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Abstract 

Greenhouses are productive facilities very suitable for the consideration of distributed schemes for their energy 
management, including solar radiation as one of their main primary sources. This paper focuses on the optimal 
sizing and control of solar–biomass heating networks to be used in greenhouse environments. The methodology 
employed is a bi-level optimization strategy in which the lower layer, which is based on the energy hubs concept, 
is responsible for the optimal dispatch of the heating network, trying to reduce the operating costs while meeting 
demand. The upper layer includes a surrogate optimization algorithm in charge of performing the optimal sizing 
of the heating network to minimize the investment and long-term operating costs. Besides, this optimization 
problem includes some constraints such as the minimum desired solar fraction. A case study based on real facilities 
located in Almería (Southeast of Spain) is employed as an application example in order to show the promising 
outcomes achieved with the proposed methodology. The preliminary results are analyzed, regarding the economic 
viability, by means of the discount payback time and Levelized cost of energy.   

Keywords: District heating, Energy hubs, Multi-level optimization, Sizing, Process Control. 

1. Introduction 
It has become clear in recent years the growing concern about building a sustainable and efficient energy sector. 
In this new panorama, renewable energies and carbon-neutral technologies play a major role in reducing emissions 
and in the transition to the energy sector of the future. Among the different options, solar–biomass cogeneration 
plants have emerged as an effective solution to sustainably supply heat to industries (Tilahun et al. 2021, Gil et 
al. 2021); especially in semi-arid areas where the availability of solar irradiance is high (Mouaky and Rachek, 
2020). In such locations, these facilities and greenhouses synergize with each other, and an opportunity presents 
itself to use agricultural residues as biomass (Vallios, 2009). In addition to the above, these hybrid schemes are 
also very suitable even for isolated greenhouses thanks to the integration of storage systems (Sethi et al. 2013). 
Nevertheless, to exploit the benefits of these hybrid plants, it is important to i) optimally manage the energy 
generation and dispatch according to the resources available at each moment, through adequate control systems, 
and ii) reduce the investment costs through an appropriate optimal design.  

Until now, there are few studies in the literature dealing with the optimal design or control of these kinds of hybrid 
facilities (Suresh et al., 2019; Tilahun et al. 2021). Moreover, the methodologies presented in them are mainly 
focused on the design, without paying attention to the optimal dispatch, yet the independent optimization of the 
plant size and energy management in hybrid plants can lead to performance degradation (Shu et al. 2020). The 
main reason is that hybrid systems normally present different operating modes that must be managed according 
to the available resources and energy demand to improve the operating costs. The introduction of these operating 
details in the design phase could be essential to reach correct plant designs as stated by Evins (2015). This can be 
achieved by developing optimal design procedures based on detailed process simulations. 

However, the optimal design based on these detailed simulations entails a high computational burden which stands 
out as one of the main barriers for the development of these kinds of techniques. In this regard, the use of the 
Energy Hubs (EH) concept can be a good option to formulate the dispatch problem and simulate the optimal 
operation of the system. EH is not a novel concept but it was proposed some years ago to refer to any system in 
which input energy or material flows can be converted into certain output resources and stored (Geidl et al. 2006). 
Based on the internal structure, it is possible to establish a mathematical model to represent these processes 
together with the physical constraints of the system. What is more, each system’s component can be characterized 
by a static or time-varying conversion factor, hence the computational burden of the problem is considerably 
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reduced. As a result, EH is a wide applicability concept for systems including energy or material resources in 
which certain variables can be controlled, and others not, as the hybrid facility at hand in this study. 

Even though the use of the EH approach can diminish the computational burden of the simulations, for design 
purposes, the system´s simulations are used to adjust the sizing parameters (i.e., solar field area, biomass power 
system). This could give rise to a problem when using optimization frameworks to perform the design, as these 
techniques require many simulations before converging and meeting given performance requirements. 
Consequently, the use of conventional optimization methods is often impractical and even prohibitive because of 
time requirements. This issue can be alleviated by using the so-called surrogate optimization approach, which 
diminishes the number of time-consuming cost function evaluations by using models that reliably represent it in 
a much simpler and analytically tractable way (Queipo et al., 2005). 

