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Abstract 

Solar Heat for Industrial Processes (SHIP) is in an increasing trend in research for industrial decarbonization. 

Process heat demand and solar energy can both present large intermittencies. Storage gives a degree of freedom 

on which mathematical optimization can be performed. Lowering the working temperature of the solar field 

decreases the heat losses and therefore maximizes the production; it also reduces heat losses from the storage 

while increasing its use in the operational phase. In this paper, the investigated system is a solar field consisting 

of low-cost Parabolic Trough Collectors in series with Linear Fresnel Receivers, in series with a dual-phase 

thermocline storage. A MILP (Mixed Integer Linear Programming) algorithm is used in order to obtain a control 

trajectory of the system; then, this control trajectory is injected in a non-linear and more accurate plant model to 

evaluate its performances. Comparison is performed with another control approach, consisting in producing at the 

process temperature whenever possible. The MILP control shows an absolute increase of the solar fraction of 

2.5%. The way the thermocline is handled is not standard (as compared to what is done for electricity production) 

but shows a great interest for heat applications. 

Keywords: MILP, SIPH, SHIP, concentrated solar thermal, concentrated solar heat, operating temperature 

optimization, flexible heat integration, process heat, storage, system modelling, control strategy, dual-phase 

thermocline 

1. Introduction 

Heat, this low exergy energy often discredited in public debates, where electricity has the foreground, represents 

50% of the final energy consumed in 2019 (IEA, 2020), with electricity and mobility representing 20% and 30% 

respectively. Heat production, in 2019, emitted 13.3 Gt-CO2-eq., which corresponds to 40% of total emissions.  

Among this 50% of heat, half is used by industrial processes and 47% for heating and domestic hot water, the 3% 

remaining being for various uses. It is consequently urgent to decarbonize heat for industry if humanity wants to 

keep the actual level of production without suffering from the consequences. Many renewable solutions allow a 

decarbonization of heat; the most used today are biomass (~79% of renewable heat in industry), electricity from 

renewable sources (~10%) and heat from heat networks (~3%). Solar thermal is unfortunately not much used 

today. Indeed, solar thermal has often been criticized for its price and the space required for its implementation.  

In Europe, gas prices are currently under market pressure, having reached €108/MWh in October 2021; the 

resilience and independence of our industrial systems are thus naturally questioned.   

It seems more and more obvious that, for temperate climates and installations in non-desert areas (and, as a result,  

where space is limited), the solar energy cannot be a unique source of energy along the year. Consequently, it 

must be hybridized. Hybridization with wind energy, by mechanical wind turbine and Joule effect (Okazaki et al., 

2015), as well as biomass, would enable an effective form of resilience to be achieved. Production could be 

adapted to the availability of energy, if too many external constraints appear in future supplies. Investment in 

these energies and research is therefore increasingly seen as a modern emergency. We assume in this work that 

the industry must run at the planned schedule: the heat demand is considered immutable, although some works 

(Fitsum et al., 2018) showed the interest of managing demand. 

In this article, we will discuss the hybridization of a solar field with a boiler. As the boiler operates at high 

temperature (and thus with higher exergy), it is interesting to reduce the temperature at the exit of the solar field, 

thus increasing the solar performance and reducing the fuel requirements. This concept of Flexible Heat 

Integration was proposed by (Rashid et al., 2019). A previous article (Kamerling et al., 2021) has been published 
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on a similar optimization, with two-tank storage. MILP (Mixed-Integer Linear Programming) algorithms have 

been widely used in the optimization of solar thermo-electric power plants, such as (Pousinho et al., 2014; Yang 

et al., 2018). 

In this paper, a MILP algorithm is used to obtain a control trajectory, which is then applied to a more complex 

model, taking into account nonlinearities. The purpose of this paper is to share model developments, considering 

a 1D solar field and a dual phase thermocline storage.  

The first part (section 2) presents the investigated system and the general co-simulation approach used in this 

paper. The second part describes the implemented solar field and the thermocline 1D models; the third part 

describes the MILP algorithm and the associated control, as well as an alternative control approach enabling a 

comparison of the results. In the fourth part, the results of a case study are given.  

2. Proposed system and modeling approach 

2.1. System under consideration 

2.1.1. Diagram and description of the studied solar concentration system 

The system chosen in this study is a solar field consisting of low-cost parabolic trough collectors (PTC) in series 

with higher efficiency Linear Fresnel Receivers (LFR), the solar field being in series with a thermocline storage, 

although it is possible to bypass the storage and to go directly to the boiler.  

 

Fig 1. Diagram of the solar thermal system studied and the variables of interest 

In Figure 1, we can see on the left, the solar field (described in section 3.1); in the middle, the thermocline 

storage (section 3.2); on the right, the boiler. The variables in black correspond to the input data of the model, 

those in red correspond to the control trajectory obtained from control algorithms (section 4) and those in blue 

are deduced from the control trajectory (section 3.3). 

