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Abstract 

The paper discusses research efforts in combining recent progress in Artificial Intelligence with automated 

management of solar energy generated in grid-connected photovoltaic (PV) systems along with their operation-

and-maintenance (O&M) and their smart on-grid integration control. The outlined research aligns with the 

strategy of the European Union joining Digital and Green agendas as two major pillars for the COVID-19 

economic recovery in the EU and is a part of the EU funded standardization action under the H2020 StandICT 

programme coordinated by the author and hosted by the Smart Energy Standards Group of the European 

Information Technologies Certification Institute (EITCI SESG) in cooperation with the European Solar 

Network. It also contributes to one of the four primary objectives of the European Green Deal, i.e. to achieve 

a fully integrated, interconnected and digitalized EU energy market by increasing research oriented towards 

technical reference standardization aimed at consolidation of the expert community and the technology uptake. 
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1. Introduction 

A grid-connected PV system is generating electricity from the solar irradiation while being interconnected to 

the utility electric power grid. It generally consists of solar panels (PV modules), inverters, power conditioning 

units and grid connection equipment. Such PV systems range from small residential and commercial rooftop 

installations to large industrial-scale solar power-plants. Unlike stand-alone (off-grid) PV power systems, a 

grid-connected system does not have to include integrated batteries. Thus whenever the solar irradiation 

conditions admit it, the grid-connected PV system automatically supplies the excess power beyond 

consumption by the connected load, to the utility electric grid, turning a consumer into a prosumer, thus 

transforming the energy market to a highly distributed model and introducing a dual concept of Distributed / 

Renewable Energy Sources (DES/RES). Increasing automation of the PV solar power generated in-grid 

feeding control, operative optimization and maintenance has been recently dubbed smart PV, although in terms 

of in-grid feeding control it is mainly based on the developments of the smart grid achievements. The paper 

studies progress on research results in this area enabling undertaking and advancing international 

standardization efforts regarding PV systems grid-integration, as well as pronounces the need for extending 

these technical reference standards towards Artificial Intelligence assisted smart control over PV systems in 

solar power plants, PV integrated industrial buildings and the prosumer residential homes PV installations. A 

progress towards AI assisted smart PV systems in Deep Machine Learning and Neural Network models trained 

on a feedback loop of operational parameters for O&M and the in-grid (smart grid) power feeding is expected 

to contribute to increasing the solar energy uptake rates in parallel to continuously impressive PV modules 

efficiency-to-cost ratios growth. 

2. AI assisted smart PV modules research and standardization 

Magnitude of various PV modules and inverters equipment producers develop their own systems of automated 

O&M and control processes. Many solar modules producers embed electronics into PV modules. Such systems 

(smart modules) enable maximum power point tracking (MPPT) along with monitoring of performance data 

for fault detection at a module level (cf. Dhoke, 2019). Some of these systems make use of power optimizers 

to maximize generated power outputs. With recent PV advancements the related electronics with a proper 

analytical software can compensate e.g. for shadows falling partially on a section of a solar module causing 

drop of electrical output of one or more strings of cells, but not zeroing the output of the entire module. A 

smart PV system should automatically control all its sophisticated operation parameters, including central or 

module-level MPPT, discover, diagnose and neutralize faults, hence improving its total efficiency, lowering 
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O&M costs and increasing revenues. Main features of smart PV systems are automation, digitization and 

intelligence, optimally based on latest developments in AI applications (neural-networks big data learning 

comprising constant feedback input of all operational parameters of PV systems and their on-grid 

interconnection to AI enabled management system). The presented research aims at supporting international 

standardization efforts at a higher level of abstraction for the state of the art framework standard for deep-

learning NN AI assisted smart control over PV systems in solar power plants, PV integrated industrial buildings 

and the prosumer residential homes PV installations. Under the StandICT H2020 supported effort, researched 

multitudes of possible solutions and architectures are currently evaluated in order to propose a European 

framework of Smart PV reference standards under a newly organized Standards Developing Workgroup hosted 

by the European IT Certification Institute jointly with the European Solar Network. The project is tasked by 

the StandICT programme to conceive 2 Request for Comments standards drafts that will be iterated among 

WG experts and disseminated to other international SDOs active in the area of Smart Grids and Smart Metering 

standards with a focus on the solar power. The newly proposed Smart PV standard aims at systemizing 

conceptual architecture and implementation specification to define compatibility requirements between 

interfaces of PV modules and their associated electronic equipment control systems with inclusion of AI and 

cloud technologies. It aims in filling gaps in general smart-grid uniform communication standards mainly 

pursued by international SDOs in this field. The relevance of this research and standardization effort is in a 

direct correspondence with the EU Rolling-Plan 2020 for smart energy standardization overviewing the needs 

for digital standards in support of the EU policy for Smart Grids and Smart Metering in focus on the PV solar 

energy. Accordingly with the EU Rolling-Plan 2020 ICT standards in energy are expected to cover smart grid 

management, grid-balancing and interfacing with millions of new renewable sources in particular optimizing 

efficiency in complex processes of renewable energy systems control. These standards mainly focus on 

uniform communication and cybersecurity protocols (providing plug & play compatibility for new devices 

entering the grid, from renewable sources to electric cars or other smart devices and IoT enhancing smart 

homes, buildings or cities of the future). The current dynamic EU energy transformation is driven by two main 

factors: the energy systems becoming clean (i.e. environmentally neutral accordingly with goals of the EU 

climate and energy framework and the European Green Deal strategy of the European Commission) based on 

renewable and consumer-centric sources, primarily in a form of the solar power, and the ongoing digital/smart 

transformation of the energy and electrical grid sectors. The first factor is due to the EU energy policy 

encouraging stakeholders to adapt to an increasing number of means of generating electricity from a variety of 

renewable energy sources with minimizing environmental impact (clean energy transformation).  The key 

policy milestones for this transformation are the EU's energy and climate targets for 2030 which emphasize 

