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Abstract 

Island electrical small-scale grids are sensitive to variations in power production. In case of important 
integration of solar power in the energy mix, the solar resource intermittency becomes a high risk to the 
grid’s stability. That is why a good knowledge of the variations is the first step to the massive optimized PV 
integration in the energy mix. This paper focuses on the forecasting of the solar resource variability. First, the 
solar resource variability characterization will be presented. It is based on a typological classification method 
that relies on variability scales which enable to distinguish the different dynamics. Afterwards, the 
predictability of variations is studied through forecasting models as a simple persistence, the k-Nearest 
Neighbors and Artificial Neural Networks (ANN). In this regard, time series of intervals classified according 
to their dynamics of variations have been generated and the forecasting performance, for different horizons 
and with different models were compared. 

Keywords: Solar resource, variations, classification, forecasting, k-Nearest Neighbors, Artificial Neural 
Networks 

1. Introduction  

Island electrical grids are typical: they are small-scale and sensitive to variations in power production. In 
case of important integration of solar power in the energy production mix, the solar resource intermittency 
becomes a high risk to the grid’s stability. This is the reason why, in France, it is considered that no more 
than 30% of the production power must be supplied by power plants using intermittent renewable energy 
sources. In Corsica Island, this threshold has already been reached in 2012, as a large amount of PV plants 
have been connected to the grid. This threshold is a constraint to the development of renewable energies on 
the island. Therefore, the aim would be to overpass this threshold without destabilizing the electrical grid.  

A good understanding of the solar resource in Corsica, its variability, its territorial mitigation and forecasting 
are important challenges for the electrical grid’s manager to overpass this threshold. The optimization of the 
territorial mitigation may present an opportunity to the development of renewable energies and their 
integration to a small electrical grid which is not connected to the mainland power grid. We can anticipate 
that the smoothing of the electrical photovoltaic power production by the compensation of the territorial 
mitigation will be insufficient to stabilize the grid. Finally, it seems essential to compensate the solar 
variability using other means of production or storage solutions.  

The level of solar variation has to be forecasted so that the electrical grid manager can anticipate and can 
choose a control strategy concerning all the means of power production. In this context, the solar resource 
intermittence characterization in Corsica, the use of the territorial mitigation and the forecasting of variations 
are challenges to the grid’s manager. For this, a new method of typological classification of variations has 
been developed and will be introduced.  

2. Typological classification of the radiation 

Indicators such as the clearness index , the air-mass-corrected clearness index or the clear-sky index 
 give information on the sky's clearness or cloudiness. A segmentation of these indexes domains into two 
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or three intervals are the result of a first classification. In the literature, we can find numerous segmentations 
of daily  values that have succeeded to different classifications (De Miguel et al., 2001; Li and Lam, 2001; 
Mefti et al., 2008; Notton et al., 2004; Rigollier et al., 2004). This first classification method has the 
advantage to be easy but has the disadvantage to be static: fluctuations of irradiations and the cloudy 
dynamic are smoothen by a daily mean and cannot be considered. Consequently, a changeable weather day 
can have the same daily clearness index as an invariably cloudy one. Other typological methods can consider 
the clouds dynamics by completing the discrimination indexes of the different types of radiation. Muselli et 
al. (2000) have used a set of discriminating parameters derived from  hourly and daily values in order to 
characterize three types of days (clear sky, overcast sky, cloudy sky), using classification method of Ward. 
Daily dynamic of the sunshine has been considered by a parameter entitled "Integral of the squared second 
derivative of hourly clearness index profile". Other typological methods consider cloudy dynamic : the mean 
clearness index segmentation is completed by the segmentation of mathematical quantities that quantify the 
signals roughness such as the fractal dimensions (Maafi and Harrouni, 2003) or using Dirichtlet 
decompositions (Soubdhan et al., 2009) or even the wavelet decompositions (Woyte et al., 2007).  

All these new methods present the limit of discriminating by days, while in a single day we can have 
different weather dynamics. That is why these classifications unable an energy manager to anticipate the 
variability of the production: the knowledge of the category of a day to come does not allow knowing 
precisely the irradiation profile. It seems valuable to consider days as successions of irradiation profiles that 
can be subject to a classification. 

3. Methodology: Variation scales 

Irradiance dynamic regimes distinguish themselves by the variations form observed that can be characterized 
by two criteria: their duration and amplitude. The aim of this work is to set up a classification method of 
these regimes depending on these characteristics.  

