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Abstract 

For an effective grid integration of large-scale solar PV plants and their market participation, accurate power 
forecasting is very crucial. System operators use power forecasting to maintain power system security and 
reliability with economic energy dispatch. Machine learning models like Support Vector regression (SVR) are 
popularly used in short-term forecasting for better accuracy than other artificial intelligence (AI) models. 
However, SVR models need large amounts of data and involve very complex computations to achieve better 
accuracy. To address these problems, this research aims to develop an SVR model improved by integrating the 
non-linear least square Gauss-Newton method (SVR+GN) for hour-ahead solar PV power forecasting with a five-
minute resolution. The performance of this model was verified in bivariate and multivariate modes by comparing 
the forecasting results with SVR, non-linear and persistence models on sunny, partly sunny and overcast days. To 
further verify the accuracy of SVR+GN, SVR, persistence and non-linear models, error evaluation parameters 
like Mean Absolute Percentage Error (MAPE), Mean Relative Error (MRE), Root Mean Square Error (RMSE) 
and Mean Absolute Error (MAE) were used. The improved SVR model needed fewer data and simpler 
computations for training and it achieved better accuracy even on overcast days. This is extremely useful for 
efficient grid integration and market participation of solar PV plants.  

Keywords: Bivariate, Hour-ahead Forecasting, Multivariate, Power Forecasting, Solar PV, Solar Power 
Forecasting, Support Vector Regression (SVR)  

 

1. Introduction 
For system operators, accurate forecasting is of utmost importance for economic dispatch, power system planning 
and management to ensure power system reliability and security ((AEMO); Forecasting). Accurate forecasting 
helps solar PV plants to bid in the electricity markets and provide electricity with minimum curtailment and 
financial penalties. Power system operators use day-ahead electricity markets for unit commitments and economic 
electricity dispatch decisions. Hour-ahead electricity markets are mainly used for market clearing, precise dispatch 
for power system security and reliability, ancillary services and reserves procurement (Das et al., 2018; Ross 
Gillett, 2018). For effective grid integration and market participation, renewables like solar PV need accurate 
power forecasting.  

Abundant research has been conducted in direct i.e. solar power forecasting and indirect i.e. solar irradiance 
forecasting with different time horizons. In the last decade, machine learning techniques like Support Vector 
Regression (SVR) are popularly used in short-term forecasting because of their high accuracy and less 
computational complexity. Various error parameters are used for these forecasting models to validate their 
performance. Alfadda et al confirmed that for hour-ahead solar PV power forecasting, the SVR model performs 
2.6% better than the Lasso regression and linear regression forecasting models. Root Mean Square Error (RMSE) 
method is used for comparing the performance of these models (Alfadda et al., 2017). Performance of SVR and 
Random Forest (RF) models are verified in (Yen et al., 2018) using Mean Absolute Error (MAE), RMSE, Mean 
Forecast Error (MFE) and Mean Absolute Scaled Error (MASE). Using these error parameters, the authors 
observed that RF achieves 37 to 40% better accuracy than the SVR model. It was concluded from the results that 
RF tends to overestimate while SVM tends to underestimate the hour-ahead solar PV forecasting. (Guermoui et 
al., 2021) investigated incorporating SVR with least square methods to build hybrid models for 1 to 12 hours 
ahead solar forecasting and evaluated their performance using RMSE, relative RMSE (rRMSE), Mean Absolute 
Bias Error (MABE) and correlation coefficient (r). Results showed that using Artificial Bee Colony optimisation 
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to solve least square equations in SVR can improve the accuracy of solar forecasting.  

However, all these SVR and hybrid SVR models use a very large amount of data for training to achieve better 
accuracy and are computationally very complex. (Yen et al., 2018) also recommended that if more data is used 
for processing and training the model, it will help to further improve the accuracy of the models. To address these 
issues, this research aims to develop an SVR model improved by integrating the non-linear least square Gauss-
Newton (GN) method for hour-ahead solar PV power forecasting with a five-minute resolution. The performance 
of the presented model is verified using the similar error parameters used in above mentioned research.  