Europe's leading role in the global fight against climate change. These 2030 EU climate and energy framework 

targets include at least 40% EU domestic reduction in greenhouse gas emissions compared to 1990 (with an 

increased ambition to 55% reduction as a part of the European Green Deal of September 2020), at least 32% 

share of renewable energy consumed in the EU, at least 32,5% improvement of energy efficiency and an 

electricity interconnection targeted at 15%. In this context both the PV systems and the electricity networks 

are of key importance. In 2012 electricity represented 22% of the EU's energy consumption with renewables 

accounting for a share of 24% of gross production (with ca. 3% increase on 2011, while reaching as high as 

30.2% in 2016 and expected to grow up to 55% in 2030, correspondingly with the 2030 energy and climate 

goals and the Paris Agreement). As 2020 marked a hallmark achievement in the EU (cf. Rządkowska, A., 

October 2020) – for the first time the electricity generation mix has been dominated by renewables (at 39% 

share, exceeding by 4% the combined fossil fuels at 36% of electricity generation – as confirmed by the 

Directorate-General for Energy of the European Commission Communication of 9th April 2021) and the solar 

energy steadily increasing its stake (to 5.2% on the EU-27 level, and almost up to 10% in Italy, Greece, 

Germany and Spain), the smart PV based contribution to its efficiency is becoming even more so important.  

Furthermore the consumer position in the energy value chain has considerably changed. The energy consumer 

can now easily become a prosumer, deploying grid-connected renewable energy source (e.g. a PV system 

DES/RES), feeding the surplus of the generated energy into the utility grid. For this end with smart 

optimization of energy efficiency the digital and energy technologies need to overlap taking advantage of most 

recent developments in big data enabled AI control methods, smart homes and cities applications, energy 

intelligent products, the IoT, 5G networks, etc. It is for a reason that the EU COVID-19 strategic response is 

summarized in prioritizing two pillars: the single energy market and the digital single market combined as 

strongly interdependent and being both critical to the policy of the EU. This is where the second factor of EU 
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energy transformation through smart (AI assisted) digitization is pronounced, with digital and AI holding a 

potential to further support uptake of the solar power. Discussed efforts target a specific sector of this outlined 

in-demand technical standards of smart PV systems assisted by feedback loop trained neural networks based 

AI. An important concept for the proposed standards is defining a common cloud-based platform specification 

for distributed Smart PV operational data aggregation that will enable NN deep-learning not only on individual 

operative systems but also on the whole ecosystem of AI enabled PV devices (with properly addressed security 

and privacy issues). 

3. Current progress in smart energy and smart grids standardization 

Initiatives at standardizing concepts and technological approaches in leveraging AI methods to enable 

development of disruptive solutions in PV value chain, forming cooperative relations between individual 

experts in both fields of AI and solar energy, as well as scaling this cooperation to the level of institutional 

partnerships of research and industry stakeholders, will certainly speed uptake of the AI assisted smart PV. 

Stakeholders of potential interest in this regard (beyond international Standards Developing Organizations) 

include PV systems producers (from designs to manufacturing of single solar cells up to integration of solar 

modules and electronic systems), PV integrators and deployments companies,  operators or owners of PV 

power plants, as well as AI and PV industrial experts and researchers can cooperate exchanging supplied 

necessary data and solar subject matter expertise with AI and ML expertise. The general goal of AI assisted 

PV technology is in improving economic feasibility of the PV energy transition (e.g. by cost optimization of 

deployments and operations of solar modules), as well as increasing reliability and value of solar PV 

technologies upon their integration with advancing smart grids, enabling a shift of the energy market from a 

centralized model to a distributed one, with inclusion of prosumers in PV solar power enabled microgeneration. 

AI and ML hold a potential to tackle emerging challenges for the PV wide scale adoption. Naturally an ongoing 

identification of new applications advancing early-stage AI assisted PV technology will be taking place and 

the current initial standard drafting aims at tidying up technical directions of currently known applications and 

classifying many various approaches. The current initiation of a general level reference standard will be further 

iterated towards more mature and advanced technical reference standard, and to this the AI Smart PV group 

under the Smart Energy Standardization Group of the EITCI Institute has been established. These AI assisted 

smart PV standardization efforts  are contextualized in following preceding initiatives. In October of 2014 the 

CEN/CENELEC/ETSI's Smart Grid Coordination Group (SG-CG) successfully completed requirements of the 

EC M/490 mandate, with industry representatives confirming their will to take over and implement the results 

of the Expert-Group-1 work on the first iteration of the Smart Grid standards. Consequently, EG1 of the Smart 

Grids Task Force assessed in 2016 the interoperability, standards and functionalities applied in the large scale 

roll out of smart-energy metering in Member States and in particular the status of implementation of the 

required standardized interfaces, along with EC recommended functionalities related to the provision of 

information to consumers (summarizing report was published in October of 2015). Further coordination of 

standardization efforts related to Smart Meters was due to the Smart Meters Coordination Group (SM-CG) 

established under the M/441 mandate. The SM-CG has returned the reference architecture (TR-50572) and an 

overview of technical requirements, continuing to liaise with its successor CG-SEG (since end of 2016, the 

CEN-CENELEC-ETSI Smart Energy Grid Coordination Group took over and cooperates with the EC-SGTF). 

In September 2017 EC issued a proposal for a regulation on ENISA on Cybersecurity certification 

(Cybersecurity Act) as a voluntary mechanism framework enabling creation of individual EU-wide 

certification schemes (with a scheme indicating a specific product/service, an assurance level and a standard 

for evaluation). Such schemes are now developed to verify security properties of digital energy systems. The 

EC fostered conceiving a common interoperability language SAREF - a standard of ETSI and OneM2M. The 

CEN-CENELEC-ETSI is endowed to further align SAREF with the data models developed at ISO and IEC. 

These are initial steps to enable smart-energy grid and its adaptive demand-response operation mode. The 

standards of the discussed research will mainly provide an added value as extensions of the CENELEC / IEC-

TC CLC/TC-82 (Solar photovoltaic energy systems) and the CLC/TC-57 (Power systems management and 

associated information exchange) for power systems control equipment and systems including EMS (Energy 

Management Systems) and SCADA (Supervisory Control And Data Acquisition). Furthermore they will also 

build on CLC/TC-57 in providing amendments to the ENs on (Communication networks and systems for 

power utility automation – EN-61850), along with Application integration at electric utilities (prEN-61968), 
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energy management system application program interface (EMS-API) (prEN-61970) and on Power systems 

management and associated information exchange (EN-62351). The added value will also address the CEN-

CENELEC-ETSI Coordination Group on Smart Energy Grids, CG-SEG (incl. the M/490 and its iteration) and 

EN-IEC-61850 (Distributed Energy Resources). 