The variation scales  are defined as the time interval for which relative variations of solar irradiance  
are calculated. In this study, we are interested in the relative absolute variation  between two successive 
moments separated by a time  neglecting existing variations in the interval  and following this 
relation: 

   (eq. 1) 

3.1. Variations categories 
Variation scales allow discriminating different variation dynamics. Indeed, variations which are too slow to 
be perceptible for a value of  can be revealed for a superior value.   

A typology can be built on scale variation following this procedure: considering a given variations scale, the 
issue will be to calculate and compare variations at a variability threshold noted . Variations higher than 
this threshold will integrate the equivalent class that could be described as the class of the «perceptible 
variations at this scale ». Then, for example, two different variations scales  and  lead to three 
classifications, from the close to zero variations set to high variations one. It is convenient to choose the 
scales separated by larger orders of magnitudes, in order to discriminate completely different variation 
profiles.  

3.2. Intervals delimitation 
In a majority of cases, even in a very dynamic cloudy regime, variations are only punctually above the fixed 
threshold. Then, the classification conditions generate a large number of intervals of different classes 
following themselves. Two thresholds have been introduced in this optic. The first threshold called intra-
interval threshold and noted , represents a maximal duration between two variations so that they can be 
grouped in the same interval. The other threshold is called inter-interval threshold and noted . It is 
comparable to a minimal duration of intervals.  

The use of these two thresholds gives birth to a sequential procedure of interval determination following 
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three non-commutative steps:  

1. The instability instants set are defined as a set of instants for which variations exceed the variability 
threshold ; 

2. All the instants between two variations separated by the inferior laps time of the intra-interval threshold 
  are considered fluctuant : it is the grouping inter-interval step or homogenization step; 

3. The intervals considered too short integrate adjacent intervals: it is the inter-interval grouping. If 
adjacent intervals to the studied one are of different classes, the inter-intervals grouping is done under a 
condition: if the interval is of maximal class, it will be concatenated to the adjacent one of nearest 
inferior class, else it will integrate automatically to the nearest interval of the superior class. These 
conditions are coherent with the electric network managers' point of view: it is convenient to outrank 
marginal events in order to consider in the worst case to limit the risks and to upgrade marginal events. 
However, in the first case where the over-classification is impossible, we consider that the oddness or 
the short variation duration takes over their intensity, the interval is downgraded.  

4. The classification method and the variability interval definition and sunshine regimes need the 
determination of four specific parameters: 

- A variability threshold  above which we consider that there is instability; it has been fixed to 10 
% in our study.  

- Scale variation values  for the discrimination of the different sunshine regimes; it seems better to 
use different order of magnitudes in order to distinguish different dynamics. The magnitudes of a 
few seconds can find out strong and narrowed variations while those of a few minutes find strong 
variations and also slower and stronger ones. Thus, considering these observations, it seems 
appropriate to have two scales: s and s leading to a partition in three classes: 

o Class 0 (noted C0): the variations of this class are perceptible neither for s, nor for 
s. There are no or very few variations ; 

o Class 1 (C1): variations are perceptible only for  s. These variations are slow and 
not very intense ; 

o Class 2 (C2): variations are perceptible for s and s. They are narrowed and 
deep. 

- Intra- and inter- grouping interval thresholds (  and ), which we can evaluate the limits of 
the intervals. No objective criterion has been found for the thresholds determination. It is the reason 
why these thresholds are determined depending on the application we want to do with the intervals 
and the temporal resolution necessary to this application. The smaller the thresholds' values are, the 
smaller and more numerous will be the resulting intervals. 

Figure 1 is an example of days separated into intervals ranked for  ; s and s and 
s. 

 
Figure 1 : An example of a daily irradiance curve and the variability classes associated  
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4. Forecasting of solar irradiance variation 

In literature we can find a large amount of forecasting models to predict solar irradiance at different horizons  
(Kemmoku et al., 1999 ; Sözen et al., 2005 ; Mellit et al., 2005 ; Cao and Cao, 2006 ; Hocaoglu et al., 2008 ; 
Zervas et al., 2008 ; Chaabene et Ben Ammar, 2008 ; Paoli et al., 2010 ; Voyant et al., 2011 ; Marquez and 
Coimbra, 2011). These forecast concerns punctual irradiance values or the solar irradiance between two 
moments. For these two configurations no information is available on the short solar variations. Ideally, the 
aim would be to forecast for different small horizons in the range of the minute, on different lags at the same 
time. The shortest developed horizons until know are of 5 minutes on a single lag (Voyant, 2011). On the one 
hand, such a horizon does not seem sufficiently close to evaluate fast variations. On the other hand, a single 
lag does not allow to know a variation tendency (except if we refer us to past measures). Finally, this 
prediction does not leave the time to the grid manager to act on the system when a fluctuating regime is 
recognized. The ranks forecast seem interesting as it means that the variations of a future interval would be 
forecasted. The forecast methods which we have chosen are statistical based on:    