The Heat Transfer Fluid (HTF) enters the system with a mass flow rate �̇�𝑑𝑒𝑚𝑎𝑛𝑑 , at a temperature 𝑇𝑟𝑒𝑡𝑢𝑟𝑛. It 

has to be sent to the process at the temperature 𝑇𝑑𝑒𝑚𝑎𝑛𝑑 , both being constants along the year. If the storage is in 

discharge mode (outlet temperature 𝑇𝑜𝑢𝑡,𝑑,𝑠𝑡), some or all of the fluid may enter the thermocline storage; part of 

this flow (�̇�𝑎𝑢𝑥) comes from the control trajectory, whereas the other part is deduced from the operating mode 

(�̇�𝑠𝑡→𝑏𝑜𝑖𝑙𝑒𝑟). From the point of view of control algorithms, �̇�𝑎𝑢𝑥 allows the solar field to be bypassed. Passing it 

through storage resets the thermocline. If the storage is in charge mode (outlet temperature 𝑇𝑜𝑢𝑡,𝑐,𝑠𝑡), part of the 
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flow comes from the storage �̇�𝑆𝐹→𝑠𝑡 , which means that the inlet temperature of the solar field 𝑇𝑖𝑛,𝑆𝐹  has to be 

recalculated, in case the outlet temperature of the storage is significantly higher than the process return 

temperature 𝑇𝑟𝑒𝑡𝑢𝑟𝑛.  

2.1.2. Main assumptions  

Different assumptions and approximations have been made in this model: the main objective is to compare the 

different control approaches: 

 the quality of the forecast: this is not taken into account, i.e. the meteorological data are assumed to be 

known in advance. This means, de facto, that we are on a probabilistic trajectory corresponding to the 

median of the probabilities. One way to overcome this assumption would be to use Robust MILP 

algorithms, such as  (He et al., 2016), which allows taking into account the quality of the forecast and 

making decisions upon the robustness of the solution, 

 constant efficiency of the boiler (taken at 100%): this assumption is very accurate in a wide range of 

operation, the value of 100% is taken as it does not influence the results presented here, 

 solar modules’ inertia is taken as the contained fluid’s inertia, 

 no headers were considered in this study, although they add some inertia to the system, 

 the chosen HTF is Therminol 66, and its properties are all taken at 1 bar; dependence on temperature is 

taken into account through interpolation of fluid properties, 

 time discretization is hourly. 

2.2. Modelling approach 

Figure 2 shows the modelling approach followed by the algorithm. To calculate the outcomes over the year, a 

loop is performed every 24h. 

Before entering the loop, the algorithm reads the input data, and chooses the design if specified. The outlet 

temperatures of the solar field are discretized.  

At the beginning of the loop, the solar field model calculates the producible mass flow for the different discretized 

temperatures, considering inertia.  

Then, an optimization algorithm chooses the optimal control trajectory upon 48h. The control trajectory is then 

fed into the non-linear model, which then calculates the heat production and boiler requirements, as well as the 

storage state and other variables of interest (in blue in Fig.1.), upon 24h. Both storage and solar field final states 

are then passed as input to the loop. The optimization is run over 48h in order to optimize the storage dispatch 

for the next day as well (else, the storage is just emptied by the optimization algorithm). 

This kind of control strategy is commonly referred to as Rolling Horizon (Moretti et al., 2021). 

 

Fig. 2. Algorithm structure  

 
S. Kamerling et. al. / SWC 2021 / ISES Conference Proceedings (2021)



 

3. 1D Models 

3.1. Solar Field Model 

In the present study, the solar field consists of low-cost Parabolic Trough Collectors (from Absolicon) followed 

by Linear Fresnel Receivers (from Industrial Solar), permitting to reach higher temperatures. This association 

allows some installations to gain on the cost of the heat produced (FriendSHIP, 2021). 

The solar field is modelled in one dimension, with calculations on each module, and this in a quasi-static approach: 

a stationary calculation is made, then the thermal inertia is translated into a loss or a gain in terms of mass flow, 

in the manner of the SAM model (Wagner and Gilman, 2011). 

Fluid properties are obtained by interpolation. They are assumed to only depend on the temperature. 

3.1.1. Optical efficiency and thermal losses 

The calculation of the optical efficiency is done in two different ways depending on the collector technology: 

 The PTC via a longitudinal 𝐼𝐴𝑀𝐿,𝑃𝑇𝐶 (Incidence Angle Modifier), multiplied by the cosine of the 

longitudinal angle : 𝜂𝑜𝑝𝑡(𝜃𝐿) = 𝜂0,𝑃𝑇𝐶 ∗ 𝐼𝐴𝑀𝐿,𝑃𝑇𝐶(𝜃𝐿) ∗ cos (𝜃𝐿) 

 The LFR via a longitudinal 𝐼𝐴𝑀𝐿,𝐿𝐹𝑅 and a transversal 𝐼𝐴𝑀𝑇,𝐿𝐹𝑅, in which is already included the cosine 

effect: 𝜂𝑜𝑝𝑡(𝜃𝐿 , 𝜃𝑇) = 𝜂0,𝐿𝐹𝑅 ∗ 𝐼𝐴𝑀𝐿,𝐿𝐹𝑅(𝜃𝐿) ∗ 𝐼𝐴𝑀𝑇,𝐿𝐹𝑅(𝜃𝑇) 

With 𝜃𝐿 and 𝜃𝑇 the longitudinal and transversal angles respectively, and 𝜂0 the optical efficiency at normal 

incidence, with subscripts corresponding to the concerned module. The end losses are not taken into account, 

although they are probably significant in the case of small or medium size installations, located in latitudes 

corresponding to continental Europe. The module incident energy is then written as: �̇�𝑖𝑛 = 𝐺𝑏 ∗ 𝜂𝑜𝑝𝑡(𝜃𝐿 , 𝜃𝑇) ∗

𝐴𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟 , with 𝐺𝑏 the beam irradiation in 𝑊. 𝑚−2 and 𝐴𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟  the aperture area in m² of a module. 