4. Concepts, architectures and use-cases of AI assisted smart PV 

Solar energy has many important advantages, but also few important drawbacks. Among the advantages, it is 

a highly efficient energy source, which significantly advanced technologically in the recent years. It is a low 

cost and highly scalable, environmental friendly technology of energy generation. The main drawbacks of PV 

are cost/energy ratios (still improving and in 2020 historically becoming the cheapest energy source on Earth, 

however in highly solar irradiated geographic areas only), intermittence of power supply and not linearly 

fluctuating power output. Solutions for the areas of problems haunting PV are under significant development 

correspondingly with new materials and nano-engineering of the solar cells designs and fabrication methods, 

battery storage (or smart grid integration enabling input of PV generated surplus power to be consumed 

somewhere else) and electronic control equipment stabilizing electric output (smart hybrid converters and other 

devices). Furthermore facing the above problems many different optimization techniques were considered and 

implemented for PV modules and installations, mainly based on standard statistic techniques combined with 

numerical and analytical methods. Many of the these optimization techniques were also implemented by PV 

installations (or even PV modules) integrated electronic circuitry embedded in inverters, hybrid inverters, 

microinverters and alike. The better the optimization performance the higher the efficiency and power output 

stability of the optimized PV system which partially mitigates the main drawbacks of the PV technology, 

especially if it is interconnected to a smart power grid. Most of the PV optimization techniques considered 

were however classical and the recent development in Artificial Intelligence and Machine Learning can bring 

important added value in terms of better optimization of the PV modules and installations operations, hence 

further limiting the disadvantages of the electric solar energy.  

The main areas in which AI can improve the PV performance are in solar cells designs and production phase, 

Planning of optimal solar cells systems deployments and optimization of solar cells operation in power 

systems. Solar cells designs and production phase comprises basic modeling of solar cells (materials, design 

and production technologies to devise new structures and designs, in terms of e.g. optimization of multi-

junction cells, that haven't been considered yet but might surpass the efficiency of the current top solar cell 

designs). Planning of optimal solar cells systems deployments is about forecasting and modeling of 

meteorological data for weather dependent insolation patterns, shading, etc. – e.g. AI assisted automated 

insolation analytics and interactive maps for smart PV deployments, optimal sizing of photovoltaic systems 

based upon AI assisted modeling. Optimization of solar cells operation in power systems concerns AI assisted 

optimization of electricity generation in solar modules within grid-connected PV systems (machine learning 

upgraded electronic circuitry for improved MPPT, fluctuations stabilization, etc.), AI for PV performance loss 

rate determination and power forecasting on a level of single solar cells, solar modules as well as whole 

installations, from private residential PV setups, up to large scale PV power plants, advanced automation and 

optimization of Operation and Maintenance (O&M) of PV installations (both small and large scale) and their 

smart on-grid integration, including AI assisted PV powerplants predictive management (using AI and machine 

learning to learn patterns in the electric fluctuations to be able to predict failures and support operations in 

terms of prevention in right time rather than mitigating failures that have already occurred), AI enabled 

concentrator PV (CPV) learned productivity under variable solar conditions, AI assisted optimization of smart 

distributed PV integration with power grids towards interconnected and digitalized energy market - towards 

energy production with consumers changed into prosumers by local power generation enabling PV, 

complemented with AI to optimize all integration processes. The examples for the latter point (smart PV 

integration with smart grids) involve many possible applications of AI, such as e.g. AI for increasing the smart 

grid awareness, machine learning methods to improve on the statistical based power grids net-load forecasting 

with enhanced behind-the-meter PV visibility (including various models, e.g. based on recurrent neural 

networks for ahead in time net-load prediction under high intermittent solar penetration in power grids), AI for 

demand response potentials with high penetration of behind-the-meter solar with storage, AI assisted PV 

integrated smart grid connectivity tracking in real-time with various machine learning methods for state and 

events tracking, AI algorithms for managing PV penetrated smart grids in a way to optimize intermittence of 

solar power with power storage control, AI assisted carbon intensity awareness in the grid power production 

for the smart PV operation integrated with intelligent energy efficiency control, AI assisted integration of smart 

meters data to increase renewable energy penetration in different parts of the power grid (data mining and 

machine learning on vast amounts of bidirectional smart electricity meters data to improve over time operation 
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parameters and physical restructuring of the power grid, towards a future of implementing automatically 

reconfigurable network topologies of electric power grids), AI assisted tokenization of virtual energy market 

(involvement of blockchain technology and smart contracts to securely tokenize prosumers generated surplus 

PV energy amounts, that physically enter the power grid but virtually enter a new generation of a distributed 

energy market with AI assisted algorithms for auctions of the energy selling/purchasing, so that the prosumers 

can gain on the transactions regarding their generated energy or possibly get it back from the grid for free in 

different locations and time), and others. Hence the approaches that can be used with applying AI to smart PV 

systems are vast and include among others: machine learning (with many variants including, supervised 

learning with classification and regression, as well as unsupervised learning with dimensionality reduction, 

clustering and association, deep learning and reinforced learning, quantum machine learning), neural networks 

(with many variants, including e.g. convolutional NNs, recurrent and feedforwarded NNs, generative 

adversarial NNs, quantum NNs), autonomous multi-agent systems (including particle swarm optimization), 

fuzzy logic (including quantum computational model based AI), expert systems (with knowledge bases and 

inference systems), evolutionary and genetic algorithms and other dynamically developed techniques and 

approaches. There is a wide consensus of advantages of new AI enabled methods over conventional statistical 

methods. An important aspect of the technical referencing of AI assisted smart PV (cf. Rządkowska, A., EITCI 

SESG AI assisted Smart PV Reference Standards, 2021) is not focusing on the theory of artificial intelligence 

and machine learning, but on practical AI applications in methods that are either ready to apply to PV 

operations or need only industrial level research and development. 