- The k-Nearest Neighbor (k-NN): it is a technique following the philosophy that a succession of events of 
the same nature will lead always to a same consequence. Here k is the number of sequences. The 
principle of the k-NN consists to look for in a set of data identical events to the last observed. Then it is 
supposed that the future event will be the most often observed one after equivalent sequences observed 
in the historic.  

- The Artificial Neural Network (ANN) is a learning algorithm inspired by biological neural networks. It 
represents a collection of neurons which are mathematical and computer representations of biological 
neurons. The mathematical representation is like an algebraic function which evaluates a weighted sum 
of the inputs matched to a bias, which is independent with the inputs.  

Either the model has predicted the correct class or it has forecasted the wrong one, so that the performance of 
these models will be based on the percentage of times the class forecasted was the correct one. The models 
results will be compared to a primitive model, named the persistence. This model tends to reproduce the 
present event to the studied horizons.    

4.1 Set of data 
The classified irradiance data used in this study to test the different forecasting models were measured in 11 
sites dispatched in Corsica Island (Fig. 2) during 2 years. The measurements are sampled at 1 s and 
synchronized. As a first step, the data collected in all sites have been concatenated in a same set in order to 
make a large sample as it is necessary for forecasting.  

 
Figure 2 : Lucciana (42° 39’ 49” ; 9° 25’28” ; 60) -  2 Oletta (42° 39’ 36” ; 9° 19’ 45” ; 52) - 3 Calvi (42° 33’ 38” ; 8° 44’ 48”; 31) 

- 4 Corte (42° 18’ 04” ; 9° 09’ 57” ; 381) - 5 Piana (41° 16’ 03” ; 8° 41’ 37” 12) - 6 Cargèse (42° 08’ 40” ; 8° 35’ 58” ; 30) ; 7 
Ghisonaccia (42° 03’ 54” ; 9° 22’ 14” ; 65) - 8 Ajaccio (41° 55’ 49” ; 8° 45’ 23” ; 2) - 9 Sainte Lucie (41° 41’ 59” ; 9° 20’ 12” ; 66) 

- 10 Propriano (41° 39’ 43” ; 8° 55’ 02” 17) - 11 Bonifacio (41° 22’ 17” ; 9° 12’ 10” ; 46) 

The variations classes have been determined according to the method previously introduced, using a 
variation threshold of 10 % and variations scales of 60 s and 300 s.  The predictions realized in this study are 
based on time series defined as a sequence of observations for regular time steps. These observations are 
done based on identical acquisition methods and data processing. In our case, the observed days need to be 



Haurant et al. / SWC 2015/ ISES Conference Proceedings (2015) 
 
divided into constant time intervals for which we attribute fluctuation rank. Each measure has to be ranked 
using the method defined above. Then each time interval composed by ranked measures will get the mostly 
present fluctuation rank. The time series time step will be chosen based on the forecast demand in terms of 
temporal resolution and horizons. 

80 % of the set of ranked intervals were used for the learning phase and 20 % were used for the assessments 
models performance.  

4.2 Forecast with a persistence model 
The persistence model is a simple model which considers that the event  at time  is repeated at time , 
where h represents the horizon of the forecast:  

 (eq. 2) 

This model has been implemented for ranked intervals of 15 min, 30 min and one hour. The model has been 
used to forecast horizons from 15min to maximum 6 hours. Figure 3 presents performance of the persistence 
model applied to these three types of intervals for the entire horizons predicted. First of all, we observe that 
whatever the size of the used ranked intervals, the predictions performance decrease when more lags are 
used. Above a number of lag the performance will not change much. For an interval of 15 min, we have a 
performance which changes from 83.3 % for lag 1, to 50.1 % for lag 6 to 33.3 % for lag 16. The performance 
does not change much and reach 32.9 % at lag 24. In the same way, the performance of the predictions for 30 
min intervals changes from 72 % at lag 1 to 39.1 % for lag 6, decreasing then slightly. Finally, the correct 
forecast for a one hour interval will change between 66.9 % at lag 1 to 42.9 % at lag 6.  

 
Figure 3 : Correct prediction rates obtained with a persistence as a function of horizons, using ranked intervals of 15 mn, 30 

mn and 1 h. 