The organization of the rest of the paper is as follows. A review of solar PV power forecasting methods is 
presented in section 2. Section 3 provides a methodology of the SVR+GN model, residual monitoring and error 
parameters used for analysis. Results and error analysis are discussed in section 4. And finally, in section 5, the 
conclusions are summarized. 

2. Solar PV Power Forecasting Methods 
There are numerous methods present in the literature for forecasting. Depending on the type of the technique used 
for forecasting, the forecasting methods are mainly categorized into four types i.e. Physical, Statistical, Artificial 
Intelligence (AI) and Hybrid (Antonanzas et al., 2016; Das et al., 2018; Voyant et al., 2017; Wan et al., 2015). 
Configuration of forecasting methods depending on these four techniques is shown in Fig. 1. 

 
Fig. 1: Solar PV Power Forecasting Methods  

Physical methods use numerical weather prediction (NWP) data along with PV plant characteristics like the 
location of the plant and orientation data to forecast solar irradiance and this forecast is then used to calculate 
solar PV power output. Physical methods may not need historical data for solar irradiance and power output of 
the PV plant but their accuracy is highly dependent on the quality of NWP data. Models like Global Forecast 
System (GFS), MM5 fall under this category and are used for forecasting solar irradiance to further calculate solar 
PV power. 

Statistical methods use historical data of solar irradiance, NWP and power output to calculate the relation between 
these data to train the model and this model is then used with future NWP data to forecast PV output power. These 
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methods are complex mathematical methods and to achieve higher forecasting accuracy, one has to compromise 
on pre-processing of large training data and complexity of these models. Methods based on time series analysis 
and regression analysis e.g. Auto-Regressive Moving Average (ARMA), Auto-Regressive Integrated Moving 
Average (ARIMA), Auto-Regressive Integrated Moving Average with Exogenous variable (ARMAX) and Auto-
Regressive with Extra input (ARX) are the statistical methods.  

AI methods like SVR, Artificial Neural Networks (ANN) are commonly used in solar forecasting. SVR is mostly 
popular because of its better accuracy than other AI methods (Antonanzas et al., 2016). Forecasting models using 
AI methods do not need PV plant characteristics data like physical methods and are easy to model. 

In hybrid methods, either two or more statistical methods, statistical methods with physical methods, pre or post 
data processing with statistical or physical methods are used to improve the accuracy of the forecasting. However, 
all this complex processing results in higher computational cost, data processing time and requires a large amount 
of training data.  

For hour-ahead forecasting, there is a need for a solar PV power forecasting model which requires less amount of 
data for training, has less computational complexity while providing better accuracy than the models using the 
above explained forecasting methods. To suffice this need, the SVR+GN model is proposed in this research. The 
methodology of this proposed model is described in detail in the section below. 

3. Methodology of SVR+GN 
The SVR+GN model was developed by integrating the non-linear least square Gauss-Newton (GN) method with 
a simple SVR method for hour-ahead solar PV power forecasting with a five-minute resolution. This model is 
roughly based on the previous work (Pawar et al., 2020). The SVR+GN model was further improved for hour-
ahead power forecasting. Also, the training of the model was monitored to improve the accuracy. The SVR+GN 
model can be used to operate in both bivariate and multivariate modes. In bivariate form, only solar insolation 
and solar PV power output data were used to train and test the model. In multivariate mode along with solar 
insolation and solar PV power output, temperature and humidity data were also provided.   

 
Fig. 2: Flowchart for Forecasting using the SVR+GN Method  
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As shown in the flowchart of the SVR+GN in Fig. 2, historical data of solar insolation, temperature, humidity and 
solar PV power output were provided to this proposed model during the training phase depending on its mode of 
operation. These data were then classified according to three different weather conditions i.e. sunny, partly cloudy 
and overcast using standard deviation calculated for daily solar insolation data using eq. 1.  

𝜎 = #∑(&'())+

,
                                                        (eq. 1) 

s is the standard deviation value, xi denotes the data points, µ is the mean of the data and the total number of the 
data points on the day is denoted by N. 

