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Abstract 

In this work, we assess the performance of statistical models for intra-hour solar forecasting. More precisely, 
a linear recursive model and a nonlinear model are used for generating solar irradiance forecasts at temporal 
resolutions of a few minutes and over multiple horizons. Our approach is applied to forecasting solar 
irradiance at single sites using the sole historical ground observations of solar irradiance. The benchmarking 
of the forecasting methods is made at four sites that exhibit different sky conditions.  
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1. Introduction 

The availability of accurate solar forecasts is of great importance for an efficient integration of large shares 
of solar energy into the electricity grid (Lorenz and Heinemann, 2012). To ensure reliable grid operation, 
utilities require accurate forecasts at different granularities and different forecasting time horizons (Kostylev 
and Pavloski, 2011). Depending on the forecast horizon, different input data and forecasting models are 
appropriate. Statistical models with on-site measured irradiance are adequate for the very short-term time 
scale ranging from 5 minutes up to 6 hours (Lorenz and Heinemann, 2012). 

Today, solar forecasts are essentially produced on an hourly basis. However, there is a broad consensus 
among energy experts, electric utilities and regulatory authorities on the future need for intra-hour forecasts 
in order to accommodate the increasing share of photovoltaic power in power systems. 

In this work, the focus is placed on lead times from 10 minutes to 3 hours ahead with a granularity of 10 
minutes. Consequently, we assess the performance of two statistical models: a linear recursive model 
ARMA.rls (Ljung and Söderström, 1983) and a nonlinear model ν-SVM based on support vector machine 
(Smola and Schölkopf, 2004) for intra-hour solar forecasting. The benchmarking of the two methods is made 
at four sites that exhibit different sky conditions. 

2. Data 

Four sites are used to evaluate the performance of the forecasting methods. Three of these sites are island 
sites: Saint-Pierre and Le Tampon (Reunion island), Oahu-Hawaii (Wilcox and Andreas, 2010). The fourth 
one is located in Las Vegas (Andreas and Stoffel, 2006). The choice of the aforementioned sites aims at 
testing the different forecasting techniques for different sky conditions. Table 1 gives the details related to 
the four locations. The data (two years) used to build the models are Global Horizontal Irradiances (GHI) 
measured at the four stations. Contrary to the ARMA.rls method, the machine learning technique ν-SVM 
investigated in this work is a supervised learning method, which consists in learning input-output mappings 
from empirical data (the training dataset). Consequently, data have been divided into training and test 
datasets. The test dataset (one year) is used to evaluate the performance of the forecasting techniques.  Table 
1 gives also the mean GHI of the test year used to compute the relative error metrics (see section 5). 
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Tab. 1: Locations under study  

  Las Vegas 
(NV) 

Oahu (HI) Saint-Pierre (RUN) Tampon (RUN) 

Provider NREL NREL PIMENT PIMENT 
Position 36.06N  

115.08W 
21.3N 

158.1W 
 

21.3S 
55.5E 

 

21.3S 
55.5E 

 
Elevation 615m 11m 75m 550m 

Climate type Desertic Tropical Tropical Tropical 
Period 2011 (Training) 

2012 (Testing) 
2010 (Training) 
2011 (Testing) 

2012 (Training) 
2013 (Testing) 

2012 (Training) 
2013 (Testing) 

Mean GHI testing 
period 

544 W.m-2 493 W.m-2 538 W.m-2 457 W.m-2 

 

3. Data processing 

The Bird clear sky model (Bird and Huldstrom, 1981) is used to remove the daily and annual seasonalities in 
the global horizontal solar irradiance (GHI) time series then leading to the definition and use of the clear sky 
index: 

(eq. 1)

where is the measured global irradiance and  is the output of the Bird clear sky model. With this 
methodology, the models designed in this work are dedicated to the stochastic part of the global radiation due 
to cloud cover, leaving the geometric and the deterministic part to be modeled by the clear sky model. 

It is also a common practice to filter out the data in order to remove night hours. This choice is justified 
because during these periods there is obviously no significant solar radiation to generate electricity (i.e. low 
potential overnight). We chose to apply a filtering criterion based on the solar zenith angle ( ): solar 
radiation data for which the solar zenith angle is greater than 80° have been removed. In addition, this 
filtering process allows to discard data with less precision as measurement uncertainties associated with 
pyranometers are typically much higher than ± 3.0% for SZA > 80°. Notice also that for the sunrise and 
sunset, the prediction is also very difficult (mainly in mountainous areas) owing to the geographical shield. 

4. Forecasting methods 

The performance of the linear ARMA.rls and nonlinear -SVM models are appraised against two reference 
models namely persistence and climatologic mean models. 

