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Abstract

The NASA Prediction Of Worldwide Energy Resources (POWER) project targets three user communities:
Renewable Energies (RE), Sustainable Buildings (SB), Agroclimatology (AG). The Clouds and the Earth’s
Radiant Energy System (CERES) SYNZ1deg (Ed4.1) hourly all-sky global horizontal irradiance (GHI) and diffuse
horizontal irradiance (DHI), which span from March 2000 to within a few months of real time, are now the source
data provided through POWER Web Services Suite (WSS). Although the SYN1deg (Ed4.1) hourly DHI and
direct horizontal irradiance (DirHI) sum to the GHI that agree reasonably well with matching Baseline Surface
Radiation Network (BSRN) measurements, the DHI and DirHI components show appreciable positive and
negative biases, respectively, relative to the BSRN data. The direct normal irradiance (DNI) derived by dividing
the DirHI by the cosine of the solar zenith angle [cos(Z)] is, therefore, also appreciably biased relative to the
BSRN data. In this report, we present a simple bias-based correction scheme. We perform the correction in the
following procedure: 1) Correct the GHI and DHI according to the biases that are expressed as functions of cos(2);
2) Compute the GHI-DHI difference to get the corrected DirHI; 3) Divide the corrected DirHI by cos(Z) to get
the DNI. In addition, when Z is larger than 75°, the derived DNI can sometimes become unrealistically large as
cos(Z) approaches 0 without considering refraction effects. We correct the cos(Z) by adding a linear component
to it to prevent cos(Z) from becoming infinitesimally small. The results from the scheme agree better with the
BSRN than that from the Dirlndex model.

Keywords: POWER, CERES SYN1deg, Diffuse horizontal irradiance, Direct horizontal irradiance, Direct normal
irradiance, Bias-based correction

1 Introduction

The NASA POWER surface meteorology and solar energy Version 6.0 (SSE V6.0) database is being superseded
by the one based on the CERES SYN1deg (Ed4.1) hourly data. The SSE V6.0 dataset was derived from the NASA
GEWEX SRB Release 3.0 monthly mean solar GHI and DHI that were derived from 3-hourly means spanning
the time from July 1983 to December 2007. The method for deriving the monthly mean DNI was based on the
regression analysis of the BSRN data that cover the years from 1992 to 2005, and the details of the regression
analysis are available in Appendix A in Zhang et al. (2014). The monthly mean solar irradiance on surfaces tilted
equatorward at various angles were derived using the method of Liu and Jordan (1960), the isotropic model
(Duffie and Beckman, 2013) and the monthly average day (Klein, 1977).

Zhang et al. (2014) applied the Dirlndex model to the GEWEX SRB Release 3.0 3-hourly GHI, and the resulting
monthly mean DNI agree with the BSRN data better than those of SSE V6.0. The Dirlndex model requires input
of hourly all-sky and clear-sky GHI, surface pressure, sea-level pressure, aerosol optical depth (AOD) at 700 nm,
atmospheric column water vapor and elevation angle of the Sun. So it is an overstretch of the model to apply it to
3-hourly data. Part of the reason that the model was applied to only the 6 years from 2000 to 2005 was that, at
that time, the AOD data were available for only those 6 years.
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The CERES SYN1deg (Ed4.1) hourly solar irradiance dataset start from March 2000 and span to near present
(Loeb et al., 2018; Rose et al., 2013; Rutan et al., 2015). In addition to GHI, the dataset also provides hourly DHI
and direct horizontal irradiance (DirHI) along with hourly solar zenith angle (Z) which is derived such that the
top-of-atmosphere hourly DirHI divided by cos(Z) is equal to the solar constant. The surface hourly DNI is then
derived by dividing the hourly DirHI by cos(Z), namely DirHl/cos(Z), and the daily and monthly mean DNI are
computed by arithmetically averaging the hourly DNI. Comparison with the BSRN data show, however, that the
DNI derived as such are significantly negatively biased against the BSRN data. Further investigations show that
the SYN1deg (Ed4.1) DHI are significantly positively biased against the BSRN while the DirHI are significantly
negatively biased against the BSRN, though the sum of DHI and DirHI, namely the resuling GHI, agree with the
BSRN fairly well.