5. Concepts, architectures and use-cases of AI assisted smart PV 

Applying AI to important tasks for smart PV systems deployments and operations is undergoing significant 

investigation for several years already. The recent progress of AI may be very beneficial to support PV energy 

transition on a large scale. How exactly artificial intelligence can be successfully applied in different 

applications of photovoltaics? It should be noted that technical understanding of possible approaches is 

presently well developed however many particularities are under investigation in many currently ongoing R&D 

projects. Results of these projects will support further standardization of AI assisted smart PV. 

5.1. AI assisted modeling of solar cell devices 

This area of AI applications in PV has been discussed e.g. by Xu, 2019 or Miyake and Saeki, 2021.  

In general a physical model governed by mathematical formulation accurately describing a solar cell design is 

a critical tool in for better understanding and fine-tuning of the characteristics, performance and optimization 

of a solar cell device. AI methods can in general assist in design and fabrication of solar cells. 

A good example of how AI and machine learning supported modeling can benefit optimization of solar cells 

designs and construction is in the plasmonic enhancement of solar cells (cf. Jacak et al., 2011-2020). This can 

be well explained on a new generation of perovskite solar cells. An ordinary perovskite solar cell utilizes a 

perovskite structured compound (i.e. material with the same crystal structure as the CaTiO3 – calcium titanium 

oxide), most commonly a hybrid organic-inorganic lead or inorganic tin halide-based material. It represents an 

emerging class of thin-film photovoltaic cells. Perovskites are efficient at absorbing light and transporting 

charges which are the key material properties for producing electricity from the sunlight. In contrast to 

traditional p-n junction semiconductor solar cells (like Si cells), perovskite cells are soluble in many different 

types of solvents and remain semi-transparent after crystallization in very thin layers. As such, perovskite SCs 

may be easily ink-jet or screen printed in simple roll-to-roll processes or even sprayed onto large surfaces 

similarly like ordinary paints that when activated with chemically induced crystallization process create thin-

film layers (with the thickness below 1 μm) also relatively easily further integrated in elastic perovskite solar 

cell device. Those properties make the perovskite cells significantly cheaper in fabrication and very well suited 

to mass-output market uptake and vast applications (such as so called energy smart buildings elevations 

coverings of variety of geometries, semitransparent windows, roofs coverings, outdoor furniture, vehicles or 

even clothing external surfaces that may produce enough power from the sunlight to e.g. charge a personal 

mobile device). The main problem of the perovskite solar cells are lower efficiencies in applications-required 

chemically stable solar cell device configurations that might be greatly improved with optimized metalization 

in form of nano-particles inclusions and plasmonic energy mediation effects (cf. Jacak, 2020). This concept 

was proven specifically in perovskites in the initial experimental trials with a surprisingly strong magnitude of 

the plasmonic efficiency enhancement observed for perovskite (well beyond magnitudes in traditional p-n 
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junction solar cells) but is not yet understood in terms of physical mechanisms involved and not described in 

physical models, nor developed commercially. Here with the aid come advanced ML enabled methods for 

modeling towards optimization and fine-tuning of the possible to employ very strong plasmon photovoltaic 

enhancement in metalized perovskite solar cells. This requires development of a microscopic quantum 

mechanical model of the new channel of plasmon mediated enhancement of the PV effect in perovskites which 

was confirmed in the recent experiments, taking into account that perovskite SCs hold a strategic potential for 

the EU, which managed to secure in the recent years a very strong position in terms of global competition in 

this area. A strong increase of the perovskite SCs efficiencies (the experimental record is 40% relative increase 

due to metalization as achieved experimentally) is most probably due to the reduction of the exciton binding 

energy, but not of plasmon induced strengthening of photon absorption known from the p-n junction solar cells 

(like the metalized Si cells). On the technological side, nanoparticles would be embedded in the perovskite 

compounds close to the interface with the electron or hole absorber in the architecture of a hybrid chemical 

perovskite cell. Such cells operate in a different manner than conventional p-n junction cells, resulting in a 

different type of the plasmonic PV effect, which, however, is surprisingly strong. Application of adequate 

treatment in quantum models (e.g. the Fermi golden rule to the coupling of the dipole near-field-zone - lower 

distance than the wavelength - radiation of surface plasmons in nanoparticles to the band electrons in a nearby 

semiconductor) can lead to advancing designs with AI enabled parameter optimization in a technological fine-

tuning towards the innovative product development. This requires processing huge amount of data to account 

for most proper adjusting of the identified contributing components of this effect, an optical one present in p-

n junction cells and resolving itself mainly to a photon absorption growth, and an electrical one - the newly 

discovered in perovskite cells apparently beyond absorption in a common general microscopic model. Model 

parameters optimizing for complex system is certainly a domain in which AI and ML can excel in current stage 

of these methods and technology development. 

In general theoretical models describing solar cell device operation (in terms of physics of semiconductor 

structures involved) are primary tools in optimization of PV products efficiencies. A solar cell as a physical 

system is generally a simple semiconductor layered structure device of a p-n junction diode, producing 

electricity current from absorption of photons in a photovoltaic effect. Dominating semiconductor material in 

PV technology is the silicon - Si, either monocrystalline or polycrystalline. Depending on the complexity of 

the structure of the single-layered solar cell device (or a number of active solar cell layers in case of so-called 

multi-junction solar cell devices) the efficiencies to convert sunlight energy into electricity are between several 

percent up to even 40 percent (in complicated and expensive devices). Creating a numerical model of a solar 

cell involves most importantly its interaction with the e-m field. The e-m field simulation and its interaction 

with a semiconductor device can be done in specialized numerical methods such as the Finite Element Method 

(FEM) within a modeling suite called COMSOL. The modeling of the semiconductor device on its own is 

done in different approaches using electronic modeling tools used in electronic industry. The most important 

modeling parameters involve diode saturation current, series resistance, ideality factor, shunt resistance and 

the photocurrent (PV generated electricity). Many numerical as well as analytical approaches has been 

developed to simulate mutual interdependence of the solar cell characterizing parameters. Although the I-V 

relationship (referred to as I-V curve) is highly non-linear for solar cells which caused problems for many 

algorithms. Furthermore computational complexity for more complex devices is also problematic for a 

standard numerical approach. The more advanced approach partially based on ML and AI have been recently 

investigated with optimizing and modeling of the PV devices with a high rate of success. The currently 

identified as most promising directions were in simulated annealing combined with artificial neural networks. 