By following the aforementioned ideas, this paper presents a bi-level optimization technique for the optimal sizing 
and control of solar–biomass heating networks in the environment of greenhouses. This technique takes into 
account the interdependencies and relations among the design and the operating phases to obtain suitable 
solutions. To do that, the upper layer employs a surrogate optimization algorithm in charge of selecting the optimal 
design of the heating network. This algorithm is connected to a lower optimization layer that uses the energy hubs 
approach to determine how energy should be dispatched. Thus, the objective functions of the two layers consider 
both the operating and investment costs of a case study based on an “Almería-type” greenhouse, which has been 
chosen to exemplify this methodology. It must be remarked that the formulation of the EH dispatch problem is 
the main progress and contribution in relation to our previous work in Gil et al. (2021), in which the dispatch 
problem was solved through a rule-based controller.   

The rest of the paper is organized as follows: Section 2 presents the case study, the formulation of the management 
and design problems, and describes the proposed bi-level optimization technique. Besides, it also depicts the main 
performance metrics used to evaluate the adequacy of the solution provided by the algorithm. Section 3 shows the 
results obtained with the application of the proposed technique to the case study, and, finally, Section 4 
summarizes the main findings. 

2.  Material and methods 

2.1. Case study 
In this study, a hybrid thermal network including a biomass boiler and a solar thermal field is employed to meet 
the demand of a greenhouse. This demand is associated to the thermal energy required to maintain the desired 
temperature range for the crops. Fig. 1 presents the schematic diagram of the case study.  

 
Fig. 1: Schematic diagram of the case study. 
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As can be observed in Fig. 1, the case study is composed of an “Almeria-type” greenhouse, a solar thermal field 
of flat-plate collectors, and a biomass boiler. The solar field and biomass boiler act as producer agents regarding 
the heating network, whereas the greenhouse is a heat consumer. The possibility of storing thermal energy is also 
contemplated. Besides, the electricity network is included to satisfy the needs of the solar field pumping systems.  
It should be remarked that all these facilities are based on real plants located in the Almeria province (Southeast 
of Spain) and they were fully described and modelled by Rodriguez et al. (2015), Sánchez-Molina et al. (2014), 
and Gil et al. (2020). In this way, the case study constitutes a real representative environment that allows us to 
encompass actual experiences and production concerns, which is of vital importance to validate the adequacy of 
the proposed method and the applicability of the obtained results. 

2.2. Bi-level optimization framework 
The main objective of this work is to develop a bi-level optimization technique that exploit the synergies between 
the design and operational phases. For this purpose, the developed algorithm has been divided into two layers 
related to each other as shown in Fig. 2 (see Plant design and energy hub blocks in the figure).  

 
Fig. 2: Schematic diagram of the proposed bi-level framework. 

In the proposed framework, first, the thermal energy demand of the greenhouse is calculated by using a validated 
model of an “Almeria-type” greenhouse. The reader is referred to Rodriguez’s et al. work (2015) in which the 
model was fully described. Note that it has not been included in this work for the sake of brevity. Besides, a 
meteorological dataset of the selected location is required to simulate this model and the heating network’s. Then, 
the communication between layers within the bi-level optimization framework can be depicted as follows:  
 

i. The sizing parameters (i.e., storage capacity, solar field size, and biomass boiler power) provided by the 
design optimization algorithm (plant design block in Fig. 2) are sent to the lower layer (energy hub block 
in Fig. 2). 

ii. In the lower layer, the sizing parameters are used to configure the EH model of the system and the optimal 
dispatch (trying to minimize the operating costs) is performed through a Mixed Integer Linear 
Programming (MILP) optimization problem. Once the dispatch is finished, the results in terms of 
operating costs are sent to the sizing layer in order to calculate the new value of the objective function.   

 
The procedure described above is repeated continuously until the optimization algorithm of the design layer 
converges to the global solution. The following subsections describe each of the blocks of the bi-level optimization 
technique as well as the optimization problem included in each one.   
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2.3. Energy hub model and control problem formulation 
The model for scheduling the energy dispatch is based on the general approach presented previously by Ramos-
Teodoro et al. (2018), which has been adapted for the greenhouse environment (Fig. 1). By using this approach,  
each of the system’s components can be modelled through one or several (in case more than one type of energy 
is required) input ports, referred to any kind of energy stream; a conversion factor, for modelling the conversion 
of energy or resources; and an output port, which represents the demand of any kind of energy. Thus, as illustrated 
in Fig. 3 and depicted in Tab. 1, the energy hub of the case study counts with electricity (!!) coming from the 
public utility grid, solar radiation, (!"), and biomass (!#) as inputs; and with electricity ("!) and heat ("") as 
outputs. Note that "! is only an actual consumption if the field of solar collectors is activated (#$,!) to produce 
heat.  