We then applied the Dirlndex model to the SYN1deg (Ed4.1) hourly GHI to derive the hourly, daily and monthly
mean DNI and compared the results with BSRN. It was found that, although the DNI computed from the original
SYN1deg (Ed4.1) data and simple division, namely, DirHl/cos(Z), are significantly biased against the BSRN, the
uncertainty as represented by the root-mean-square error and standard deviation is much smaller than that of the
results from the Dirlndex model. In addition, we analyzed the biases of DHI and DirHI as functions of cos(Z),
and found both exhibit simple, near-linear relation with cos(Z). This suggests to us that a simple bias-based
correction according to cos(Z) can provide results better than that from the Dirlndex model. In other words, this
scheme can produce a dataset that is not only less biased but depicts the spatiotemporal variability better.

To be specific, the correction scheme is as follows: 1) Correct the GHI; 2) Correct the DHI; 3) Compute the
corrected DirHI by subtracting result from Step 2) from result from Step 1); 4) Divide results from Step 3) by
cos(Z) to get the corrected DNI.

In Section 2, the details of the bias-based correction will be given; in Section 3, the original CERES SYN1deg
(Ed4.1) adjusted hourly GHI, DHI, DirHI and the derived DHI, or DirHI/cos(Z), will be compared with their
BSRN counterparts; in Section 4, the corrected version will be presented; the conclusions will be given in Section
5.

2 The Solar Irradiance Data Based on the CERES SYN1deg (Ed4.1)

The Clouds and the Earth’s Radiant Energy System (CERES) Mission flies instruments on multiple platforms to
measure and monitor the Earth’s Radiation Budget and its variability (Wielicki et al., 1996; Loeb et al, 2016).
One of the CERES data products provides both the top-of-atmosphere and surface radiative fluxes, but using a
radiative transfer model, together with Geosynchronous satellite observations and multiple ancillary inputs to
compute the surface radiative fluxes (Rose et al., 2013; Rutan et al., 2015) globally gridded to 1°x1° resolution.
This product, called the SYN1deg (Ed4.1), provides estimates of the surface hourly solar irradiance data spanning
the period from March 2000 to within a few months of near present time and are now the source data for the
POWER Web Services Suite (WSS). Two versions of the CERES SYN1deg (Ed4.1) hourly irradiances are
available, the initial and adjusted. Based on comparisons with the BSRN data, we found that the “adjusted” GHI
agree somewhat better with the BSRN than the initial one. The overall bias/c of the adjusted version
are -2.91/83.44 W m2 and of the initial version are -4.51/82.44 W m-where o stands for standard deviation; in a
20-bin analysis of the cos(Z), we found that except in a few extreme bins, the adjusted version is slightly better
than the initial version in most of the bins. So we decided to use the adjusted version. Henceforth, all SYNZ1deg
data refer to the adjusted version. Beside the hourly global horizontal irradiance (GHI) and diffuse horizontal
irradiance (DHI), the POWER WSS derives the direct normal irradiance (DNI) by dividing the direct horizontal
irradiance (DirHI) by the cosine of the solar zenith angle [cos(Z)], namely, DirHl/cos(Z). However, we found that,
although the original SYN1deg (Ed4.1) DHI and DirHI sum to the GHI that agree reasonably well with the
Baseline Surface Radiation Network (BSRN) data, the DHI and DirHI show appreciable positive and negative
biases, respectively, against the BSRN data and, therefore, the derived DNI, or DirHI/cos(Z) also show significant
biases against the BSRN data. To be precise, the overall bias/c of the DHI are 30.58 W m, and in the 20 bins of
cos(Z), the bias increases steadily from -2.29 to 116.22 W m, or from -21.78% to 41.75% of the mean BSRN
DHI; the overall bias/c of the DirHI are -37.09/116.48 W m2, and in the 20 bins of cos(Z), the bias changes from
-2.18 to -90.40 W m2, or from -45.54% to -16.64% of the mean BSRN DirHI; the overall bias/c of the derived
DNI, or DirHI/cos(Z), are -54.32/196.35 W m™, and in the 20 bins of cos(Z) goes from 40.17 to -93.94 W m™, or
from 89.97% to -16.79% of the mean BSRN DNI (Oumura et al., 1998).