E.g. Karatape et al. developed an AI solar cell design optimization model basing on the Sandia National 

Laboratory data for PV performance in a function of operating temperatures and solar irradiation. A simple 

analysis proves that the relationship between the I-V curves is nonlinear and cannot be easily expressed 

analytically, which makes a great problem space for AI neural network to be utilized. Their 2006 paper 

proposed neural network based approach for improving the accuracy of the electrical equivalent circuit of a 

photovoltaic module, and as the equivalent circuit parameters of a PV module mainly depend on solar 

irradiation and temperature, the dependence on environmental factors of the circuit parameters was 

investigated by using a set of current–voltage curves. In a proposed model certain data points are chosen from 

the corresponding I−V curves (the selection of points is done upon a most optimal simplified but still accurate 

on the required level representation of the curve by a minimal number of points). The artificial neural network 
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model is trained with as many possible combination of operating parameters (irradiation and temperature 

operation - the neural network is trained with empirical I-V curves, and the equivalent circuit parameters are 

estimated by irradiation and temperature readouts only, without nonlinear equations solving that would be 

necessary in conventional methods). The operation of this one of the first solar cells AI models has been 

verified in an experiment with the achieved empirical data highly corresponding with the data attained from 

the NN model and what's by far surpassing the accuracy from conventional numerical approaches. The results 

of ANN training was the a possibility to model an abstract device in given parameters combination (irradiation 

in temperature) to generate in ML approach an I-V curve enabling for the data to be input to a diode solar cell 

model. Different approach is in generating I-V empirically and determining operating points using ML (based 

on operating parameters of an experimental solar cell, I-V tracer and a weather station for readouts of 

irradiation level and the temperature and comparing the readouts with data attained in a model to provide a 

learning enabling feedback. The parameters generated by the model, despite being subject to errors and 

impossibility to discriminate between the effects on the operation of a modeled solar cell device of temperature 

vs. irradiation, were still superior (about 3 times more precise) then the ones possibly obtained from 

conventional models (in terms of Townsend equations solutions). Yet another approach is with utilization of 

the simulated annealing, as proposed by El-Naggar et al. (comparable with the genetic algorithms and particle 

swarm optimization methods). The operation of simulated annealing is based on defining an objective function 

and its minimization then validated against the experimental data (the method resulted with a Root Mean 

Square Error RMSE of just 0.0017 for a single diode solar cell model, which is considered highly accurate). 

On the other hand Askarzadeh et al. has proven that the Harmony Search optimization process provides even 

better precision, with the AI optimization method aiming at imitating an improvisation in music to find a 

harmony. Accordingly with the proposal an objective function based on the single diode model was minimized 

with respect to a particular range and the Harmony Search method was able to extract the main solar cell device 

parameters with an error (RMSE) significantly smaller (below one-tenth) than obtained in the simulated 

annealing method. 

5.2. AI assisted smart PV applications in weather forecasting and automated insolation analytics 
for interactive irradiation mapping for smart PV deployments 

This scope of AI application for PV is well addressed by e.g. Choi et al. (2019). When the solar cells device is 

manufactured and integrated into a solar module its efficiency is well defined. Upon its deployment it can be 

influenced with electronic control (involving smart hybrid inverters or a single panel adequate microinverters 

involving e.g. methods of AI assisted MPPT). However before the operational AI optimization of a PV 

installation is possible, an important aspect for proper planning in deployment of PV is weather forecasting 

(which also has an important role for smart grids operations). Predicting weather is not an easy task due to the 

complexity of the system, but making some well-informed analysis enables with the use of advanced ML 

models of some reasonable short term ahead of time estimation. Furthermore quantifying average irradiation 

and temperature (as the main important, however also backed up by humidity, wind speeds influencing cloud 

coverage changing affecting irradiation, daily sunshine duration and sunlight incoming angles, etc.) conditions 

allows to estimate the parameters of the PV installation that would generated certain required power to cover 

the expected loads. Meteorological analysis and estimation of the key weather parameters is hence an important 

factor in deciding the power output of the PV installation, as these parameters have an overwhelming influence 

on the efficiency of solar cells operation. Dedicated instrumentation (pyranometer, pyrheliometer, two-axis 

solar trackers, etc. are used to directly measure global and direct solar radiation). In certain places this data is 

available from already performed measurements stored in accessible databases (e.g. a database of NREL). 

Usually however these parameters are rather difficult to be obtained for given sites because of the PV systems 

installation planned in areas were these parameters have not been measured (low availability of data) and the 

direct measurements impractical because of the high cost of the equipment. Hence AI is an important 

alternative which recently has been used in aiding of solar irradiation mapping (along with other PV important 

meteorological parameters).  How AI methods can be used to support mapping solar irradiation? Among 

multiple national and international projects there is gathered huge publicly accessible geographic data on 

insolation. An important application of AI assisted PV is employing data engineering of databases of insolation 

to provide a scalable and fast solution for computational analysis of conditioning PV parameters insolation in 

any geographical area (with using machine learning and AI estimation techniques for the low-data regions). 

An industrial case is the Project Sunroof initiated by Google as a planned extension to Google Maps product, 

 
A. Rz#dkowska / SWC 2021 / ISES Conference Proceedings (2021)



that would provide full analytics of insolation data from multiple sources joined and processed by Google 

algorithmics and merged with Google Maps. Project Sunroof was started by a Google engineer Carl Elkin. The 

initiative's purpose is mapping the planet's solar potential, one roof at a time. The Project Sunroof primarily 

works to encourage the private adoption of solar energy by providing a set of tools to facilitate the purchase 

and installation of solar panels. Using data from Google Maps to calculate shadows from nearby structures and 

trees and taking into account historical weather and temperature patterns data, the Project Sunroof calculates 

how much money a user can expect to save yearly by making use of the solar power PV installation. In addition, 

the Project Sunroof also provides a list of local solar power retailers capable of installing solar panels in that 

area. The Project Sunroof was initially launching only in the United States, for the cities of Boston, San 