 4.1 Reference models 
We propose to test our forecasting methods against reference models like persistence and climatology. 

The persistence model is expressed as follows: 

(eq. 2)

This model assumes that the clear sky index for each forecasting time horizon h only depends on the 
previous value, which means that the sky conditions remain invariant between time t and time t+h.  

We also propose the climatological mean model, which is independent of the forecast time horizon (Lorenz 



Philippe Lauret / SWC 2015/ ISES Conference Proceedings (2015) 
 
and Heinemann, 2012).  More precisely, this model performs a constant forecast of the clear sky index that 
corresponds to its mean historical value: 

 

                     (eq. 3)

4.2 ARMA.rls model 
The Auto Regressive Moving Average (ARMA) model is a popular technique in the realm of solar 
forecasting. In particular, it has been extensively studied in renewable energy forecasting and, owing to its 
parsimony, it has turned out to be a very tough competitor to beat. Applications include, among others 
forecasting of wind power generation (Pinson, P., 2012), online power forecasting (Bacher et al., 2009) and 
wave energy flux (Pinson et al., 2012). 

An ARMA(p,q) model with p AR terms and q MA terms is defined as follows: 

(eq. 4)

 is an independent and identically distributed random variable with a zero mean. The vector 
 contains the set of parameters to be estimated. A classic setting based on a 

least-squares method and training data can be used to estimate the set of parameters (Chatfield, 2004). 
 
However, in this work, to estimate the model’s parameters, we chose a variation of the least squares method, 
namely the Recursive Least Square (RLS) method (see Ljung and Söderström, 1983 for details of 
implementation). This method offers the advantage of reducing the computational cost for estimating the 
model’s parameters. In addition, the parameters are updated in real-time as new data become available (no 
training set is necessary here). This contrasts with more intensive estimation methods operating on a sliding 
window where the estimation process is being carried out at each time step. Hence, the RLS method is 
particularly well suited in an operational context where forecasts have to be timely delivered.  

Regarding the structure of the ARMA model, the use of the classical ACF (Auto Correlation Function) and 
PACF (Partial Auto Correlation Function) techniques (Chatfield, 2004) led to the selection of the following 
orders  and . 

4.3 -SVM model 
The support vector machine (SVM) is part of the kernel based machine learning techniques used in 
classification tasks and regression problems (Smola and Schölkopf, 2004). The forecasted clear sky index for 
time horizon h is given by Eq. (5): 

(eq. 5) 

denotes the kernel radial basis function  with hyperparameter   and  
b  a bias parameter. SVM models are generally stated as a kernel-based method. Indeed, it can be shown that, 
given n training samples, the prediction for an input test vector can be seen in terms of a linear 
combination of n kernel functions; each one centered on a training point . Notice that  and are vectors 
that contain the p past values of the clear sky index. A variant of the SVM algorithm called -SVM allows 
controlling the amount of kernel functions used in the regression.  

The parameter b (or bias parameter) is derived from the preceding equation and some specific conditions (see 
Smola and Schölkopf, 2004 for details). The coefficients are related to the difference of two Lagrange 
multipliers, which are the solutions of a quadratic programming (QP) problem (Smola and Schölkopf, 2004).  

Unlike artificial neural networks, which are confronted with the problem of local minima, here the problem 
is strictly convex and the QP problem has a unique solution. In addition, it must be stressed that not all the 
training patterns participate in the preceding relationship. Indeed, a convenient choice of a cost function i.e. 
Vapnik’s  ε-insensitive function (Smola and Schölkopf, 2004) in the QP problem enables to obtain a sparse 
solution. The latter means that only some of the coefficients  will be nonzero. The examples that come 
with non-vanishing coefficients are called Support Vectors.  
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The parameters related to the SVM optimization process are a parameter C that controls the trade-off 
between overfitting and generalization capability of the algorithm, a parameter ν that controls the amount of 
support vectors used in the regression and the parameter γ of the covariance function that controls the 
smoothness of the covariance function (Fonseca Junior et al., 2013). These parameters have been optimized 
through the use of a k-fold cross-validation procedure (Fonseca Junior et al., 2013).  In the present study, 
regarding the implementation of the support vector regression, we used the LibSVM library (Chang et al., 
2011).  

5. Results 

In the realm of the solar forecasting community, the commonly used error metrics are: the Root Mean Square 
Error (RMSE), Mean Absolute Error (MAE) and Mean Bias Error (MBE). Relative counterparts (rRMSE, 
rMBE and rMAE) are obtained by normalization with the mean GHI of the test period (see Table 1). The 
interested reader is referred to Lorenz and Heinemann (2012) for the definition of these error metrics.  