P. Stackhouse et. al. / SWC 2021 / ISES Conference Proceedings (2021)

So we decided to make a correction of the data. We have previously applied the Dirlndex model to the GEWEX
SRB GSW(V3.0) 3-hourly GHI to derive the 3-hourly DNI (Zhang et al., 2014; Ineichen, 2008), since the solar
energy community is particularly interested in the DNI. The Dirlndex model requires the inputs of the all-sky and
clear-sky GHI along with surface pressure, aerosol optical depth at 700 nm, the atmospheric water vapor and so
on. The Dirlndex model has been found to be one of the two best global-to-beam models from among 140
separation models (Gueymard and Ruiz-Arias, 2016). More recently, we applied the Dirlndex model to the
CERES SYN1deg (Ed4.0) hourly data to get the SYN1deg-based hourly DNI (Zhang et al. 2017), and the overall
bias/c are found to be 8.54/228.81 W m™. The o, or standard deviation, represents the magnitude of uncertainty,
and this o is about 17% larger than that of the DNI derived from the original SYN1deg (Ed4.1) DirHI, or
DirHl/cos(Z). This implies that the DNI derived from the original SYN1deg (Ed4.1) hourly DirHlI, albeit
significantly biased in a systemic way, captures the spatiotemporal variability of the DNI than the Dirlndex model
does, and in addition, it is possible to perform a simple bias-based correction to get a set of DNI with a smaller
uncertainty than that of the Dirlndex model.

3 Comparison of the original CERES SYN1deg (Ed4.1) hourly irradiances
with BSRN

Figs. 1-3 show the comparison of the original CERES SYN1deg (Ed4.1) hourly GHI, DHI, and DNI, or
DirHI/cos(Z), with their respective BSRN counterparts. The hourly DirHI, which is biased on the opposite side
of DHI at the same magnitude, is not shown due to limited space.

In terms of the overall statistics, the GHI agree with the BSRN reasonably well. In most of the 20 bins of the
cos(Z), the biases are negative; in the five bins approaching the zenith, or the overhead position of the Sun, the
biases are positive, and in the last bin, the bias maximizes at 24.04 W m2. The DHI, on the other hand, shows a
positive overall bias of a significant magnitude, and in the 20 bins of cos(Z), the bias shows an unmistakable near-
linear increasing trend on both the absolute and relative scales as shown in Fig. 2c-d. The DirHI, not shown here
due to limited space, is biased equally significantly, though on the opposite side of DHI, because DirHI and DHI
sum to GHI which agrees with the BSRN reasonably well. For this reason, the derived DNI, or DirHl/cos(Z),
shows notable biases in the bins of cos(Z). The GHI, DHI, DirHI and DNI comparison statistics are summarized
in Table 1.

The unambiguous near-linear pattern of the biases of DHI and DirHI in the bins of cos(Z) suggest that the biases
are not just stochastic, but might be systemic, or deterministic. In addition, although the overall bias of DNI is
considerable, the o, or standard deviation, that represents the uncertainty of DNI, is still appreciably smaller than
the DNI from the Dirlndex model. These facts suggest that a simple bias-based correction can produce a set of
DNI with an uncertainty smaller than that from the Dirlndex model.

Table 1. CERES SYN1deg (ED4.1)-BSRN hourly all-sky GHI, DHI, DirHI and DNI comparison statistics from 2000-03 to 2020-07 before and
after the correction. The DNI from the Dirlndex model in the last line for comparison.