Francisco, and Fresno. The project has then expanded to cover larger metropolitan areas across the United 

States and is currently developing globally. The Google’s Project Sunroof bases on the data of imagery and 

3D modeling and shade calculations from Google, weather data from the National Renewable Energy 

Laboratory (NREL), utility electricity rates information from Clean Power Research, solar pricing data from 

NREL’s Open PV Project, California Solar Initiative, and NY-Sun Open NY PV data, solar incentives data 

from relevant policy actors, Solar Renewable Energy Credit (SREC) data from Bloomberg New Energy 

Finance, SRECTrade, and relevant state authorities, aggregated and anonymized solar cost data from Aurora 

Solar software. A similar but less visual solution – PVWatts tool – was developed by the National Renewable 

Energy Laboratory (NREL). Similarly as Project Sunroof It estimates solar energy production in taking into 

account multiple factors, e.g. sun shading by objects, typical weather patterns, equipment parameters, etc. The 

estimations are based on multiple databases, in many cases with many historic data for proper predictions e.g. 

of averaged weather conditions for insolation, as well as complicated analyses for shading (algorithms take 

into account even recent growth or removal of trees to most accurately analyze solar power potential, hence 

proper datamining in AI/ML techniques is important enabler of this technology for its future development).  

Project Sunroof’s expanded its reach to Europe partnering with E.ON and released a new online tool in 

Germany based on Google’s Earth mapping to help residential customers determine whether their roof is well-

suited for solar panels and how much money they could save by installing solar. The main focus of this area 

of AI assisted smart PV is to help raising consumer solar awareness, and on making the path to solar easier for 

its customers and operations. Project Sunroof’s estimates in Europe include weather data from Meteonorm, a 

product by Meteotest, a Swiss company specializing in solar irradiance data. AI enabled extensions involve 

recent cooperation between Google and Total (French energy company with a large network of gas stations in 

Europe and in Africa). Total developed the Solar Mapper tool using AI enhanced Google solution to make 

solar potential estimation faster and easier, driving the adoption of solar power globally by using machine 

learning to model estimates in low-data areas. For an example of France the project increased the territory 

covered for solar estimation from 30% to 90% using AI, which in turns encourages solar power uptake. 

Estimating potential output of solar panels on private houses, or on commercial and industrial sites is an 

important incentive in encouraging the PV uptake worldwide. The actual AI algorithms used generative 

predictive models to enhance the 3D data used to model shade and calculate solar potential where high-quality 

satellite images are not available. By doing this, AI helps to estimate the solar output for positioning solar 

panels on any location. Principal investigator in the project is Philippe Cordier (and the team involves Google 

Earth Engine and Google Cloud machine learning experts). Also widespread adoption of rooftop photovoltaic 

systems in residential PV installations, as well as growing grid-scale solar systems requires a significant change 

in how system operators, utilities and solar system providers map system adoption, track it is impact, and plan 

new deployments. Currently available information suffers from disparities in resolutions (satellite imaging is 

usually detailed in dense populated areas but much less so in rural areas, also significantly differentiated in 

terms of countries). It also often lacks crucial details about time and location. The availability of such 

information would change how the system is planned and managed. Artificial intelligence and machine 

learning techniques may prove to be crucial to effectively map of the optimal deployment of PV systems by 

supporting lower intensity data with estimation, thus supporting highly aware and hence optimized distribution 

networks with high accuracy and detail. The AI assisted in generation and continuously updated global 

database joining public accessible data from project such as NREL insolation database or Google’s Sunroof 

Project may be a future of aware planning of small-to-large scale solar energy deployments. Recent advances 

in AI in effective processing huge datasets enabling to combine information available at a large scale (such as 

satellite imagery, Google street view images processed with AI vision for unlocking machine-understanding 

of shading and high-resolution irradiance data from weather stations and historical measures of solar irradiation 
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parameters, hold a potential to generate a vastly optimized plans for location and size of future solar 

deployments globally thus supporting certain reconfigurations and reconstructions of the transmission lines or 

distribution grids as necessary for future deployments. This area of application holds potential especially if 

combined with high spatiotemporal granularity, which requires adjusting of most proper methods in machine 

learning approaches to process all the extremely detailed data and address a variety of applications such as 

identifying bottlenecks, estimating the hosting capacity of distribution systems, planning electric storage 

capacity in dependence to conditioning circumstances of locations, improving wholesale price predictions, and 

creating more accurate models of consumer adoption.  

5.3. AI assisted carbon intensity awareness in the grid power production for smart PV operation 

This field of AI application for smart PV has been discussed by Khana (2018) and Tuzun (2020). Prosumer 

centric, distributed energy model enabled by smart PV in standard integration with the smart grid, enables PV 

power generated surplus to be fed into the grid. The bidirectional smart meter measures the power input to the 

grid and enables intake for consumption when the electric energy is needed beyond the current capacity of the 

PV generation. In this model however the smart PV and energy consuming appliances integrated installation 

does not know when it is most optimal to actually use the energy generated In surplus that would be fed to the 

grid. This requires awareness not only on electric net loads in the grid but also awareness of when the grid 

power has the smallest CO2 footprint.  The resolution of the carbon intensity forecast is required to be at least 

on a regional level for the technology to allow prosumer installations to actually condition their energy 

consumption on this environmental factor. For the technology to work AI and Machine Learning is a key 

enabler, because of a sophisticated power system modelling required to accurately to forecast the carbon 

intensity and generation mix up to 4 days ahead for individual regions. Such achievement had been already 

introduced in Great Britain in terms of the Carbon Intensity API project (of the UK National Grid ESO). The 

outcomes of the project are successful to the extent that the UK National Grid has produced and delivered 

thousands of WiFi connected bulbs that change the emitted light color to green whenever the electricity in the 

grid is dominantly from low-carbon sources (thus giving a signal that it is a good and environmentally clean 

time to do a laundry in a washing machine, to turn on a dish washer or to start charging an electric car – in 

smart home integrated IoT, all this would be automatic along with properly managing surplus of power 

generated by AI assisted and interconnected PV installation accordingly with the awareness of the current 

regarding the carbon intensity of grid power). The open API of the project enables prosumers and smart devices 

to schedule energy consumption in coupling with smart PV local power generation in order to minimize CO 

emissions at a regional level. The data in the API estimate and indicative trend of regional carbon intensity of 

the electricity system in 96 hours ahead of real-time, thus providing programmatic and timely access to both 

forecast and estimated carbon intensity data (limited to electricity generation only). The CO2 emissions (within 

a measure of how much of CO2 is produced per kilowatt hour of electricity consumed) are gathered from all 

large metered power stations, interconnector imports, transmission and distribution losses, and account for 

national electricity demand, embedded wind and solar generation. The API allow developers to produce 

applications that enable consumers or smart devices to optimize their behavior in such a way as to minimize 

