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Abstract 

As solar energy accounts for a larger portion of power grids around the world, it becomes necessary to mitigate 

the power output variability caused by intermittent cloud cover. When applied to a photovoltaic (PV) array, 

this variability limits the percentage of energy in a power grid generated by solar power. This limitation applies 

to both grid tied and islanded power systems.  Many strategies exist to mitigate these effects, including the use 

of backup generators but efficient hybrid solar power systems require accurate short-term forecasting of sharp 

changes to ground horizontal irradiance (GHI) to minimize fuel usage. This work describes an Internet of 

Things (IoT) network of inexpensive nodes equipped with pyranometers and explores a simplex optimization 

method of calculating cloud motion vectors (CMVs). The IoT network was successful in reliably measuring 

GHI but limited by the chosen communication modules. The simplex optimization method was found to be 

comparably accurate and marginally more stable in calculating CMVs when compared to the more commonly 

utilized Most Correlated Pair method. 

Keywords: Internet of Things, solar power, irradiance forecasting, distributed sensor network 

1. Introduction 

Solar power output is directly related to either the observed ground horizontal irradiance (GHI) or direct normal 

irradiance (DNI). Solar power is often implemented in a hybrid system with a diesel generator to smooth power 

output across variable irradiance. Solar power output on days with full sun is easily modeled using a tool such 

as the PVLIB toolbox from Sandia National Laboratories (Stein et al., 2016) to predict maximum irradiance 

and subsequent solar power output from a system at any given time. Overcast days yield a fraction of the solar 

power output of clear days, but changes to instantaneous power output occur gradually and are easily mitigated. 

Days with intermittent cloud cover pose a challenge as the average power output can vary by 40% across a 15 

minute window (Suri et al., 2014) and instantaneous power output can change by 80% within a 60 second 

window. To efficiently implement a solar-diesel power system without large, expensive energy storage it is 

necessary to accurately forecast short-term observed irradiance fluctuations caused by passing cloud shadows. 
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One form of forecasting observed irradiance involves calculating cloud motion vectors (CMVs) to predict 

when a cloud shadow will cross an observation point. The first methods for calculating CMVs were derived in 

the 1960s using satellite imagery for weather forecasting purposes (Menzel, 2001). Since then, work has been 

done to calculate CMVs with the application to irradiance forecasting using sky-facing cameras (Chow et al., 

2011, 2015; Urquhart et al., 2015) and arrays of pyranometers (Aryaputera et al., 2015; Bosch et al., 2013; 

Yang et al., 2014). This project explores a low-cost Internet of Things (IoT) solution for solar irradiance 

forecasting using a wireless network of pyranometers. It also provides a method for detecting intermittent 

cloud cover that causes sharp power variability and presents an alternate numerical method for calculating 

CMVs. 

2. Network Setup 

2.1 Overview of Test Location 

The sensor network utilized for this study was installed at the Methane Emission Technology Evaluation 

Center (METEC) located at the Foothills Campus of Colorado State University. Adjacent to the Rocky 

Mountains in northern Colorado, this area is prone to rapid changes in cloud cover and is therefore a great 

location to observe irradiance variability. Twelve nodes with uncalibrated pyranometers were placed along the 

METEC perimeter, one reference node with a calibrated pyranometer was placed near the center of the site, 

and a gateway node that connected perimeter nodes to the internet was placed in a building on the east side. 

All node locations can be seen in Figure 1. The nodes span 250 meters East-West and 150 meters North-South 

giving a maximum inter-node spacing of 270 meters. 

 

Figure 1: Sensor Node Locations 

2.2 Hardware 

Each of the perimeter nodes utilizes a STM Nucleo as the central processor. Voltage output from an 

uncalibrated photodetector pyranometer is measured using a 16-bit Analog-to-Digital Converter (ADC) while 

time and location information is provided by a GPS receiver. Readings are transmitted to the gateway node 

using an XBee 2.4 GHz radio module. Power is supplied by a 70Watt solar panel and 35 Amp-Hour battery 

that allows nodes to run for at least one week of full overcast and completely recharge in one day of full sun. 

The complete hardware of a perimeter node installed at METEC is shown in Figure 2. 
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Figure 2: Perimeter Node Hardware 

The gateway node utilizes a Beaglebone Black as the central processor an XBee 2.4 GHz radio module for 

communication with perimeter nodes. The gateway node was wired hard-wired to power and internet at 

METEC, but it could easily be connected to solar power and a cellular modem for deployment in remote 

locations. The reference node uses a similar setup to the gateway node, only replacing the XBee radio with a 

16-bit ADC connected to a factory calibrated pyranometer. 