All-Sky Hourly | Bias [ RMS | P | c | poata | N
Original CERES SYN1deg (Ed4.1)
GHI -2.91 83.49 0.9566 83.44 341.63 | 3,331,148
DHI 30.58 85.86 0.8306 80.23 168.33 | 3,450,473
DirHI -37.09 122.24 0.8881 116.48 192.60 | 3,009,959
DNI, or DirHI/cos(Z) -54.32 203.73 0.8224 196.35 342.79 | 3,009,963
After Correction
GHI 0.01 83.19 0.9567 83.19 34454 [ 3,331,148
DHI 0.01 65.70 0.8300 65.70 137.88 | 3,450,473
DirHI, or GHI-DHI -0.02 106.45 0.9058 106.45 222.64 | 3,107,945
DNI, or DirHI/cos(Z) 0.72 182.15 0.8509 182.15 386.06 | 3,107,969
DNI from the Dirlndex Model
DNI from Dirlndex Model> | 8.54 | 228.81 ] 07580 ] 228.65] 44491 ] 2,195,000

*1. The DNI from the Dirlndex model covers the period from 2000-04 to 2016-12 only.
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Fig. 1. Comparison of the original CERES SYN1deg (Ed4.1) hourly GHI with the BSRN data from 2000-03 to 2020-07. a) The scatter density
of the hourly GHI. The statistics shown are categorized as “Global” that includes all data points, “60° Poleward” and “60° Equatorward”;
p stands for correlation coefficient, p standard deviation, psszn the BSRN mean, and N the total number of data points. b) Histogram of
the SYN1deg (Ed4.1)-BSRN hourly GHI differences. c) and d) The biases in 20 bins of cos(Z) on absolute and relative scale, respectively. e)
and f) The bias, ¢ and p on a site-by-site basis.
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Fig. 2. Same as Fig. 1 except for DHI.
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Fig. 3. Same as Fig. 1 except for DNI, or DirHI/cos(Z).
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4 The Correction Methodology

4.1 The bias correction

The bias-based correction scheme is as follows: 1) Apply the bias-based correction to the DHI and GHI as well;
2) Subtract the DHI from the GHI to get a corrected version of DirHI; 3) Divide the DirHI by cos(Z) to get DNI.
Note that the hourly solar zenith angle, Z, is part of the CERES SYN1deg (Ed4.1) data, and it is determined such
that the top-of-atmosphere (TOA) DirHI divided by the cos(Z) is equal to the solar constant.

To perform the correction of DHI, the SYN1deg-BSRN hourly DHI biases are first calculated in 100 bins of
cos(Z), as opposed to 20 bins in Figs. 1-3. In each bin, the bias is calculated on the absolute scale, Bias, in W m?,
and on relative scale, Rg;,, as percentage of the mean SYN1deg (Ed4.1) hourly DHI, as opposed to the BSRN
hourly mean DHI, the bias is considered to represent the center of the bin. Now both Bias and Rg;,, are functions
of cos(Z). For any given hourly DHI, Iy, its corresponding cos(Z) is first used to determine its bias through
linear interpolation; if the Bias or Rg;,, is negative, then the corrected DHI, I5, = Ipy — Bias; if the the Bias
Or Rg,qs IS positive, then the corrected DHI, I5, = Ipy - (1 — Rpiqs)- The scheme keeps or reduces the random
variability of the original data.

The correction of GHI is similarly performed. The difference between the corrected GHI and corrected DHI is the
corrected DirHI.

4.2 The modification of cos(2)

Effective hourly solar zenith angle that correctly relates hourly direct horizontal irradiance and hourly direct
normal irradiance has been studied (Blanc and Wald, 2016), and the CERES hourly solar zenith angle, Z, which
is based on the relation between the hourly DirHI and DNI, or solar constant, at TOA, is one of the six methods
studied. According to the study, the best result is based on a surface clear-sky model that computes clear-sky
hourly DirHI and DNI.