The standard deviation of the data provides the amount of variation in the data. The solar insolation tends to be 
steady on a sunny day while it varies with few peaks and troughs on a partly cloudy day. On an overcast day, the 
solar insolation data varies greatly with more peaks and troughs. Hence, according to the value of standard 
deviation for the solar insolation, the data were classified in three different weather conditions. For sunny weather, 
the standard deviation was in the lowest range from 1 to 9. The standard deviation ranging from 9 to 70 was 
considered for partly cloudy weather whereas, for overcast conditions, the standard deviation of 70 and above was 
used for classification as shown in Tab. 1. 

Tab. 1: Classification of Data in Three Different Weather Conditions 

Standard Deviation Value Range Weather Condition 

1 to 9 Sunny Day 

9 to 70 Partly Cloudy Day 

70 and above Overcast Day 

 

Next, the sine kernel function given in eq. 2 was used in the SVR+GN model instead of the radial basis function 
which is generally used in a simple SVR model.  

𝑓(𝑥, 𝑡) = 𝑥1 ∗ sin(𝑥6 ∗ 𝑡 + 𝑥8) + 𝑥9																			(eq. 2)										                   

Initial guess values for x1, x2, x3 and x4 in eq. 2 were provided to train the model using solar insolation, power 
output, temperature and humidity data. To solve the non-linear least squares problem, the Gauss-Newton method 
was used (Hartley, 1961; Heath, 2018). This method is known to find convergence in fewer than 12 steps. Once 
the solution was found the weighted factors for each data were calculated. These calculated weighted factors were 
then used in the testing phase to determine the solar PV power output using the data of solar insolation, 
temperature and humidity depending on the bivariate or multivariate mode of operation.  

3.1. Residual Monitoring 

Over-fitting and under-fitting of the data lead to lower accuracy. However, this was monitored in the training 
phase in the SVR+GN model using the residual function. The equation for the residual function is given in eq. 3 
below. 

𝑟<(𝑥) = 𝑦< − 𝑓(𝑡<, 𝑥)																																															(eq. 3)	
Where i =1,….,m; r(x) is the residual values for data y i.e. the data provided to the model and f(t,x) are the trained 
data values. To easily interpret the residual or how well the model was trained for given data, graphs of the input 
data and trained data were plotted. Random samples of these graphs are shown in Fig. 3. Blue curves in the graph 
represent original input data provided to the model during the training phase whereas red curves represent the 
trained values of that data. 

As seen in the graphs below, if the data for sunlight, solar PV power, temperature and humidity are fluctuating 
over the period, data fitting in the training phase is also affected giving high residuals. This is mostly observed 
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here in samples Fig. 3(b) and Fig. 3(d). This eventually adds up to the forecasting errors and the accuracy of the 
forecasting is greatly affected.  

 
(a)                                                                                                       (b) 

                        

 
(c)                                                                                                           (d) 

Fig. 3: Graphs of Trained vs Original Input Data for (a) Sunlight, (b) Power, (c) Temperature and (d) Humidity  

3.2. Forecasting Error Analysis 
As the SVR+GN model used both SVR and the non-linear GN method, the forecasting results for the SVR+GN 
model were compared with simple SVR and non-linear models to verify whether the proposed model can improve 
the accuracy of these individual models. In short-term forecasting, generally, persistence forecast is used to 
compare the performance of forecasting methods, therefore, the persistence model was also used for comparison 
in this research.  

The simple SVR model was developed using radial basis function kernel as shown below in eq. 4 where x1, x2 are 
the data points, || x1- x2|| is the Euclidean distance between data points x1, x2 and s is the hyperparameter or the 
width of the kernel.  

𝑓?𝑥1,𝑥6@ = 	 𝑒
B||(DEBD+)||+

+F+ 	                                    (eq. 4) 

For a non-linear model, a simple non-linear function shown in eq. 5 was used.  

𝑦	 = 	 𝑏1 + 𝑏6 ∗ (𝑥)HI                                                 (eq. 5) 

Where b1, b2, b3 are coefficients whose values were provided in the algorithm, x is the matrix of the data set.  

A persistence model is very simple and was developed as per eq. 6 given below. It considers that the value of 
forecasting at time t+1 will be equal to the value of the parameter at time t.  