 
Fig. 3: EH characterization of the case study. 

Tab. 1: EH inputs and outputs description.  

Index Inputs (Ii in Fig. 3) Outputs (Oi  in Fig. 3) 

1 Electricity from the power grid [kW] Electricity for the solar 
collectors [kW] 

2 Incident radiant power on the solar facility [kW] Thermal power for the 
greenhouse [kW] 

3 Wood pellets for the biomass boiler [kg/h] - 

 
 
The conversion and storage processes are expressed as in equations (1) and (2), respectively. These are matrixial 
expressions where $, %&, %', and & are vectors whose size depend on the number of outputs (see Fig. 3 and Tab. 
1), ' is a vector that depends on the system’s structure (readers are referred to Ramos-Teodoro’s et al. study for 
clarification), (((k) is the identity matrix with the element (1,1) substituted by (),*, and the remaining matrixes 
express losses in conversion ()), charging ()&), discharging ()') and storing ()+) operations. 
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								(((,)$(,) = )(,)'(,) − %&(,) + %'(,)                     (eq. 1) 

&(, + 1) = )+(,)&(,) + )&(,)%&(,) − )'(,)%'(,)        (eq. 2) 

It is important to remark that the conversion factor of the solar field can be easily calculated by using the thermal 
collector efficiency equation (Allouhi et al. 2017), whereas the one of the biomass boiler can be computed 
according to boiler’s overall efficiency and the Lower Heating Value (LHV) of the biomass. Both efficiency 
parameters are given by: 

2,-(,) = 	2. − 3! ∙ 5
/!(1)3/"(1)

4(1)
6 − 3! ∙ 5

(/!(1)3/"(1))#

4(1)
6        (eq. 3) 

255 = 25 ∙ 789                                                            (eq. 4) 

Where 2,- is the conversion factor of the solar collector field, which relates the radiant power received by this 
system and the corresponding thermal power delivered. 2. is the solar collector optical efficiency, 3! is a thermal 
losses parameter (W·m-2·K-1), 3" is also a thermal losses parameter (W·m-2·K-2), :6 and :7 are the mean and 
ambient temperature (oC), respectively, and ; is the incident irradiance (W·m-2). On the other hand, 255 is he 
biomass boiler efficiency, which relates the biomass flow and the heat flux generated, and 25 is he boiler 
efficiency. 
 
Moreover, and following with the EH formulation, equation (5) relates input vector < with vector ': 

<(,) = )8'(,)                                                            (eq. 5) 

In addition to the equations that limit the flows through either conversion or storage devices, the storage and 
selling capacity, and the availability of input resources, which for the sake of conciseness are not included in this 
work; equation (4) is required to avoid charging and discharging, at the same time, the heat storage device. 

#9,"(,) + #:,"(,) ≤ 1                                                            (eq. 6) 

Finally, the optimization problem is defined by means of equation (7) that includes de economic cost of acquiring 
resources (>(?)). 
 

@AB	 ∑ >(,)<(,)";
1<!                                                              (eq. 7) 

      s.t.  the above restrictions 

2.3. Design optimization problem 
The objective of the design optimization problem consists of computing the sizing parameters that provide the 
lower costs, including both operating and investment costs, while meeting demand. For this purpose, the 
optimization problem can be posed as follows: 

@íB	E = F=>?(G) + ∑
@$%(A)B@!(A)

(!BC)&
D
1<!                                    (eq. 8) 

     s.t.   
HI(G) ≥ HI6=>                                                          (eq. 9) 

GEFG ≤ G ≤ GHI                                                          (eq. 10) 

 

In this formulation,  F=>? is referred to the investment costs, F.J to the operating costs, and F6	to the maintenance 
costs. The two last costs are expanded in a time horizon, referred by symbol N in the formulation, considering a 
discount rate denoted by r. The vector of decision variables (x) is composed of the solar field size, the biomass 
system’s maximum power, and the capacity of the thermal storage system. In addition, the optimization problem 
is subject to some constraints related to the Solar Fraction (SF), where HI6=> represents the minimum desired 
value, and the limits of the decision variables, where GEFG and GHI are referred to the lower and upper limits, 
respectively. It should be remarked that, to solve this problem, the surrogateopt solver of MATLAB software 
(MATLAB, 2020) was used since the evaluation of the objective function is time-consuming. 