For a same horizon we notice that longer (in terms of time) ranked intervals allow always better predictions 
for all the cases: for a horizon of 30 min the predictions with 30 min intervals (at lag 1) are better than with 
15 min intervals (at lag 2). We have performance of 72 % for 30 min intervals and of 70.7 % for 15 min 
intervals. In the same way, one hour interval allow better predictions than with 30 and 15 min intervals, 
giving respectively 66.9 %, 58.8 % and 58 % of performance.        

4.2. K-NN Forecast method 
The k-NN method developed here is based on a historic of the successions of variation classes. The method 
consists in finding similar sequences of the k last past events in this historic. Then, the prediction at horizon 
h corresponds to the most frequently observed class that follows the sequences at lag h.  

The optimization of the k-NN passes by the determination of the sequences size  and of the time 
series time step used as input. As the tests realized with the persistence model the intervals of 15 min, 30 min 
and one hour have been tested. The first results have shown that it is convenient to choose a k-NN model 
with k = 4: 

- For a time step of 15 minutes (Fig. 4), the existence of forecast impossible for  puts into 
question their usability. Some sequences preceding the class to be predicted have not been found in the 
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historic so no class forecast has been possible. Taking k = 4 allowed all the predictions and give better 
results for . It gave close results to the best results of the other horizons.  

 
Figure 4 : Correct prediction rate as a function of the sequence size of the k-NN for different horizons, using 15 mn intervals 

- For 30 minutes intervals (Fig. 5), the existence of impossible forecast for  show that these 
models are not reliable. The most performant model whatever the lag is 4-NN.  

 
Figure 5 : Correct prediction rate as a function of the sequence size of the k-NN for different horizons, using 30 mn intervals 

- Concerning the one hour interval (Fig. 6), impossible forecasts for  exist, so that we do not 
consider them. Then, the best forecasts are always reached with k = 3 or k = 4. We can notice that the 
performance of the 4-NN model are always higher than of the 3-NN for lags 1, 2 and 4 with small 
differences between 0.1-0.3 points. The 4-NN model has much better performance than model 3-NN for 
lags 3, 5 and 6 for differences between 0.5 and 7.2 points. In general, the 4-NN model presents the best 
results.  
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Figure 6: Correct prediction rate as a function of the sequence size of the k-NN for different horizons, using 1 h intervals 

Finally, the performance of the 4-NN for the three ranked intervals studied are summed up on figure 7.  

 
Figure 7 : Correct prediction rate obtained with a k-NN (k = 4) as a function of horizons, using ranked intervals of 15 mn, 30 

mn and 1 h. 

As the persistence, the longest ranked intervals give better results for distant horizons:  

- The 15 minutes intervals allow 71.0 % of correct forecasts for 30 min horizons (at lag 2) while we have 
72.3 % of good predictions, for the same horizon, with 30min intervals (à lag 1). 

- The 15 minutes intervals give 58.8 % of correct predictions at one hour horizon (at lag 4), against 59.5 
% with 30 minutes intervals (at lag 2) and 66.3 % with one hour intervals (at lag 1). 

5. Artificial Neural Networks Forecast method 

ANN have been applied to the time series representing the classes of variations. These classes are forecasted 
for different sizes of intervals and different horizons. In all the cases, only 6 lags have been forecasted in 
order to limit the complexity of the studied models.  

The optimization of the ANN parameters is a major stake. Therefore, we have focused on the study of the 
number and the type of inputs as well as the number of hidden neurons , conserving the rest of the ANN’s 
structure (architecture, activation function, number of hidden layer, etc.). The optimization has been done by 
fixing one of these two parameters (i.e. the number and natures of the inputs or the number of hidden 
neurons) and varying the other one, following the method developed by Voyant et al. (2011). To start with, 
the inputs are defined and then the numbers of neurons of the unique layer hidden  are defined. The inputs 
have been optimized following two axes fixing :  
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1. The nature of the inputs, associating to the endogenous inputs exogenous inputs. The exogenous inputs 

used in this study are spatiotemporal indices: the measured instants of the events are detailed and are 
geographically located, since the historic is composed of measures done on 11 different sites on a period 
above one year and presenting discontinuities. Some successions of events can be linked to the site of 
measure and a temporality of the phenomenon can exist: some events successions are seasonal or daily. 
Three types of indexes have been studied independently each one from another :    

- A time index  resuming the hour, the day, the month and the year of the event ;  

- A spatial index represented by the altitude of the measures site. This index is more 
representative than the geographic coordinates as the sites are very close to each other so that the 
coordinates would not be representative ; 

- A spatiotemporal index  : the global radiation for clear sky daily conditions : , simulated 
by the ESRA model (Rigollier et al., 2000). The radiation depends on the position and the instant. 