The heat losses are written in a general way: �̇�𝑙𝑜𝑠𝑠𝑒𝑠(Δ𝑇) = 𝐴𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟 ∗ ∑ 𝑎𝑖Δ𝑇𝑖4
𝑖=1 , with: Δ𝑇 =

𝑇𝑖𝑛+𝑇𝑜𝑢𝑡

2
− 𝑇𝑎𝑚𝑏  

being the average fluid temperature difference with the ambient, 𝑇𝑖𝑛 being the inlet temperature of a module, 𝑇𝑜𝑢𝑡  

the outlet temperature and 𝑇𝑎𝑚𝑏  the ambient temperature. The 𝑎𝑖, 𝑖 ∈ ⟦1; 4⟧ are the heat loss coefficients (from 

correlations) and are in 𝑊. 𝑚−2. 𝐾−𝑖. 

3.1.2. Stationary calculation of the outlet temperature of a loop 

Knowing the mass flow rate and the inlet temperature, and after calculating the optical efficiency, the outlet 

temperature of a module is calculated by solving the following equation: 

�̇� ∗ 𝐶𝑝 ∗ (𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛) = �̇�𝑖𝑛 − �̇�𝑙𝑜𝑠𝑠𝑒𝑠   (1), 

with �̇� the mass flow rate in 𝑘𝑔. 𝑠−1 , 𝐶𝑝 the fluid specific heat capacity in 𝐽. 𝑘𝑔−1. 𝐾−1, 𝑇𝑖𝑛 and 𝑇𝑜𝑢𝑡  being 

respectively the inlet and outlet HTF’s temperatures in the SF. This equation is a quartic equation in 𝑇𝑜𝑢𝑡 . The 

fluid properties are taken at the inlet temperature. 

The calculation of all temperatures in the loop is then performed from one module to another, considering for the 

module n the outlet temperature of the module n-1. 

3.1.3. Quasi-static calculation of the mass flow rate 

The output temperature being fixed, the calculation is done in two steps: first, the stationary mass flow rate is 

calculated, by dichotomy on the outlet temperature, via Eq.(1). Then, the energy needed to heat the content of the 

modules (thermal inertia) to reach their temperature is accounted for, and converted to a mass flow rate before 

being subtracted from the stationary flow. This is calculated as follows:  

𝐸𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = ∑ 𝑉𝑖 ∗ 𝜌(�̅�𝑖,ℎ) ∗ (ℎ(�̅�𝑖,ℎ) − ℎ(�̅�𝑖,ℎ−1))𝑖  (2) ,  

with 𝑉𝑖 the HTF volume contained in module i in 𝑚3, 𝜌 the density in 𝑘𝑔. 𝑚−3, h the enthalpy of the HTF in 

𝐽. 𝑘𝑔−1, �̅� the average temperature of the module (calculated by averaging inlet and outlet temperatures), the 

subscripts h and h-1 referring to the time h and h-1.  
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The conversion to mass flow rate is then done in the following way: �̇�𝑖𝑛𝑒𝑟𝑡𝑖𝑎 =
𝐸𝑖𝑛𝑒𝑟𝑡𝑖𝑎

ℎ(𝑇𝑆𝐹)∗3600
 (3) 

The mass flow rate of the solar field is then written �̇�𝑆𝐹 = �̇�𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 − �̇�𝑖𝑛𝑒𝑟𝑡𝑖𝑎  (4). 

3.1.4. Validation 

The validation of the solar field 1D model was done using the "Linear Fresnel with Molten Salt" model of the 

open-source software SAM. Using SAM inlet and outlet temperatures, the hourly mass flow rates were calculated 

with the above model and compared to SAM’s hourly mass flows. 

The average relative error of the daily energy production is 2.6% - highest peaks in relative error occur when the 

daily production is very low. The average relative error on the hourly flow rate is 6.9%. The main reason for the 

deviations is that in SAM the molten salt/water heat exchanger before entering the turbine has a large thermal 

inertia, while there is no heat exchanger in the present model. Figure 3 shows the daily heat output of the two 

models, as well as the relative error between both. 