𝑥JK1 = 𝑥J                                                                       (eq. 6) 
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To further quantify and validate the performance of the SVR+GN model, error analysis of the forecasted power 
using SVR+GN, SVR, Non-linear and Persistence models was performed. Error parameters used in this research 
were Mean Absolute Percentage Error (MAPE), Mean Relative Error (MRE), Root Mean Square Error (RMSE) 
and Mean Absolute Error (MAE). Eq. 7 represents the formula for MAPE while formulae for MRE, RMSE and 
MAE are given in eq. 8, eq. 9 and eq. 10 respectively. 

𝑀𝐴𝑃𝐸 = 	 1
,
∑ |PQRS'TUSQV(PUWSXUY|

PUWSXUY
,
Z[1 ∗ 100%      (eq. 7) 

𝑀𝑅𝐸 =	 1
,
∑ |PQRS'TUSQV(PUWSXUY|

P'`RSUYYQV
,
Z[1 ∗ 100%       (eq. 8) 

𝑅𝑀𝑆𝐸 =	#1
,
∑ (𝑃bcJ<deJbf − 𝑃egJhei)6,
<[1 	       (eq. 9) 

𝑀𝐴𝐸 = 1
,
∑ |𝑃bcJ<deJbf − 𝑃egJhei|,
<[1                (eq. 10)  

 
Here, N is the number of measurements, Pactual is the original or actual power output of the solar PV plant, Pestimated 
is the estimated power of solar PV plant using forecasting models and Pinstalled is the total installed capacity of the 
solar PV plant.   

3.3. Data for Forecasting 
To verify the reliability and robustness of these models, the estimated power using all these models was compared 
with the actual output power of The University of Queensland, Australia (UQ)’s 2.3MW solar PV. A month-long 
data was used to train the SVR+GN model in the training phase. Whereas, three different weather days were used 
for model verification that was outside of the training phase data. Dataset used in this research comprised solar 
insolation, PV power output, temperature and humidity data for the UQ solar. The data were available for every 
minute of the day, however were averaged to five minutes for this research. Section 4 will present the results and 
discussion on the performance of the SVR+GN model using UQ solar PV data. 

4. Results and Discussion 
As discussed in section 3, an hour-ahead bivariate and multivariate solar PV power forecasting model (SVR+GN) 
was developed by integrating the SVR with Gauss-Newton (GN) method. Performance of SVR+GN, simple SVR, 
non-linear and persistence models was verified in three different weather conditions i.e. sunny, partly sunny and 
overcast days. This research focuses on solar PV power forecasting for the energy market participation of the 
solar plants. For the bidding purposes, every hour the solar plants need to provide an hour ahead forecast with 
five minutes resolution. Therefore, the solar PV power forecasting graphs are presented as a random sample of 
hourly forecasting with a five-minute resolution. Error analysis for the proposed model was performed using the 
formulae from section 3.2.  

4.1. Bivariate Mode 
In bivariate mode, the SVR+GN model was trained and tested using only solar irradiance and power output data. 
Fig. 4 shows hour ahead solar PV power forecasting using SVR+GN, SVR, persistence and non-linear models in 
a bivariate mode. From these graphs, it can be seen that the models perform differently in all three different 
weather conditions.  

On a sunny day, the proposed SVR+GN model was able to perform better than the simple SVR and non-linear 
model. However, the persistence model performed better than the SVR+GN model in sunny weather. On the 
partly sunny day, the SVR+GN model did not seem to be performing up to the mark and the other three models 
in comparison seemed to perform better. However, on an overcast day, the SVR+GN model was able to perform 
better than SVR, non-linear as well as persistence model. It is clearly visible from the graph in Fig. 4(c) that the 
forecasted power of SVR+GN is closer to the original power while forecasted power using the non-linear model 
is the farthest and the forecasted power using persistence and SVR cannot keep up with the unpredictable cloudy 
weather.  
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(a)          (b) 

 

 
(c) 

Fig. 4: Bivariate Hour-ahead Solar PV Power Forecasting on (a) Sunny day, (b) Partly Sunny Day and (c) Overcast Day 

To further verify the accuracy of SVR+GN, SVR, persistence and non-linear models, error evaluation parameters 
like MAPE, MRE, RMSE and MAE were used.  