CO2 emissions. While the actual value is the estimated carbon intensity from metered generation, the more 

ambitions target is the time-ahead forecast value. Since the carbon intensity of electricity is sensitive to small 

changes in carbon-intensive generation. Carbon intensity varies by hour, day, and season due to changes in 

electricity demand, low carbon generation (wind, solar, hydro, nuclear, biomass) and conventional generation. 

National Grid ESO forecasts the carbon intensity and generation mix of electricity consumed across 14 

geographical regions in Great Britain. The spatial and temporal characteristics of carbon intensity can be 

visualized on maps or be transferred in computational datasets. How the AI and Machine Learning techniques 

are actually involved in this application? The demand and generation by fuel type (gas, coal, wind, nuclear, 

solar etc.) for each region is forecast several days ahead at 30-min temporal resolution using an ensemble of 

state-of-the-art supervised Machine Learning (ML) regression models. An advanced model ensembling 

technique is used to blend the ML models to generate a new optimized meta-model. The forecasts are updated 

every 30 mins using a nowcasting technique to adjust the forecasts a short period ahead. To estimate the carbon 

intensity of electricity consumed in each region, a reduced GB network model is used to calculate the power 

flows across the network. This considers the active and reactive power flows, system losses, and the impedance 

characteristics of the network. The carbon intensity of both active power flows (gCO /kWh) and reactive power 

flows (gCO /kVArh) is then calculated and the CO flows are attributed around the network for each 30 min 
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period over the next several days. The carbon intensity of the power consumed in each region is then 

determined. The same approach is used to estimate the proportion of each fuel type consumed in each region. 

A more detailed description of the Carbon Intensity API methodology can be found in reports by Rogers, A., 

Bruce, A., et al., 2021. 

5.4. AI assisted integration of smart meters data to increase renewable energy penetration 

One of the important applications of AI for smart PV is the use of machine learning techniques to process 

(including joining, synchronizing, standardizing and interpolating) electric data from numerous sources 

(especially smart meters) in order to more accurately estimate the state of the electric grid. This will ultimately 

support efficiency for interconnection and/or operation of more PV systems and other Distributed Energy 

Resources (DER) in power grid while simultaneously enhancing reliability, stability and resiliency of power 

provision. This area of AI application involves measurements and sensor data synchronization, data mining 

for error detection and identification, data based reasoning and machine learning based optimization. Vast 

amounts of the smart meters data provided by the Advanced Metering Infrastructure (AMI) and Phasor 

Measurement Units (PMU) is a great target for AI assisted processing, reasoning and optimization methods 

that will lead to significant increase of smart PV installations grid-integration efficiency and scale. The scope 

discussed has been addressed by e.g. Boza et al. (2021), as well as Bañales et al. (2021). 

5.5. AI assisted PV powerplants predictive Operation and Maintenance (O&M) optimization 

AI and ML methods are well suited optimize O&M of photovoltaic (PV) power plants by detecting, classifying 

and monitoring anomalies and malfunctions along with the prediction and mitigation. The AI systems can 

predict failures and prevent their occurrence based on vast data processing abilities with well-informed 

reasoning on the reasons and circumstances preceding possible malfunctions. Such predictive AI O&M 

solutions is of critical importance for industry-level PV power plants with large number of solar cells modules 

and complex interconnection systems, as due to the machine learning capabilities the system would 

increasingly better predict failures and allow to schedule proper maintenance. Predictive O&M is an important 

aspect of the smart O&M to sustain a high profile and economically optimized performance of a solar PV plant 

and reduce its downtime. Real-time monitoring data of various system outputs, such as the as power output, 

other more detailed probing of the electricity signature, detection of fluctuation patterns, temperature sensors 

readouts, combined with accurate weather information sensor networks can be meaningfully processed by AI 

algorithms in neural networks models trained and self-improving in identification of the common fault class 

patterns. The most adequate systems are various models of neural networks as well as hierarchical generative 

models and as proposed in recent projects – probabilistic information fusion framework fed with data from 

both the sensor level and the system level. More details can be found e.g. in a paper by Chang et al. (2019). 

5.6. AI for increasing the smart grid awareness 

This area of AI application were discussed e.g. by Omitaomu and Niu (2021), as well as by Jiao (2020). AI 

and ML can be used to provide grid operators smart monitoring and decisions support in real-time analysis and 

visualization of the electric power system operations. AI assisted cloud computing enables advanced 

monitoring, while real-time analytics provide a model for leveraging multiple data sources to correlate, verify, 

and interpret system telemetry in environments with high scale and low data fidelity. Machine learning is 

especially well applied in such areas as fluctuations in data can be detected with increasing accuracy of 

prediction with increasing history of operations and available data. Experience from systems design in related 

fields shows that in sufficiently complex systems, no single data source can be entirely accurate or trustworthy, 

but an approach that leverages multiple sources and applies intelligent data interpretation can provide an 

extremely reliable, high-fidelity systems view. This area of application of AI for smart monitoring along with 

capabilities in integrated power system simulation and data analytics with machine learning or deep learning 

enables provision of advanced, integrated situational awareness for the distribution grid and contributions to 

area-wide flexibility. 