 

Fig.3 : Daily heat production of SAM model (yellow) and the model presented here (blue), with relative error in % on the right (red) 

3.1.5. Definition of defocusing 

Defocusing has been defined in two ways: firstly, defocusing in series, i.e. in a loop, in order not to exceed the 

maximum temperature of a collector or not to exceed the output temperature. The defocusing fraction is then 

defined by: 𝑑𝑒𝑓𝑜𝑐𝑢𝑠𝑆𝑒𝑟𝑖𝑒 =
𝐴𝑑𝑒𝑓𝑜𝑐𝑎𝑙𝑖𝑠𝑒𝑑

𝐴𝑙𝑜𝑜𝑝
 (5) 

Then the parallel defocusing, which consists in defocusing a certain number of loops, in order not to exceed a 

certain mass flow (full storage, etc.). It is calculated as a ratio between the chosen mass flow and the one that can 

be produced at the desired outlet temperature: 𝑑𝑒𝑓𝑜𝑐𝑢𝑠// = 1 −
�̇�𝑆𝐹

�̇�𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
 (6).  

Note that the real defocus is not continuous; however, we are working on a large solar field, which makes the 

approximation acceptable. 

3.1.6. Input parameter values 

Table 1. Parameters of the PTC 

Parameter (unit) Value Description 

𝜂0 0.697 Optical efficiency at normal incidence 

𝐴𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟(m²) 5.51 Collector surface area 

𝑎1(𝑊. 𝑚−2. 𝐾−1)) 0.73 Heat losses coefficient 

�̇�𝑛𝑜𝑚(𝑘𝑔. 𝑠−1) 0.126 Nominal mass flow rate 

 

Table 2. Parameters of the LFR 

Parameter (unit) Value Description 

𝜂0 0.686 Optical efficiency at normal incidence 

𝐴𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟(m²) 30.45 Collector surface area 

𝑎1(𝑊. 𝑚−2. 𝐾−1) 0.033 Heat losses coefficient 

𝑎4( 𝑊. 𝑚−2. 𝐾−4) 1.48e-9 Heat losses coefficient 

�̇�𝑛𝑜𝑚(𝑘𝑔. 𝑠−1) 0.6 Nominal mass flow rate 
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Fig.4. IAM of the collectors – transversal IAM of the LFR (blue), longitudinal IAM of the LFR (yellow), longitudinal IAM 

multiplied by cosine of the longitudinal angle of the PTC (green) 

3.2. Dual-phase thermocline 

It was chosen to work with a dual-phase thermocline because this storage is cheap, as it consists of only one tank 

and a large proportion of the often expensive HTF is replaced by a low-cost solid. 

3.2.1. Implemented model description  

The thermocline model implemented is the one of a dual-phase thermocline, from (Hoffmann et al., 2016), with 

the correlations from (Esence et al., 2019). It is a model with three partial differential equations: one for the fluid 

temperature, one for the solid temperature and one for the wall temperature. The resolution of this system involves 

a one-dimensional discretization over the tank’s height. The discretization chosen for the convection term depends 

on the fluid flow direction:  

 Downwind differencing scheme for tank’s discharge (rising fluid): 𝑢
𝜕𝑇

𝜕𝑥
= 𝑢 ∗

𝑇𝑗−𝑇𝑗−1

Δ𝑥
 

 Upwind differencing scheme for tank’s charge (dropping fluid): −𝑢
𝜕𝑇

𝜕𝑥
= −𝑢 ∗

𝑇𝑗+1−𝑇𝑗

Δ𝑥
 

The use of the QUICK scheme would be preferable in general cases, but the above formulation is sufficient to 

have a convergence of the model with liquid fluids. The time discretization is implicit, because the explicit 

discretization showed very quickly a divergence in the results. 

The model is solved using the open-source library DAE-CPP (Ikorotkin, 2019), itself based on the free IBM 

library Math Kernel Library. 

3.2.2. Validation 

This model has been validated with an in-house code, itself validated on experimental data from the STONE 

installation at CEA Grenoble (Esence et al., 2017).  

The validation was done in the following way: a sequence of charges and discharges at different temperature 

levels were simulated in both models, then a calculation of the temperature difference was done using 

interpolations, in order to measure the deviation due to the numbers of elements: 

 𝑒𝑟𝑟 =
1

Δ𝑡
∗

1

𝐿
∗ ∫ ∫

|𝑇𝑟𝑒𝑓(𝑧,𝑡)−𝑇(𝑧,𝑡)|

𝑇𝑟𝑒𝑓(𝑧,𝑡)
𝑑𝑡 𝑑𝑧

Δ𝑡

0

𝐿

0
 

For a number of elements equal to 100 (the reference number of the in-house model), we found a difference of 

0.9%. For 50 elements, this difference rises to 2.6%, but we have chosen to work with 50 elements as the 

computation time of the storage depends strongly on this parameter. 

Nonetheless, varying the temperature at the inlet (as done further) can create modelling inaccuracies, as the 

stratification may be disturbed; furthermore, this model does not take into account buoyancy. This would need a 

deeper modelling for better validation. 

3.2.3. Calculation of a threshold HTF mass  

Hot fluid should not be sent back in the solar field. There should therefore be a temperature threshold, traduced 

as an HTF injected mass threshold which should not be exceeded by the control trajectories. This mass is not 

obvious as the thermocline is filled with solid particles. Taking the temperature threshold as:𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =

𝑇𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 +
1

3
(𝑇𝑐ℎ𝑎𝑟𝑔𝑒 − 𝑇𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒), a serie of simulations (charge mode) with a constant mass flow rate showed 
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that the HTF mass threshold that could be injected to reach the temperature threshold was about 𝑀𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =

𝜌𝐻𝑇𝐹 ∗ 𝑉𝑡𝑎𝑛𝑘. This result does depend on the mass flow rate but appeared to be a good enough value. 