Tab. 2: Error Parameters for Bivariate Hour-ahead Solar PV Power Forecasting 

Weather Error Parameter SVR+GN SVR Persistence Non-Linear 

Sunny Day 

MAPE 2.52 3.64 0.55 3.68 

MRE 1.89 2.67 0.40 2.70 

RMSE 10.07 12.23 2.08 12.42 

MAE 8.19 11.59 1.75 11.71 

Partly Sunny 
Day 

MAPE 5.68 2.58 2.74 2.35 

MRE 4.05 1.79 1.90 1.62 

RMSE 21.16 11.92 16.65 11.73 

MAE 17.57 7.77 8.26 7.02 

Overcast Day 

MAPE 14.46 15.76 23.11 44.97 

MRE 5.07 4.59 7.40 15.04 

RMSE 26.57 27.87 44.82 69.36 

MAE 22.0 19.93 32.13 65.27 
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As shown in Tab. 2, the SVR+GN forecasted solar PV power output with higher accuracy on a sunny day than a 
partly cloudy and an overcast day in bivariate mode. In terms of MAPE, MRE and MAE, the values indicate that 
the SVR+GN model successfully achieved an accuracy of 97.48%, 98.11% and 91.81% respectively on a sunny 
day. The proposed SVR+GN model achieved better accuracy in comparison with SVR and non-linear models. 
However, the persistence model seemed to work better than the SVR+GN model on that day.  

On a partly sunny day, the non-linear model was able to keep the error values at the lowest as compared to the 
SVR+GN, SVR and persistence models. In terms of MRE, the non-linear model achieved an accuracy of 98.38% 
whereas SVR+GN was able to forecast power output with 95.95% accuracy.  

SVR+GN model achieved the best results on an overcast day. Generally, this type of weather makes it difficult 
for forecasting models to perform with higher accuracy. Nevertheless, the proposed model effectively achieved 
higher accuracy than the SVR, non-linear and persistence models. To calculate RMSE, the difference between 
original and forecasted solar PV power values is squared and hence, it has high values when the forecasted value 
is not in a near range of the original power output value. On an overcast day, SVR+GN was able to keep RMSE 
value half of that of the persistence model and one-third of that of the non-linear model. Therefore, it is proved 
that the SVR+GN model provides better forecasting than SVR and non-linear models on a sunny day. 
Additionally, the proposed model forecasts more accurately than the SVR, non-linear and persistence models on 
an overcast day in bivariate form.  

4.2. Multivariate Mode 
The training and testing of the SVR+GN model were executed using temperature and humidity data along with 
solar irradiance and power output data in multivariate mode.  

  
(a)                                                                                                             (b) 

 

  
(c) 

Fig. 5: Multivariate (with Temperature) Hour-ahead Solar PV Power Forecasting on (a) Sunny day, (b) Partly Sunny Day and (c) 
Overcast Day 

Fig. 5 shows the solar PV power forecasting graphs in multivariate mode using temperature data. This introduction 
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of new data in the training and testing phase had significantly affected the forecasting accuracy of the SVR+GN 
model. It can be seen that the performance of the SVR+GN model was lower than that of the other three models 
on a sunny day. However, the SVR+GN model was able to recover its performance on a partly sunny and overcast 
day. Graphs in Fig. 5(b) and Fig. 5(c) depict the forecasted power by the SVR+GN model was very close to the 
original power values as compared to the forecasted power by SVR, persistence and non-linear models. 

Further, in the multivariate mode, the humidity data was also introduced along with solar insolation, power output 
and temperature data. The performance of all the models against the original power output of the UQ’s solar PV 
plant is shown in Fig. 6. 

  
(a) (b) 

 

 
(c) 

Fig. 6: Multivariate (with Temperature and Humidity) Hour-ahead Solar PV Power Forecasting on (a) Sunny day, (b) Partly 
Sunny Day and (c) Overcast Day 

On a sunny day, the performance of the SVR+GN model was lower, however again it was able to perform better 
on a partly sunny and overcast day. Changes in the performance of SVR+GN and SVR models depending on the 
training data are evidently visible in Fig. 4, Fig. 5 and Fig. 6.  

