓) is selected as zero. The current is transformed back into three 

phases from the d-q reference and a three-phase reference current (𝑖𝑎𝑏𝑐𝑟) is feedback to PWM inverter.  

 

Neural Network (NN)
 or

 Adaptive Neuro Fuzzy 
inference system (ANFIS) 

Wind Turbine Model

Input 
Wind speed

X

÷
PMSG

PWM 
Inverter

Iqref

Idref

thetha

PMSG Rotor Speed

PMSG Rotor angle

Electromagnetic Torque

PI-+

0

Pmax

ωopt

Iabcr

dq2abc

Torque 
(-ve)

Iref Iabc

Va  Vb  Vc

 
Fig. 7 Proposed control NN/ANFIS based wind turbine PMSG system 

4. Results and Discussion 

The approach and the methodology presented in the previous section are used to perform simulation in 

MATLAB/SIMULINK. The input data for the wind speed was collected in the form of monthly average from 

King Abdullah City for Atomic and Renewable Energy (K·A·CARE) station located in the north of Yanbu 

(24.34202 ° N, 37.48446° E), KSA. Two separate simulations were performed for NN based wind turbine PMSG 
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model and ANFIS based wind turbine PMSG model. The sampling time selected during the simulation was 2 μs. 

The profile for monthly average wind speed for Yanbu location is shown in Fig. 8. With respect to the input wind 

speed, the NN based WT model, as well as ANFIS, based WT estimated the mechanical power and mechanical 

torque. Fig. 9 shows the power and torque response of the NN based WT model and Fig. 11 shows the power and 

torque response of the ANFIS based WT model. 

 
Fig. 8 Monthly average wind profile for Yanbu city in KSA 

  
Fig. 9 Mechanical power and mechanical torque generated from NN based WT model 

 
Fig. 10 Mechanical power and mechanical torque generated from ANFIS based WT model 

 
From Table 1, it can be observed that the maximum power was achieved to be 1.12 MW in June in which the 

highest wind speed was recorded while the lowest power was estimated in October with 0.23 MW. The mechanical 

power estimated by the NN based wind turbine shows a maximum error of 0.039% while the power estimated by 

ANFIS based wind turbine shows 0.453 %. Moreover, the ANFIS model is very complex as it involves separate 

models for speed and power. As a result, several membership functions need to be defined which increases the 

computation time while performing the simulation. On the other hand, NN based model requires less time for the 

computation and at the same time, it is more robust than the ANFIS model. 

 

Tab. 1: Comparison of NN-WT and ANFIS-WT model using actual wind speed data 

Month 
Wind speed 

(m/s) 

Theoretical 

calculated 

Maximum power 

(MW) 

Mechanical power 

generated from 

designed NN model 

(MW) 

Error 

(%) 

Mechanical power 

generated from 

designed ANFIS 

model (MW) 

Error 

(%) 

Jan 7.9 0.37005 0.3700 0.014% 0.37115 0.297% 

Feb 7.5 0.32250 0.32250 0.000% 0.32204 0.143% 

Mar 10.1 0.7752 0.7749 0.039% 0.77871 0.453% 

Apr 10.4 0.83636 0.83633 0.004% 0.83657 0.025% 
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May 8.3 0.43732 0.43730 0.005% 0.43836 0.238% 

Jun 11.4 1.1270 1.12699 0.001% 1.1276 0.053% 

Jul 9.3 0.61054 0.610487 0.009% 0.609596 0.155% 

Aug 10.2 0.79316 0.793272 0.014% 0.79419 0.130% 

Sep 10.7 0.92603 0.92598 0.005% 0.92486 0.126% 

Oct 6.8 0.23791 0.237941 0.013% 0.23788 0.013% 

Nov 7.2 0.28218 0.28219 0.004% 0.280916 0.448% 

Dec 8.0 0.38487 0.38488 0.003% 0.38626 0.361% 

 

Further NN based WT- PMSG model is selected to study the effect of the combined NN model with PMSG. Fig. 

11 shows that the speed control of the combined NN based WT- PMSG model is very effective in terms of 

following the reference rotor speed generated from the NN based WT model. The electromagnetic torque 

generated from the PMSG model as shown in Fig. 12 also follows the torque profile set by the NN based WT 

model. The noisy behavior of the electromagnetic torque is due to the presence of noise in the PMSG stator current 

due to the use of a PWM inverter. However, the angular speed of PMSG does not have noisy behavior as it is 

prevented by the inertia of the generator. The profile for the voltage of the PWM inverter is shown in Fig. 13. 

 

Fig. 11 Tracking of PMSG speed and reference speed from NN based WT- PMSG model 
 

 

Fig. 12 Electromechanical torque generated from NN based WT- PMSG model 
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Fig. 13 PWM inverter voltage generated from NN based WT- PMSG model 
 

5. Conclusions 

In this paper, a novel control strategy is developed to control a permanent magnet synchronous generator (PMSG) 

coupled to a neural network and adaptive neuro-fuzzy inference system wind turbine model. The model is tested 

to assess the wind power potential in Yanbu city of Saudi Arabia. To machine algorithms (NN and ANFIS) are 

used and NN based WT model was found to be more robust as it is capable to estimate the power more accurately 

with an error as low as 0.039% when compared to 0.0453% error from ANFIS based WT. Moreover, the 

computation time needed by the ANFIS approach is 20 times more than the NN approach because of its complex 

structure. Further, NN based WT is used to provide a reference speed and torque to drive the PMSG rotor which 

is controlled by means of a PI controller. The Electromechanical torque and speed of the PMSG rotor effectively 

follow the input wind speed profile. Thus, this study helps to assess the actual power potential of a given wind 

data which is a primary step towards the deployment of wind turbines.  
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