 

Fig.5. Storage outlet temperature (continuous line) during a load, with three different mass flow rates; mass injected into the storage 

(dashes), with the colours corresponding to the flow rates; 𝑴𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 = 𝝆𝑯𝑻𝑭 ∗ 𝑽𝒕𝒂𝒏𝒌 with the pink crosses; and 𝑻𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 with the 

green crosses 

Figure 5 shows the outlet temperature of the storage under charging, at a constant mass flow rate, for a storage 

volume equal to 465 𝑚3. The second vertical axis indicates the mass injected into the storage. It can be seen that 

the storage outlet temperature increases by about 1/3 of the temperature difference when a mass of 𝑀𝑡ℎ𝑟𝑒𝑠𝑔𝑜𝑙𝑑 =

𝜌𝐻𝑇𝐹(𝑇ℎ𝑜𝑡) ∗ 𝑉𝑡𝑎𝑛𝑘 has been injected in the storage. This remains dependent on the mass flow rate and not 

perfectly precise. 

3.2.4. Definition of the charge percentage 

The energy contained in the storage is defined as: 

𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = ∫ (𝜖 ∗
𝐿

0

𝜌𝐻𝑇𝐹(𝑇𝐻𝑇𝐹(𝑧)) ∗ ℎ𝐻𝑇𝐹(𝑇𝐻𝑇𝐹(𝑧)) + (1 − 𝜖) ∗ 𝜌𝑠𝑜𝑙𝑖𝑑 ∗ ℎ𝑠𝑜𝑙𝑖𝑑(𝑇𝑠𝑜𝑙𝑖𝑑(𝑧)) ∗ 𝐴𝑡𝑣𝑑𝑧                 (7) 

With 𝜖 the rock bed global void fraction, 𝜌, ℎ, 𝑇 the density, enthalpy and temperature respectively, the subscripts 

HTF and solid referring to the different materials involved, and 𝐴𝑡𝑣 the cross-sectional area of the tank.  

By defining 𝐸𝑚𝑎𝑥  the stored energy when ∀𝑧, 𝑇𝐻𝑇𝐹(𝑧) = 𝑇𝑠𝑜𝑙𝑖𝑑(𝑧) = 𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠 and by defining 𝐸𝑚𝑖𝑛  the stored 

energy when ∀𝑧, 𝑇𝐻𝑇𝐹(𝑧) = 𝑇𝑠𝑜𝑙𝑖𝑑(𝑧) = 𝑇𝑟𝑒𝑡𝑢𝑟𝑛, we can define the charge percentage 𝜏 =
𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒−𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛
  (8).  

3.2.6. Input parameters 

Table 3. Parameters of the dual phase thermocline 

Parameter (unit) Value Description 

𝜖 (-) 0.27 Rock bed global void fraction/ HTF Volumetric fraction 

𝑑𝑝(m) 0.015 Equivalent diameter of solid particles 

𝑈𝑒𝑞(W/m².K) 0.1 Heat losses coefficient 

𝑒𝑤𝑎𝑙𝑙(m) 0.012 Thickness of the metal wall 

𝐶𝑝,𝑠𝑜𝑙𝑖𝑑 & 𝐶𝑝,𝑤𝑎𝑙𝑙(J/kg.K) 900 & 500 Specific heat capacity of the solid filler and the wall’s metal 

𝜌𝑠𝑜𝑙𝑖𝑑  & 𝜌𝑤𝑎𝑙𝑙(kg/𝑚3) 2500 & 7200 Density of the solid and the wall 

𝑘𝑠𝑜𝑙𝑖𝑑 & 𝑘𝑤𝑎𝑙𝑙(W/m.K) 5 & 20 Thermal conductivity of the solid and the wall 

𝑁𝑑𝑖𝑠𝑐𝑟  50 Number of elements of the thermocline’s discretization 

3.3. System model 

In this section, the solar thermal system response to the control trajectory is explained; this latter is therefore 

assumed to be known, i.e., (�̇�𝑆𝐹, 𝑇𝑆𝐹 , �̇�𝑎𝑢𝑥).  

Determination of the storage operating mode 
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The mass flow rate of the demand must be assured, which gives: 

�̇�𝑑𝑒𝑚𝑎𝑛𝑑 = �̇�𝑆𝐹→𝑏𝑜𝑖𝑙𝑒𝑟 + �̇�𝑠𝑡→𝑏𝑜𝑖𝑙𝑒𝑟 + �̇�𝑎𝑢𝑥   (10) 

The flow coming from the solar field can go either to the storage or to the boiler, which gives: 

�̇�𝑆𝐹 = �̇�𝑆𝐹→𝑏𝑜𝑖𝑙𝑒𝑟 + �̇�𝑆𝐹→𝑠𝑡   (11) 

We can then write the variation of the inlet and outlet mass flow of the storage: 

Δ�̇� = �̇�𝑆𝐹→𝑠𝑡 − �̇�𝑠𝑡→𝑏𝑜𝑖𝑙𝑒𝑟  (12) 

The reinjection of Eq.(10) and Eq(11) in Eq(12) gives: 

Δ�̇� = (�̇�𝑆𝐹 − �̇�𝑆𝐹→𝑏𝑜𝑖𝑙𝑒𝑟) − (�̇�𝑑𝑒𝑚𝑎𝑛𝑑 − �̇�𝑎𝑢𝑥 − �̇�𝑆𝐹→𝑏𝑜𝑖𝑙𝑒𝑟) = �̇�𝑆𝐹 + �̇�𝑎𝑢𝑥 − �̇�𝑑𝑒𝑚𝑎𝑛𝑑   (13) 

The sign of Δ�̇� then gives the operating mode of the storage. 