The photodetector pyranometers fitted to all perimeter and reference nodes were built from kits purchased 

from the Institute for Earth Science Research and Education (David Brooks, 2007). Each photodetector 

pyranometer measures irradiance using a 470 Ω resistor soldered across the terminals of a PDB-C139 

photodetector. The photodetector is fitted inside a PVC tube covered with a Teflon disk to evenly diffuse light 

from a wide range of solar zenith angles. The reference node is fitted with a factory calibrated Kipp & Zonen 

SP Lite 2 pyranometer that was taken as GHI truth. Comparing the photodetector to the reference pyranometer 

demonstrated a very strong linear correlation. Irradiance readings from the photodetector and reference 

pyranometers were measured simultaneously at 10 Hz for 72 consecutive hours. Comparing the two sets of 

readings yielded a correlation coefficient, ρ=0.9993, and a coefficient of determination, R2=0.9985, as seen in 

Figure 3. 
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Figure 3: Photodetector Accuracy 

3. Methods 

This project compares two different CMV calculation methods. The first method used is the Most Correlated 

Pair (MCP) method as derived by Bosch et al. (Bosch et al., 2013). This method assumes that readings from 

two sensors are well correlated but yield the highest correlation coefficient when lagged by some non-zero 

amount in time. After calculating the time lag of maximum correlation for each pair of nodes, the pair of nodes 

with the highest correlation coefficient is assumed to be the most aligned with CMV direction. The azimuth 

between this most correlated pair of nodes is taken as the cloud direction azimuth and the speed is calculated 

by dividing the distance between the two nodes by the calculated time lag. Because this method has been well 

established, it is used as a benchmark comparison for the Simplex Cross-correlation Method (SCM). 

SCM builds on the MCP method by making three assumptions about cloud shape and applying a simplex 

algorithm to further refine the CMV approximation. SCM uses the same three assumptions as the LCE method 

derived by Bosch et al. (Bosch et al., 2013), but applied to the entire array of pyranometers. It is assumed: 

(i) Linear cloud edge across the sensor array 

(ii) Constant CMV while passing over the sensor array 

(iii) Cloud shadow passes over all sensors 

For time periods less than 1 hour, (ii) generally holds true. For slow GHI transitions caused by passing stratus 

clouds (i) and (iii) almost always hold true with sensor spacing O(1 mile). For sharp GHI transitions caused 

by passing cumulus clouds (i) and (iii) usually hold true for all sensors if maximum inter-sensor spacing 

O(100m), and a subset of sensors located along the cloud’s path for larger spacings. 

3.1 Irradiance as a Function of Cloud Motion Vector 

The CMV is modeled as a traveling planar edge with a direction azimuth α, edge azimuth β, and speed v. 

Taking any arbitrary pair of nodes Ni and Nj, line 𝑑𝑖𝑗  is drawn from Ni to Nj. Angle ϴ is the azimuth angle of 

line 𝑑𝑖𝑗 . Given that a cloud edge crosses node Ni at time t𝑖and node Nj at time t𝑗, the time delta between the 

cloud edge crossing the two nodes Δt𝑖𝑗 is: 

Δt𝑖𝑗  =  t𝑗  −  t𝑖          (eq. 1) 

This time delta can be calculated by tracing the point on the cloud edge 𝐶𝑖 that passes directly over node Ni to 

its position when the cloud edge crosses node Nj. This creates line 𝑑𝑖𝑗
′  that represents the true distance the 

cloud travels in time Δtij as shown in Figure 4 so that: 

𝑑𝑖𝑗
′ =  𝛥𝑡𝑖𝑗 ∗ 𝑣          (eq. 2) 
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Figure 4: Cloud Crossing Geometry 

The length of 𝑑𝑖𝑗
′  can then be solved geometrically using a pair of right triangles such that: 

𝑑𝑖𝑗
′ =  𝑑𝑖𝑗[𝑐𝑜𝑠(𝛳𝑖𝑗 − 𝛼) − 𝑠𝑖𝑛(𝛳𝑖𝑗 − 𝛼)cot(𝛽 − 𝛼)]      (eq. 3) 