Generally, the solar PV power output is directly dependent on the solar insolation received by that PV. Though, 
temperature and humidity affect the solar PV power output; temperature and humidity does not affect the solar 
PV power output to a great extent. Solar insolation plays the main part in the solar PV power output. Interestingly, 
the performance of the SVR+GN model degraded as the data on which the solar PV output is less dependable like 
temperature and humidity data was added. However, the performance of the simple SVR model got better as the 
input data for the forecasting model were extended. Providing more data in the training phase for the SVR model 
did improve the accuracy of the forecasting. Whereas, the proposed SVR+GN model performed better and 
provided better accuracy in its bivariate form where no additional data or long data were needed in the training 
and testing phase.  

Error Parameters for multivariate hour-ahead solar PV power forecasting are given in Tab. 3. The error parameters 
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for SVR+GN and simple SVR models were calculated separately for temperature and temperature+humidity data. 
Notably, the values for MAPE on a sunny day for SVR+GN were increased by more than three times when the 
temperature data was added in training and testing the model. Whereas, MAPE for the SVR model with both 
temperature and temperature+humidity data were lowered than that in bivariate mode.  

Tab. 3: Error Parameters for Multivariate Hour-ahead Solar PV Power Forecasting 

Weather Error 
Parameter 

SVR+GN SVR 

Persistence Non-
Linear Temperature 

Temperature 

+Humidity 
Temperature 

Temperature 

+Humidity 

Sunny 
Day 

MAPE 8.03 7.17 3.07 3.02 0.55 3.68 

MRE 5.94 5.28 2.25 2.21 0.40 2.70 

RMSE 25.97 23.27 10.49 10.41 2.08 12.42 

MAE 25.78 22.93 9.76 9.59 1.75 11.71 

Partly 
Sunny 
Day 

MAPE 2.45 2.47 2.35 2.48 2.74 2.35 

MRE 1.68 1.71 1.62 1.71 1.90 1.62 

RMSE 11.80 12.60 11.69 11.50 16.65 11.73 

MAE 7.30 7.35 7.02 7.43 8.26 7.02 

Overcast 
Day 

MAPE 21.17 29.05 17.84 21.43 23.11 44.97 

MRE 7.22 9.76 5.28 5.87 7.40 15.04 

RMSE 35.11 46.13 29.98 31.02 44.82 69.36 

MAE 31.35 42.34 22.90 25.47 32.13 65.27 

 

The SVR+GN model outperformed the persistence and non-linear model on a partly sunny day in terms of MAPE, 
MRE, RMSE and MAE. Moreover, if the proposed model is compared with the simple SVR model, their error 
values were mostly similar with a negligible difference.  

On the erratic overcast day, all these models seemed to fail in the performance and their accuracy was highly 
affected as evident in their high values for all error parameters.  

5. Conclusion 
Accurate solar PV power forecasting is essential for the effective integration and participation of large-scale solar 
PV plants in the electricity markets. The hour-ahead forecasting is mainly used for market clearing and precise 
power dispatch. For this purpose, a robust forecasting model is required which can provide accurate solar PV 
power forecasting in different weather conditions which requires less training data, is quickly learning and 
computationally simple.  

The SVR+GN model presented in this paper has proven to be computationally simple, quick learning and performs 
well even with less training data. The performance of this model was tested in both bivariate and multivariate 
modes. The proposed model was compared with simple SVR, non-linear and persistence models and the SVR+GN 
model outperformed simple SVR and non-linear models. In the multivariate mode, the SVR+GN model had higher 
accuracy than all other models it was compared with on a partly sunny day. This model proved its robustness with 
lower error parameters like MAPE, MAE, MRSE and MRE. Moreover, the SVR+GN model gave the best 
performance on the unreliable overcast day when all models failed to provide accurate forecasting.  

To further improve the accuracy of power forecasting, the SVR and other machine learning models need more 
data to train. In contrast, the presented SVR+GN model performed much better in simple bivariate form. This 
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model has even further potential to improve its forecasting accuracy by monitoring the residual between actual 
and trained data.  
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