Case 1: Storage load: 𝚫�̇� > 𝟎 

It can be deduced that �̇�𝑠𝑡→𝑏𝑜𝑖𝑙𝑒𝑟 = 0 , and thus from Eq.(12) that �̇�𝑆𝐹→𝑠𝑡 = Δ�̇�. Moreover, one must then 

necessarily have �̇�𝑎𝑢𝑥 = 0, because no control model attempts to load the storage while not producing at least 

the demand mass flow rate.  

We deduce from Eq.(12) and Eq.(13) that �̇�𝑆𝐹→𝑏𝑜𝑖𝑙𝑒𝑟 = �̇�𝑆𝐹 − �̇�𝑆𝐹→𝑠𝑡 = �̇�𝑑𝑒𝑚𝑎𝑛𝑑 . 

The outlet temperature of the storage is then calculated according to �̇�𝑆𝐹→𝑠𝑡, which gives us an outlet temperature 

of the storage, noted 𝑇𝑜𝑢𝑡,𝑐,𝑠𝑡. The inlet temperature of the solar field can then be calculated: 

𝑇𝑖𝑛,𝑆𝐹 =
�̇�𝑆𝐹→𝑠𝑡 ∗ 𝑇𝑜𝑢𝑡,𝑐,𝑠𝑡 + �̇�𝑑𝑒𝑚𝑎𝑛𝑑 ∗ 𝑇𝑟𝑒𝑡𝑢𝑟𝑛

�̇�𝑆𝐹→𝑠𝑡 + �̇�𝑑𝑒𝑚𝑎𝑛𝑑

   (14) 

This last one can be quite high if the thermocline zone starts to exit the tank. This is why a mass threshold should 

be set for those control models. Nonetheless, verification is performed, as well as reactualization of mass flow 

rates: 

 If 𝑇𝑖𝑛,𝑆𝐹 + 10°𝐶 is higher than the outlet temperature of the solar field, an attempt is made to run the solar 

array at the demand temperature, and the flow rates are updated accordingly. Note that this shows a flaw 

in the control trajectory. 

 If not, we recalculate the production of the solar field. If the calculated flow is lower than the flow of the 

trajectory �̇�𝑆𝐹, the latter is lowered, and the mass flows are updated. If the calculated mass flow rate is 

greater than the trajectory mass flow rate �̇�𝑆𝐹, this is considered as parallel defocusing. 

Case 2: Storage discharge: 𝚫�̇� < 𝟎 

We then deduce that �̇�𝑆𝐹→𝑠𝑡 = 0, and thus that �̇�𝑠𝑡→𝑏𝑜𝑖𝑙𝑒𝑟 = −Δ�̇�. It was chosen, given the thermocline type of 

storage, that �̇�𝑎𝑢𝑥 goes through the thermocline storage (see section 2.1), in order to reset the thermocline and 

recover a maximum of energy. 

The mass flow rate through the storage to the boiler (�̇�𝑠𝑡→𝑏𝑜𝑖𝑙𝑒𝑟) becomes:−Δ�̇� + �̇�𝑎𝑢𝑥 .The storage outlet 

temperature is then determined by the thermocline model; it is noted 𝑇𝑜𝑢𝑡,𝑑,𝑠𝑡. 

Case 3: Storage inactivity: 𝚫�̇� = 𝟎 

In this case, the control system does not discharge the storage, and we have: �̇�𝑆𝐹 = �̇�𝑆𝐹→𝑏𝑜𝑖𝑙𝑒𝑟  and �̇�𝑑𝑒𝑚𝑎𝑛𝑑 =

�̇�𝑎𝑢𝑥 + �̇�𝑆𝐹. Due to the implemented logic of thermocline’s reset, i.e., that �̇�𝑎𝑢𝑥 passes through the storage, we 

take: �̇�𝑠𝑡→𝑏𝑜𝑖𝑙𝑒𝑟 = �̇�𝑎𝑢𝑥. 

The storage outlet temperature is then determined by the thermocline model. 

From this data, the boiler requirement is deduced: 

�̇�𝑏𝑜𝑖𝑙𝑒𝑟 = �̇�𝑆𝐹→𝑏𝑜𝑖𝑙𝑒𝑟 ∗ (ℎ(𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠) − ℎ(𝑇𝑆𝐹)) + �̇�𝑠𝑡→𝑏𝑜𝑖𝑙𝑒𝑟 ∗ (ℎ(𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠) − ℎ(𝑇𝑜𝑢𝑡,𝑑,𝑠𝑡))  (15) 
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4. Control models 

Two control approaches are considered: one from MILP optimization and one from a simple control approach 

so that the benefit of the MILP algorithm can be evaluated. 