5.7. AI for PV performance loss rate determination and power forecasting 

This area of applying AI is by using spatiotemporal Graph Neural Network models in a so-called Reliable 

System-Topology-Aware Learning Framework. More details in this regard has been presented by the US 

Department of Energy Project: Robust PV Performance Loss Rate Prediction: Using Spatiotemporal Graph 

Neural Network Models in a Reliable System-Topology-Aware Learning Framework (DE-EE0009353, 2021). 
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A similar discussion can be also found in a paper by Zhou et al. (2021). The AI and ML techniques are used 

to analyze data from a large number of neighboring PV systems in order to extract high amounts of information 

about their short- and long-term performance. Machine learning methods are planned to be used to overcome 

data quality issues affecting individual plants. Development of spatiotemporal Graph Neural Network models 

addresses critical questions of long- and short-term performance for fleets of PV plants for their operators and 

also for the grid status determination. The proposed learning techniques advance both analytical techniques 

for long-term performance of PV power plants and deep learning techniques, and can mitigate the negative 

impact of PV plant or sensor failure or unreliable input data.  

5.8. Deep Learning probabilistic net load forecasting with enhanced behind-the-meter PV visibility 

Another area of AI application for PV (as introduced by Kirschen et al. in 2018 and developed further by Cha 

and Joo in 2021) is using machine learning and deep learning techniques to predict the electric load one day in 

advance in areas that have large amounts of behind-the-meter solar. The AI predicted information on the future 

net load will allow operators (or AI supported control systems) to manage the electric grid more efficiently (in 

terms of compensating loads and costs). The deep learning based probabilistic forecasting framework for a day 

ahead net load at substations aims at separation of the behind-the-meter photovoltaic generation from net load 

measurements and quantifies its impact on net load patterns. Actual AI DL applications requires 

implementation of the transfer learning models that would enable transferring the knowledge learned from 

geographic locations with rich sensor data to diverse locations where only the substation measurements are 

available. The framework could be validated using measurement data from public grid databases as well as 

basing on the Solar Forecast Arbiter platform.  

5.9. AI for demand response potentials with behind-the-meter solar with storage high penetration 

This aspect of AI application assisting smart PV (discussed in detail by Wattam et al. in 2020, as well as by 

Esnaola-Gonzalez et al., and Prabadevi et al. in 2021) is based on machine learning techniques to predict the 

electric load in areas with large amounts of solar energy to enable more efficient grid operation. ML application 

will also be able to forecast the capacity available to the grid from electric loads that can be turned on or off 

depending on the balance between electric demand and generation. Recent advances in AI modelling can 

enhance the accuracy of net load forecasting, the observability of net load variability, and the understanding 

of the coupling between net load and demand response potentials. There are two models under development 

for addressing hybrid probabilistic forecasting which can provide better spatiotemporal information.  

5.10. AI assisted PV integrated smart grid connectivity tracking in real-time with heterogeneous data 
sources by application of graph learning assisted state and event tracking 

Another scope of AI application in smart grid integrated PV is for its connectivity tracking in real-time with 

heterogeneous data sources by application of graph learning assisted state and event tracking. This area has 

been recently researched by i.a. Albayati et al. (2021), Koshy et al. (2021), as well as Esenogho et al. (2022). 

Machine learning techniques enable integration of large-scale electric data and use it to calculate the overall 

state of the electric network. This scope partially expands on the Operations & Maintenance (O&M) AI 

smartPV application but addresses it from a specific perspective of graph based learning which might be 

especially adequate to a grid graph-like topology. The resulting AI enabled tool will detect connectivity 

changes and faults in the grid and update the grid models accordingly, which will improve the situational 

awareness of power grids with large amounts of solar energy by exploiting a large volume of data and 

measurements available from a highly diverse set of sources (especially in terms of measured characteristics 

of the electricity in the grid). This scope of AI application for smart PV also considers tools to detect, identify 

and track network topology changes, that might be due to unexpected disturbances or switching events by 

exploiting the recently developed sparse estimation methods in the data analytics area. 

5.11. Variational recurrent neural network based net-load prediction under high solar penetration 

A different in applications is using artificial intelligence and machine learning techniques to create tools that 

can predict future electric loads (e.g. in scale of hours or days) in areas with large amounts of behind-the-meter 

PV systems and deliver savings in the operation of the electric network. There are proposed concepts (e.g. Liu 

et al., 2019) in development and validating of variational recurrent model-based algorithm for time-series 

forecasting of net-load under high solar penetration scenarios. In uncertainty of cloud covering weather 

conditions, varying solar irradiance, geographical information with details including shading, and the measured 
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end-use load may theoretically guarantee tight bounds on the net-load prediction, that can be obtained from 

vast datamining and properly trained machine learning models working on that data jointly.  

 

5.12. AI enabled concentrator PV (CPV) learned productivity under variable solar conditions 

Beyond standard PV installations, artificial intelligence and machine learning techniques can be used also to 

model and optimize concentrator PV plants operations in order to assist human operators in their decisions, 

especially during variable cloudiness conditions. The machine learning techniques can be applied to extensive, 

high-resolution, inferred DNI data, cloud profile and vector data, and related solar field thermal collection data 

in order to develop prescriptive models to optimize solar field collection under variable conditions while 

minimizing long-term PV receiver damages and other negative effects. Validation of methods that can be used 

to this end for CPV are currently underway in regard to operating concentrating solar power (thermal) CSP 

facilities and start to publish methodological details for broader investigations. Even though that there are 

certain differences in concentrating solar power for thermal and PV applications (the former being usually 

central while, the latter much more distributed into multiple lower-power PV receivers), certain disadvantages 

of the CSP vs CPV (including environmental issues), seem to favor the latter at least in a long term of the 

technology development, and AI assistive role in optimization of CPV operations is certainly an important 

aspect. More details in this regard can be found in papers by Renno et al. (2020) and Tina et al. (2021). 

AI advances to improve and further optimize the performance and reliability of individual solar cells, solar 

modules and PV small-to-large scale installations (from residential to utility power plants), along with AI 

enabled predictions of solar energy output and electric-network situational awareness (also including the 

awareness of how clean the energy in the grid is in the current moment along with ML prediction for ahead of 

time, to enable smarted AI assisted energy consumption management for reducing emissions) play an 

important role in supporting large scale PV energy transition. The current cooperation which is beginning to 

scale internationally between AI experts and solar energy industry stakeholders will be further stimulated by 

the relevant technical standardization efforts, with a goal to advance AI smart assisted PV technology. The 

standardization activity in the scope of AI assisted smart PV will facilitate its faster market uptake and speed 

up the clean energy transition globally. 
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