2.4 Performance metrics 

To assess the viability of the solution provided by the bi-level optimization technique, two different economic 
metrics has been selected. The first one is the well-known index Levelized Cost of Heat (LCOH). This metric 
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provides information about the cost of energy production, and can be calculated as the ratio between the total life 
cycle cost and the total lifetime energy produced by the power facility as follows: 

										7F"8 =	
!KLM+∑

OPQ+OS
(1+U)V

W
V=1

∑ Y
(1+U)V

W
V=1

                                                                     (eq. 11) 

Where Q is the heat (kWh) delivered by the system (i.e., solar field or biomass power generation system) under 
study, and the rest of the parameters has been defined previously. 

Besides, the inherent risk of the project has been also evaluated by using the discount payback time. This metric 
determines when profit generations starts or, in other words, when the cash flow turns positive. The discount 
payback time can be calculated by using the Cash Flow (CF) per year, which is given by: 

									"#(%) = 	−"#$%(%) + ∑
&	(Z[&(\)(]^_`ab]

(+),)c
#
./+ 				∀%{1, … , 0}     (eq. 12) 

Where i is the year under study, and F,d?=>e, is related to the savings obtained with the hybrid system in 
comparison with the cost of a conventional power system. It should be commented that in the first year, CF is 
negative; but the year in which the cumulative CF becomes positive, the discount payback period is reached.  

3.  Results 

3.1. Simulation set-up. 
The bi-level optimization methodology was applied to a cluster of greenhouses with a total cultivation area of 20 
ha of tomato, which serves to illustrate the developed methodology in the design of a solar–biomass heating 
system. In this cluster, the setpoint temperature to compute the heating demand of the greenhouse was stablished 
at 14 and 21 ºC for the night and day periods, respectively; typical setpoint temperatures used in agricultural 
holdings in Almería as described in Gil et al. (2021). As a preliminary approach, a time horizon of a week was 
considered in the lower layer and meteorological data of a typical week in Almería (in the winter period, which is 
the one with the highest demand for heating) was used to generate the thermal demand of the greenhouse. 
Concretely, Meteornorm v7 Typical Meteorological Year (TMY) for a representative coastal location at the 
province of Almería was used during the days 11-18 of January. 

In the upper layer (design optimization problem), the results obtained in the lower one (i.e., operating costs) were 
extrapolated to a time horizon of 20 years (which is N=20) considering a discount rate r of 0.03. These parameters 
were chosen according to Tian et al. (2018). In addition, a minimum solar fraction of 20 % was imposed to ensure 
a minimum solar energy contribution.  

To calculate the investment costs, a price of 200 €·m-2 and 62 €·kWh-1 were considered for the solar thermal field 
and storage systems (Evins, 2015), respectively. The investment cost of the biomass system was computed with 
the relation presented by Vallios et al. (2009). Then, the term F.J is the objective function value of the lower layer 
optimization problem, whereas F6 was calculated as a percentage of the investment costs using the equations 
presented by Pakere and Blumberga (2020).  

In the lower layer, the EH model was configured with ηf = 0.775, a! = 3.72 W·m-2K-1, a" = 0.016 W·m-2K-2, 
and Tg = 60 oC. Besides, ηhwas fixed at 0.8, and the LHV of the biomass at 4.86 kWh·kg-1, which corresponds 
to the heating value of pellets at 8% moist. Most of these parameters come from real experiences or certification 
from the actual facilities as reported in Gil et al. (2021).  

3.2. Optimal sizing 
As commented, the surrogateopt solver of MATLAB software (MATLAB, 2020) was used to work out the design 
optimization problem due to the high computational burden required. Besides, within de optimization procedure, 
a week of hourly data was used to simulate the system and to perform the optimal dispatch in the lower layer of 
the bi-level optimization framework. The latter was solved using intlingprog solver also from MATLAB. The 
main benefit of considering data on such a small-time scale is that it allowed us to perform a much more precise 
design of the hybrid heating network taking into account the time-varying demand of the greenhouse.  Thus, the 
optimal sizing values provided by the algorithm are presented in Tab. 2.  
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Tab. 2: Value of the optimal sizing parameters.  