 
4.1. MILP algorithm 

For the sake of brevity, it was chosen not to expose the full MILP algorithm here, as it may be found in (Kamerling 

et al., 2021). Nonetheless, a summary is given here, as well as the thermocline specific approach. The cost function 

is the boiler use. The implemented constraints represent the constraints of the system. 

This MILP algorithm can be considered as a water-flow MILP, as opposed to energy-flow MILP. (Moretti et al., 

2021) summarizes well the difference: the second approach only considers energy balances without taking into 

account temperatures and mass flow rates, whereas the first one directly implements mass flows and temperatures; 

the non-linear term formed by the product of mass flow rate and temperature is linearized through the use of 

binary variables and a discretization of the temperature levels, as is described below.   

The main subtlety lies in the pre-calculation of the solar field flows at discretized output temperatures, and the use 

of binary variables for the choice of production. Since inertia must be taken into account, a binary variable 

spanning two time slots is considered: 

 𝑧ℎ,𝑖,𝑗 = {
1 𝑖𝑓 𝑇𝑆𝐹,ℎ = 𝑇𝑖  𝑎𝑛𝑑 𝑇𝑆𝐹,ℎ−1 = 𝑇𝑗  

0 𝑒𝑙𝑠𝑒
, with 𝑇𝑖  and 𝑇𝑗 in the set of discretized variables. 

The mass stored by the algorithm must not exceed a maximum mass, which we have defined by 𝑀𝑚𝑎𝑥 =

𝜌𝐻𝑇𝐹(𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠) ∗ 𝑉𝑡𝑎𝑛𝑘, in order not to overpass a threshold temperature at the bottom of the storage, and not to 

send a too hot fluid in the solar field (see section 3.2.3.).  

The notion of bypass flow (�̇�𝑎𝑢𝑥) is necessary because of the MILP algorithm: the thermal losses in the tank must 

be taken into account to get closer to the real operation, which forces to add in the cost function a cost proportional 

to the mass in the storage (virtual in the case of a thermocline storage). Therefore, this mass cannot be negative, 

even though it is virtual. Therefore, it is necessary to define an exit gate to the MILP to respect the constraint of a 

positive mass. 

This is written by the following constraints: ∀ℎ, 0 ≤ 𝑀𝑠𝑡,ℎ ≤ 𝑀𝑚𝑎𝑥  et 𝑀𝑠𝑡,ℎ+1 = 𝑀𝑠𝑡,ℎ + 3600.∗ (�̇�𝑆𝐹 + �̇�𝑎𝑢𝑥 −

�̇�𝑑𝑒𝑚𝑎𝑛𝑑).  

The mass present in the storage at the beginning of the MILP calculation (i.e., at midnight), was calculated as 

follows: 𝑀0 = 𝑀𝑚𝑎𝑥 ∗ 𝜏, with τ the charge percentage of the storage defined in 3.2.4. 

4.2. Control approach 1 (CA1) 

This control approach tries to always operate at the process temperature. It therefore heats the solar field in the 

morning and then switches it on. If the mass flow rate producible at the demand temperature is higher than the 

demand mass flow rate, the excess is stored. If it is lower, the storage is emptied; if the storage is empty, the 

bypass flow �̇�𝑎𝑢𝑥 allows to complete the need. If the storage is full, in the sense that the overall mass injected 

into the thermocline storage is greater than 𝑀𝑚𝑎𝑥, the solar field is defocused. The mass present in the storage at 

the beginning of the simulation is calculated in the same way as above. 

5. Case Study 

A case study is presented here: production of chemical and intermediate products at Tarragona (Spain). The 

demand is considered constant at 280°C, with a flow rate of 20 kg/s. The return temperature is assumed to be 

50°C. This corresponds to a power demand of 11.4 MW, and a daily heat demand of 273.6 MWh. The storage is 

designed to deliver heat for 6 hours at nominal rate and process temperature. The meteorological data are from 

PVGIS (EU SCIENCE HUB, 2017). The number of discretization of the outlet temperature of the solar field is 8. 

The yearly simulation time is of 23 minutes on a computer with a 3GHz processor and 32Go of RAM. 

5.1. Design  

The design of the plant is as follows: 
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 A loop structure consisting of a "rectangle" of PTC: 10 in series and 5 in parallel, followed by a line of 

LFR: 8 in series, 1 in parallel. This gives an aperture area for a loop of 519m². 

 67 loops, for a total aperture area of 34.773m² 

 A storage volume of 256𝑚3, which makes an HTF volume of 69 𝑚3 and a solid volume of 187𝑚3 , or 

56.8t of HTF and 467t of solids, for a storage capacity between 𝑇𝑟𝑒𝑡𝑢𝑟𝑛 = 50°𝐶and 𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 280°𝐶 of 

Δ𝐸 = 𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛 = 34.18 𝑀𝑊ℎ  

5.2. Hourly results 

In this section, hourly results are commented. These results correspond to February 25 th and 26th, and June 19th 

and 20th, to compare two different solar conditions.  