2. The number of inputs: we try to limit the number of inputs in order to reduce the complexity of the 
model. An iterative procedure has been set up to eliminate the unnecessary inputs. If we consider eight 
endogenous inputs and as many exogenous inputs a neural network is generated. The performance of the 
neural network is calculated and the weights between the inputs and the hidden units are examined. The 
input associated to the weakest weight is eliminated as it is considered unnecessary. This procedure is 
repeated until we have only one input. The model kept will be the one which maximizes the number of 
correct predictions.  

We obtain from these optimizations different input choices according to the sizes of intervals. The model 
choice is difficult since their ranks are different from a lag to another: a model can be the best for prediction 
at a lag whereas it is the worst for predictions at another lag. A mean of the forecast on the six lags has been 
chosen to discriminate the different models. Only  and  indexes improve the ANN performance for 
15 min classed intervals and lags higher than 1 (Fig. 8). The models using  give the best results for lag 3 
and 4 whereas  increase the success rate for lag 2, lag 5 and lag 6, giving close results to the best ones for 
the other lags. These models need respectively 14 and 9 inputs. In this way, according to the Okham razor 
principle, it seems more interesting to keep the model with  index for most cases. Only forecasts at lag 1 
need endogenous data. 

 
Figure 8: Correct prediction rate as a function of the type of ANN inputs for different horizons, using 15 mn intervals 

For 30 minutes intervals, the indices tend to damage the models performance (Fig. 9). In this way the model 
using two endogenous inputs present the best performance for all the lags except for lag 3. This model will 
be put forward especially as it needs few inputs.  
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Figure 9: Correct prediction rate as a function of the type of ANN inputs for different horizons, using 30 mn intervals 

Finally, concerning one hour intervals, the model using three endogenous inputs is the most promising. It 
allows better statistics for all the lags forecasted and needs few inputs.  

 
Figure 10: Correct prediction rate as a function of the type of ANN inputs for different horizons, using 1 h intervals 

Concerning the number of hidden units in the unique layer, we must note that the number of parameters to 
evaluate for a ANN strongly increases with the number of hidden units: for a hidden layer with  neurons, 

 inputs and  outputs, the ANN will count weights and  bias, a total 
 of parameters. It is important to limit at most . 

 have been tested for 15 min ranked intervals. We had slightly best performance for the three first 
lag with ,  and  and the three following lags are a bit better forecasted with  
and . But the small enhancements of the performance have to be relativized as the models are more 
complex so that  can be privileged since it is less complex and its performance are near the best more 
complex models. 

For intervals of 30 minutes, 3 or 4 hidden neurons are needed to maximize the performance of the ANN at 
lag 1, lag 2 and lag 3 and that  shows the best results for predictions at lag 4, lag 5 and lag 6.  
can be privileged: this model, which is the less complex, shows the best compromise between performance 
and complexity.  

In the same way and for the same reasons, the ANN with  is preferred among   for one 
hour intervals. 
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Figure 11 : Correct prediction rates obtained with an ANN as a function of horizons, using ranked intervals of 15 mn, 30 mn 

and 1 h. 

6. Conclusions 

The correct prediction rates for the studied horizons obtained with the optimized models are summed up in 
figure 12. 

 
Figure 12: Correct prediction rate of the best model of each category as a function of horizons 

We can see that whatever the model (persistence, k-NN or ANN), it is necessary to implement classified 
intervals of different durations as input to forecast variability classes at more or less far horizons:  

1. for horizons above 1 hour, we can use classified intervals of 15 or 30 minutes. These inputs give close 
results whatever the model. However, it is interesting to input 15 minutes intervals for a best time resolution; 

2. for horizons over 1 hour, it is necessary to input 1 hour intervals.  

Besides, we can observe that for predictions at close horizon (between 15 minutes and 1 hour), the three 
studied models give quite similar results. For these horizons the persistence must be preferred to respect the 
Okham razor principle. For horizons between 1 hour and 2 hours, ANN gives best results and must be 
favored. Finally for horizons over 2 hours, the k-NN offers best performance and must be used. Thus an 
hybridation of these models should achieve better performance for prediction at all horizons. 

In future works, Markow chains could be considered since it is possible to evaluate probability of transition 
from a class to another. 
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