Here, however, we will only modify the cos(Z) by adding a linear component for large Z values to prevent cos(Z)
from getting too small. When Z > 75°, the value cos(Z) approaches 0 infinitesimally as the DirHI also approaches
0 and, and the error becomes a more and more significant part of the DirHI value. Consequently, the derived DNI,
or DirHI/cos(Z) becomes haphazardly, or unphysically, large. The following correction of cos(Z) for Z > 75° is
proposed.

Let u stand for cos(Z), and p, ¢ for effective cos(SZA). If Z < 75°, then pepp = p; if Z > 75° then prepr = u +
Ua, Where u, = — uk u+k, us5q = cos75° and k is an adjustable parameter, and when k = 0.045, the biases
5d

7
are minimized for Z > 75°. In fact, the biases in all twenty 0.05-sized bins become one digit.
The corrected DHI, DirHI and derived DNI therefrom as compared to BSRN are shown in Figs. 4-6. The corrected
GHI is not shown here due to limited space; it looks similar to Fig. 1 except with even smaller biases and other
statistics, and the biases in all bins of cos(Z) are close to zero. Note that the BSRN data have been quality-checked,
and Zhang et al. (2013) details the quality-check procedure.

Although the lower panels in Figs. 4-6 show that the site-by-site biases scatter around 0 over wide ranges, 43 sites
of 70 in Fig. 6f are actually within £10%. The larger biases at other sites do not necessarily mean bad data.
Schwarz et al. (2018) studied how the BSRN point observations represent their larger surroundings, and they
found that 26 sites out of 47 sites in the range from 50°S to 55°N are representative of their larger surroundings
according to different metrics. Therefore, caution is advised when interpreting the differences between satellite-
based and ground-based data.
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Fig. 4. Comparison of the corrected CERES SYN1deg (Ed4.1) hourly DHI with the BSRN data from 2000-03 to 2020-07. a) The scatter density
of the hourly GHI. The statistics shown are categorized as “Global” that includes all data points, “60° Poleward” and “60° Equatorward”;
p stands for correlation coefficient, p standard deviation, uBSRN the BSRN mean, and N the total number of data points. b) Histogram of
the SYN1deg (Ed4.1)-BSRN hourly GHI differences. c) and d) The biases in 20 bins of cos(Z) on absolute and relative scale, respectively. e)
and f) The bias, o and p on a site-by-site basis.
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Fig. 5. Same as Fig. 4 except for DirHI, which is the difference between GHI and DHI, or GHI-DHI.
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5 Summary and Conclusions

The POWER WSS project needs GHI, DHI and, in particular, DNI. The CERES SYN1deg (Ed4.1) has hourly
GHI and DHI, but not DNI, and instead, it has DirHI. However, it has been found that the DHI is positively biased
against BSRN and, the DirHI is negatively biased against BSRN, and the biases become more and more
pronounced as cos(Z) increases. Consequently, the derived DNI, or DirHI/cos(Z), is also negatively biased. In
addition, the cos(Z) value approaches 0 infinitesimally toward sunset, and the derived DNI becomes haphazardly
and unphysically large. Therefore, we performed a bias-based correction of the GHI and DHI, and use their
difference, GHI-DHI as corrected DirHI, and the cos(Z) is modified by adding a linear component to cos(Z) when
Z > 75°. The corrected DNI shows an overall minimal bias, and in all the 20 bins of cos(Z), the biases are all 1-
digit on both the absolute and relative scales. More importantly, the overall standard deviation of the differences,
or uncertainty, is significantly smaller than that of the DNI computed using the Dirlndex model. To access the
POWER solar data, visit https://power.larc.nasa.gov, select DATA ACCESS, then click POWER DATA
ACCESSS VIEWER, click Access Data, select Renewable Energy, and the follow steps to select the data
parameters and temporal averaging for a particular location. A complete Application Programing Interface is also
provided as well as limited image services. Please see the main homepage for details.
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