Plant sizing Investment cost [€] Operating cost per week [€] 

Solar field size [m2] 7,600 1,520,000 805 

Biomass boiler maximum 
power [kW] 

5,305 563,120 21,530 

Thermal storage capacity 
[kWh] 

10,000 620,000 -  

The optimal size of the field of solar collectors was found to be 7,600 m2, the maximum power of the biomass 
system was 5,305 kW, and the thermal storage capacity was 10,000 kWh. This system configuration led to total 
investment cost of 2,703,120 €, of which around 58 % corresponded to the costs of the solar collector field, 20 
% to the ones of the biomass system, and 22 % to the ones of the thermal storage system.  

3.3. Optimal management 
This section presents the performance of the hybrid system in daily operation, which was optimally managed 
through the lower layer of the bi-level optimization framework. The optimal scheduling performed by the EH 
management technique is presented in Fig. 4. In this figure, the first graph presents the irradiance (yellow bars) 
and the charge level of the storage tank (green dashed line), whereas the second one reflects the greenhouse 
demand (red area) and the production of the solar and biomass systems (which are represented by light and dark 
green bars, respectively).   

 
Fig. 4: Daily simulation 

One should take into account that the main particularity that happens in this case study is that the demand of the 
greenhouse and the solar field production are decoupled in time as observed in Fig. 4. By and large, the demand 
of the greenhouse is mostly produced at night when the ambient temperature is low, so that an additional supply 
of thermal energy is needed to maintain the desired temperature for crops. This disparity supports the application 
of the developed bi-level optimization technique using an hourly basis simulation. 
 
Regarding the dispatch performed by the EH optimization method, on the first day, all the demand of the 
greenhouse was supplied by the biomass system since there was no thermal energy stored in the storage tank.  In 
addition, as the level of irradiance was very low (below 250 W·m-2 as the sky was overcast) the solar field was 
not used along the day. Thus, during the second night, all the demand was covered by the biomass system again. 
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In contrast, on the second day, the panorama was different since the solar field could be turned on. In this way, 
the energy delivered by this system was stored in the storage system being then used during the night to partially 
cover the greenhouse demand. This allowed us to reduce the biomass system’s contribution leading to a much 
more efficient and sustainable operation in terms of emissions to the environment. In the rest of the days, the 
behavior was similar, that is, the higher the production of the solar field, the more energy could be stored in the 
tank and, therefore, the lower the production of the biomass system. This was especially noticeable in the last day, 
where, in addition, the greenhouse demand was lower than in the previous days. 
 
3.4. Economic analysis of the solution provided by the algorithm 

The solution provided by the bi-level optimization framework must not only be technically analyzed, but also its 
economic viability must be assessed. For this aim, the LCOH and the discount payback period were studied.  

Firstly, the LCOH was calculated for each energy source using the optimal results provided by the algorithm, 
resulting in 0.052 and 0.041 €·kWh-1 for the solar and biomass systems, respectively. This confirms that the 
design carried out provided reasonable values in terms of cost of energy if one compares the obtained results with 
reference values in literature. For instance, in the work by Tilahun et al. (2021) the LCOH of a biomass system 
was studied, showing that prices of up to 0.10 €·kWh-1 could be reached depending on the price of biomass. For 
the case of the solar field, prices of around 0.35 €·kWh-1 were reported in the work by Bhusal et al. (2020).  

The obtained LCOH values can be also compared with the ones of other energy sources, mainly fossil fuels, 
employed in greenhouse environments such as natural gas or diesel. The reference LCOH of the gas natural is 
0.05 €·kWh-1, but this figure can be higher if there are no nearby natural gas distribution networks. Besides, the 
price of the diesel can reach up to 0.45 €·kWh-1 in off-grid locations of Spain as discussed in the work by Soltero 
et al. (2018). These reference values confirm the viability of the obtained solution and suggest that the proposed 
hybrid system is especially attractive to be implemented in off-grid locations without access to the gas natural 
distribution network.  

Finally, the discount payback time was studied. As this metric is highly dependent on the fuel price used for 
comparison purposes, since it influences the term  !!"#$%&! in equation (12), different fuel prices were considered 
ranging from 0.05 to 0.15 €·kWh-1. This range was chosen to encompass from the reference value of natural gas 
to the value that this source can attain in off-grid locations. The results obtained are reflected in Fig. 5.  