 

Fig. 6. Hourly results of the simulation on the 25th and 26th of February 

Fig. 6.a presents the DNI in W/m² which is intermittent on the 25th and closer to a clear-sky day on the 26th; Fig 

6.b. shows the power on the receiver, in 𝑊/𝑚𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒
2 ; Fig.6.c. gives the ambient temperature in °C; Fig. 6.d. 

shows the demand mass flow rate in kg/s; Fig.6.e. presents the mass flow rate from both control strategies, i.e. 

MILP and CA1; Fig.6.f. presents the outlet temperature of the Solar Field; Fig.6.g. presents the stored energy in 

%; Fig.6.h. presents the outlet temperature of the storage; Fig.6.i. presents the heat losses in the solar field; 

Fig.6.j. shows the heat collected by the solar field; Fig.6.k. shows the heat produced by the boiler; Fig.6.l. 

presents the defocused energy in the Solar Field.  

Fig.6.e. shows that the mass flow rate is increased in MILP strategy, whereas its outlet temperature is decreased. 

This explains why the heat losses are lower in the Solar Field, as can be seen on Fig.6.i, as compared to CA1. 

Fig.6.k. shows that the MILP algorithm smooths the boiler energy need, which is a side effect (i.e., it was not 

implemented straightforward) that might be interesting if the variability of the efficiency of the boiler with the 

thermal load is taken into account. Figures 6.g. et 6.h. show that the MILP makes a better use of the storage as 

compared to CA1. 

 

Fig. 7. Hourly results of the simulation on the 19th and 20th of June 
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Fig.7. presents the same variables as in Fig.6, but at a different time of the year, in which irradiation and optical 

efficiency are higher. Here, the main contribution of the MILP algorithm as compared to CA1 appears in the 

period of the defocused energy: the MILP algorithm prefers to defocuse in the morning, and then fills the 

storage to pass the night. Indeed, the MILP algorithm lowers the heat losses of the storage. The maximum filling 

of the storage is explained by the mass threshold (or temperature threshold) beyond which the storage cannot be 

charged anymore. 

Discussion 

We can see in Figure 6.h. that the outlet temperature of the storage increases and then decreases: the thermocline 

is not really a thermocline, the hot/cold zone separation is not clear.  

In electricity production, keeping a constant inlet temperature to the turbine is of primary importance, for which 

it is much more interesting to keep a high quality thermocline. For SHIP with hybridization and a large 

difference in ΔT between the return and process temperature, it is shown here that it may be advantageous not to 

favour the quality of the thermocline but rather the quantity of stored energy. There is indeed a loss in exergy 

because of mixing, but the number of calories from the solar field being higher and the boiler completing the 

exergy loss most of the time; it appears to be in the end favourable. 

Nevertheless, if the SF inlet temperature is close to the SF outlet temperature, the impact of the optimization on 

the temperature is very small; moreover, the objective in this case should be to keep a thermocline in order to 

have access to the desired storage temperature. It is highly likely that a parallel architecture of the boiler is more 

interesting. 

5.2. Yearly results 

In this section, monthly results are presented over the year.  

 

Fig. 8. Yearly metrics.  

The Solar Fraction (𝑆𝐹𝑎, Fig.8.a.)  is calculated as 𝑆𝐹𝑎 = 1 −
𝑄𝑏𝑜𝑖𝑙𝑒𝑟

𝑄𝑑𝑒𝑚𝑎𝑛𝑑
, with 𝑄𝑏𝑜𝑖𝑙𝑒𝑟   the heat from the boiler for 

the month, and 𝑄𝑑𝑒𝑚𝑎𝑛𝑑 the heat demand during the month. The average charge percentage (Fig.8.b.) is 

calculated as the hourly average of the charge percentage. The monthly heat losses of the solar field (Fig.8.c.) 

correspond to the sum of the thermal losses when the solar field is operating. The monthly defocused energy 

(Fig.8.d.) correspond to the sum of the defocused energy.  

The annual solar fraction of the MILP is 30.9% and that of the CA1 approach is 28.5%. During the summer, the 

two models behave differently: in fact, the MILP prefers to defocus in the morning and to fill the storage later, 

thus minimizing the thermal losses in the storage. This is why more energy is defocused by the MILP while 

keeping a higher solar fraction. In winter, the difference is explained by the difference in thermal losses. 

6. Conclusion 

This paper presented the results of a MILP algorithm applied to temperature optimization in a solar field with 

thermocline storage for industrial process heat. This optimization showed a 2.5%-point increase in the solar 

fraction as compared to a control trying to reach the process temperature as soon as possible. 
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Despite the risk of affecting stratification, varying the temperature of the storage inlet, has shown to be 

interesting in the case of hybridization with a high temperature difference between the return temperature and 

the process temperature. The use of the storage is maximized by the MILP algorithm, and it is interesting, in the 

case presented here, not to respect the order imposed by the stratification, because the storage is emptied by the 

constant demand all night long. 

These optimization results seem very interesting, but limited to cases of large temperature difference between 

the input and the output, which opens a range of optimization. Another dimension of freedom can be found in 

the case of an industrial site with different heat requirements, and different production sites, approaching the 

notion of Total Site Analysis. This will be investigated in future works.  
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