In the case that CMV direction is parallel to the cloud edge (eq. 3) is undefined but assuming (iii) this case is 

impossible as the cloud edge doesn’t cross any nodes. In case that CMV direction is perpendicular to the cloud 

edge, equation (3) can be simplified to: 

𝑑𝑖𝑗
′ =  𝑑𝑖𝑗𝑐𝑜𝑠(𝛳 − 𝛼)         (eq. 4) 

Combining (eq. 2) and (eq. 3) gives the analytical solution for the time delta 𝛥𝑡𝑖𝑗 between the cloud edge 

crossing nodes Ni and Nj: 

𝛥𝑡𝑖𝑗 =  
𝑑𝑖𝑗[𝑐𝑜𝑠(𝛳𝑖𝑗−𝛼)−𝑠𝑖𝑛(𝛳𝑖𝑗−𝛼)cot(𝛽−𝛼) ]

𝑣
       (eq. 5) 

3.2 Cloud Motion Vector as a Function of Irradiance 

A CMV is calculated from irradiance by comparing the matrix of measured time deltas 𝜟𝒕 and the matrix of 

time deltas from an approximated CMV 𝜟𝒕′ between every arbitrary pair of nodes. For each pair of nodes Ni 

and Nj an error measure of the CMV approximation 𝑒𝑖𝑗 is calculated as the squared difference between the 

measured and approximated time delta such that: 

𝑒𝑖𝑗 =  ‖𝛥𝑡𝑖𝑗 − Δt𝑖𝑗
′ ‖

2
         (eq. 6) 

Taking the sum of the matrix of individual error measures yields a total error measure for the CMV 

approximation: 

𝐸 =  ∑ ‖𝛥𝑡𝑖𝑗 − Δt𝑖𝑗
′ ‖

2
𝑖,𝑗          (eq. 7) 

This total error measure can be expanded with (5) to create a CMV error function of variables α, β, and v: 

𝐸(α, β, v) =  ∑ ‖𝛥𝑡𝑖𝑗 −  
𝑑𝑖𝑗[𝑐𝑜𝑠(𝛳𝑖𝑗−𝛼)−𝑠𝑖𝑛(𝛳𝑖𝑗−𝛼)cot(𝛽−𝛼) ]

𝑣
‖

2

𝑖,𝑗      (eq. 8) 

Backing out the CMV from this error function is now a tri-variate minimization problem. An initial CMV 

guess is found using the pair of nodes most aligned with the cloud direction. The pair of nodes with the largest 

time delta containing the first and last nodes the cloud shadow crossed is assumed to be most aligned with 

CMV direction. Taking the first node crossed as Ni and the last node crossed as Nj, the initial guess cloud 
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motion azimuth 𝛼0  becomes the azimuth angle between the pair of nodes 𝛳𝑖𝑗 . Cloud edge azimuth is 

predominantly orthogonal to the motion azimuth (Bosch et al., 2013), so β0 is assumed to be perpendicular to 

𝛼0. The initial guess speed v0 is then found by dividing the distance between nodes 𝑑𝑖𝑗  by the measured time 

lag 𝛥𝑡𝑖𝑗. With this initial guess CMV, the error function (8) is minimized using the Nelder-Mead downhill 

simplex algorithm (Nelder and Mead, 1965). Other algorithms were considered, but the unstable Jacobian and 

Hessian of the error function rules out any gradient or quadratic algorithms. 

3.3 Quality Control 

Each individual sensor is not synchronized to measure GHI simultaneously, so the data from all sensors is first 

resampled to exactly 10 Hz. The resampled time series values are found using linear interpolation. To remove 

daily trend information caused by the solar position, measured irradiance is divided by the local clear-sky index 

generated using the PVLIB toolbox from Sandia National Laboratories (Stein et al., 2016). 

Before attempting to calculate CMVs across a given window, it must first be determined if any detectable 

cloud edges occurred in that time window. The measured irradiance is first down-sampled to a 10 second 

interval to ignore small changes between readings. The Manhattan distance for this window is found by 

summing the discrete derivative of this down-sampled irradiance sequence. If the Manhattan distance is greater 

than the average clear sky index across the window it can be assumed that at least one sharp transition has 

taken place. To ensure (iii) holds true, CMVs are only calculated when all nodes see at least one sharp 

transition. This can be seen in Figure 5 where CMVS are not calculated during overcast periods, periods with 

full sun, and when a shadow passes over only one node.  