          	
Fig. 5: Discount payback time as a function of different fuel prices.  

As observed, the system was not profitable when comparing with fuel prices lower than 0.07 €·kWh-1. From this 
value on, the discount payback time was reasonable. For example, for a value of 0.08 €·kWh-1, the discount 
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payback time was found to be around 7 years, and it reached values of around 2 years from 0.11 €·kWh-1 onwards. 
This analysis again confirms that these kinds of systems are profitable in isolated regions with fuel prices over 
0.08 €·kWh-1.  

4.  Conclusions 
This paper addressed the optimal sizing and operation of solar–biomass heating networks for the environment of 
a greenhouse. For this aim, a bi-level optimization technique based on the EH concept is proposed and exemplified 
by using a representative case study in the province of Almería (Spain). From the obtained results, the following 
conclusions can be drawn: 
 

• The proposed bi-level optimization algorithm resulted in an attractive tool to perform the design of solar–
biomass hybrid systems for processes with time-varying demand, as the case study conducted.  

• The use of the EH concept has resulted in a powerful technique to address the optimal operation of the 
system. Indeed, it can be used to reflect the optimal operation in the real system as long as appropriate 
low-level controllers are implemented.   

• Regarding the economic results, LCOHs of around 0.05 and 0.04 €·kWh-1 for the solar and biomass 
systems, respectively, were obtained. This confirmed the profitability of the obtained solution in 
comparison with reference values in literature.   

• Also, the discount payback period analysis performed indicated the suitability of these facilities 
especially for isolated regions with fuel prices over 0.08 €·kWh-1.  

 
Future work will be focused on optimization considering a whole year in the lower layer and exploring the 
inclusion of other thermal demands that may be present in these environments to obtain greater profitability. 
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Appendix: Acronyms and Symbols 

Table 1: Acronyms                                                                Table 3: Symbols for EH equations 
 

 

 

 

 

 

 

 
 

 
Table 2: Symbols   

Acronym Description 
CF Cash Flow 
EH Energy Hubs 
LCOH Levelized Cost of Heat 
LHV Lower Heating Value 
MILP Mixed Integer Linear Programming 
SF Solar Fraction 
TMY Typical Meteorological Year 

Meaning Symbol Unit 
Vector containing the 

price of each input 
of the energy hub 

!  Multiple 
units 

Coupling matrix "  Multiple 
units 

Diagonal matrix of 
charge efficiencies 

"!  - 

Diagonal matrix of 
discharge 
efficiencies 

""  - 

Input coupling matrix "#  - 
Diagonal matrix of 

resource 
degradation 

"$  - 

Vector of input flows # Multiple 
units 

Element of # $ Multiple 
units 

Vector of output flows %  Multiple 
units 

Element of % &  Multiple 
units 

Vector of flows 
between inputs and 
outputs or “path 
vector” 

'  Multiple 
units 

Vector of charge flows (!  Multiple 
units 

Element of (! )%  Multiple 
units 

Vector of discharge 
flows 

("  Multiple 
units 

Element of (" )&  Multiple 
units 

Vector of stored 
resources 

*  Multiple 
units 

Element of * +  Multiple 
units 

Binary variable for 
charging heat 

#9,"  - 

Binary variable for 
discharging heat 

#:,"  - 

Binary variable for the 
field’s electricity 
consumption  

(),*  - 

Binary diagonal matrix 
of output activation 

((  - 

Quantity Symbol Unit 
Thermal losses 

parameter 
,' W·m-2·K-1 

Thermal losses 
parameter 

,( W·m-2·K-2 

Investment costs -)*+ € 
Maintenance costs -, € 
Operating costs -- € 
Savings obtained with 

the hybrid system 
-./+)*0. € 

Incident irradiance G W·m2 
Time horizon N years 
Heat Q kWh 
Discount rate r - 
Minimum desired solar 

fraction 
+.,)* - 

Ambient temperature /1 oC 
Mean temperature /, oC 
Lower limit of decision 

variables 
xlow - 

Upper limit of decision 
variables 

xup - 

Vector of decision 
variables 

x - 

Boiler efficiency 02 - 
Biomass boiler 

efficiency 
022 - 

Conversion factor of 
the solar collector 
field 

0.3 - 

Solar collector optical 
efficiency 

0- - 

 
J.D. Gil et. al. / SWC 2021 / ISES Conference Proceedings (2021)