 

Figure 5: Manhattan Distance Example 

Time deltas between nodes are calculated by maximizing the cross-correlation function between two sensors 

as defined by Bosch et al. (Bosch et al., 2013). The cross-correlation coefficient 𝜌𝑖𝑗  between the time series 

for two sensors is calculated at a range of time lags to create a function 𝜌𝑖𝑗(𝛥𝑡). The time lag with the highest 

cross-correlation coefficient is taken as the time delta between the two nodes. To ensure (i) and (iii) hold true, 

poorly correlated sensor pairs must be removed. If the maximum cross-correlation coefficient for a pair of 

sensors 𝜌𝑖𝑗 < 0.79 the time delta between this pair is ignored when calculating CMVs. 

3.4 Validation 

Both methods were compared against validation data obtained by combining 449 MHz wind profiler 

observations from the NWS station located 51 kilometers Southeast in Platteville, CO (US Department of 

Commerce, n.d.) with ceilometer observations from the NOAA Automated Weather Observation Station 

(AWOS) located 20 kilometers Southeast at the Fort Collins-Loveland Regional Airport (National Centers for 

Environmental Information, n.d.). Combining observed cloud ceiling height with the wind profile speed and 

direction gives a reasonable estimate of CMVs passing over the test site. Because often multiple ceilings are 

reported with different heights and velocities, only times with one reported cloud ceiling are used for 

validation. The location of the AWOS ceilometer and Platteville wind profiler in comparison to METEC can 

be seen in Figure 6. 
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Figure 6: Validation Data Source Location 

4. Results 

CMVs were calculated across a rolling 15-minute window with a 5-minute step and any CMVs with velocity 

greater than 50 m/s are thrown out. The averaged CMVs were compared to validation data based on three 

metrics: Root-Mean Square Error (RMSE) (eq. 9), Mean Bias Error (MBE) (eq. 10), and the Pearson 

correlation coefficient of cloud speed and azimuth. Because cloud azimuth has no stable expected value over 

an extended period of time, MBE was only calculated for cloud speed. 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑛− 𝑥̅𝑛)2

𝑁

𝑁
         (eq. 9) 

𝑀𝐵𝐸 =  
∑ (𝑥𝑛− 𝑥̅𝑛)𝑁

𝑁
         (eq. 10) 

Validation data was acquired for 10 months between September 2017 and June 2018. From this period, 

intermittent clouds were detected concurrently with reported validation data on 41 days yielding over 1200 

CMV comparisons. Both CMV calculation methods performed comparatively well to validation data as shown 

in Figure 7. The calculated CMVs show a strong correlation with validation data in speed and azimuth. 
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Figure 7: Calculated CMVs vs. Validation Data 

The performance metrics of calculated CMVs against validation data is shown in Table 1. Both methods 

performed comparably in speed and azimuth RMSE, but the MCP method showed greater bias towards high 

speed measurements. 

Table 1: Calculated CMV Performance vs. Validation Data 

 MCP SCM 

Speed RMSE 4.54 m/s 3.54 m/s 

Speed MBE 1.86 m/s 1.17 m/s 

Speed Correlation Coefficient 0.682 0.756 

Azimuth RMSE 17.7° 18.5° 

Azimuth Correlation Coefficient 0.830 0.791 

5. Conclusions 

An IoT network of low-cost pyranometers was implemented at CSU’s METEC facility consisting of 12 

uncalibrated photodiode pyranometers and one factory calibrated pyranometer. after comparing CMVs 

calculated using the SCM and MCP method it was found that the network could approximate CMVs with a 

RMSE of around 5 m/s and 24° compared to validation data acquired from a fusion of ceilometer and profiler 

data. This type of network shows great promise in predicting irradiance for use in hybrid solar-diesel power 

systems. 

While 12 nodes with photodetector pyranometers were installed at METEC, reliability issues in the XBee radio 

modules used resulted in data from a maximum of seven nodes to be used in calculating any CMV. In future 

iterations of this project, a more reliable radio module will be used to increase network efficiency and ensure 

that all nodes provide a reliable data stream for calculating CMVs. The newly developed SCM shows promise 

in improving calculated CMV accuracy over existing methods but requires some adjustment to provide 

consistent, measurable improvement. Techniques of approximating CMVs for non-linear cloud edges and 

multiple cloud layers with different velocities may also be explored. 
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