In this work, a special focus is placed on the rRMSE. This error metric tends (unlike the rMAE) to be 
influenced by some extreme events or outliers. Nonetheless, most utility users find this metric suitable as 
large forecast error results in high financial losses (Lorenz and Heinemann, 2012). 

Tables 2, 3 and 4 list respectively the rRMSE, rMBE and rMAE for each forecasting time horizon and for 
each location.  As shown by these tables, one can a priori state that the performances of the different models 
depend heavily on the sky conditions experienced by each site. The persistence model is a good indicator of 
the type of climate experienced by a particular site. As seen, it seems that the Las Vegas location experiences 
high occurrences of clear sky situations while the insular sites (particularly Le Tampon and Oahu) exhibit 
more variable sky conditions. 

 

 

Fig. 1: Accuracy of intra-hour solar forecasting 

 

Fig. 1 plots the rRMSE of the different methods for forecast horizon ranging from 10 minutes to 180 minutes. 
Fig.1 demonstrates the better performance of the SVM method ( -SVM) and ARMA.rls model over the 
persistence model when the forecast horizon increases. As shown by Fig.1, the linear recursive model 
ARMA.rls performs equally well than the nonlinear SVM model. It even produces slightly better forecasts in 
the case of Saint-Pierre and Le Tampon. Further, the improvement is more pronounced as the forecast 
horizon increases. One may notice also that the performances of the linear and nonlinear models tend 
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towards that of the climatological mean. This behavior is consistent, as these methods tend to asymptotically 
model the mean of the data. 

Overall, contrary to the -SVM  model, it appears that the ARMA.rls method produces less biased forecasts 
(see Table 3). Regarding the rMAE metric, except for Las Vegas, the ARMA technique performs better than 
the SVM method.  

 

Tab. 2: Relative RMSE in % for each location and for each forecast horizon. Pers, RLS and SVM correspond 
respectively for Persistence, ARMA.rls and  -SVM models. 

h+xx    
mins 

Las Vegas (NV) Oahu (HI) Saint-Pierre (RUN) Tampon (RUN) 
Climatology 23.4 Climatology 37.3 Climatology 36.3 Climatology 51.3 
Pers RLS SVM Pers RLS SVM Pers RLS SVM Pers RLS SVM 

h+10 12.3 11.8 11.9 25.8 23.8 23.8 17.9 17.1 17.1 28.7 26.9 27.0 
h+20 16.2 15.0 15.0 31.9 28.0 28.0 23.1 21.4 21.4 35.6 32.1 32.3 
h+30 17.8 16.3 16.4 34.5 29.7 29.8 25.9 23.6 23.7 38.7 34.7 34.8 
h+40 19.0 17.2 17.3 36.6 31.0 31.0 27.6 25.0 25.3 41.0 36.6 36.7 
h+50 20.0 18.0 18.0 38.2 31.8 31.9 28.8 26.1 26.4 42.7 38.1 38.4 
h+60 20.8 18.6 18.7 39.0 32.3 32.4 29.9 27.0 27.4 44.1 39.4 39.9 
h+70 21.6 19.1 19.2 39.6 32.8 32.9 30.9 27.9 28.3 45.6 40.6 41.3 
h+80 22.2 19.5 19.7 40.5 33.3 33.4 31.9 28.6 29.0 47.0 41.7 42.6 
h+90 22.7 19.9 20.1 41.1 33.7 33.8 32.9 29.3 29.7 48.7 42.8 43.8 

h+100 23.3 20.3 20.5 41.7 34.1 34.1 33.6 29.9 30.4 50.3 43.9 45.0 
h+110 23.9 20.7 20.8 42.3 34.4 34.4 34.4 30.4 31.0 51.8 44.8 45.9 
h+120 24.5 21.0 21.1 42.8 34.7 34.7 35.2 30.1 31.5 53.3 45.6 46.9 
h+130  25.1 21.3 21.4 43.6 35.0 35.0 35.9 31.4 31.9 54.8 46.4 47.7 
h+140  25.7 21.6 21.7 44.2 35.2 35.3 36.6 31.8 32.4 56.2 47.0 48.4 
h+150  26.2 21.8 21.9 44.8 35.5 35.6 37.3 32.1 32.9 57.4 47.5 49.0 
h+160  26.6 22.0 22.0 45.3 35.7 35.8 37.9 32.4 33.2 58.9 48.0 49.5 
h+170  27.1 22.1 22.2 46.0 35.9 36.0 38.7 32.8 33.6 60.0 48.5 49.9 
h+180  27.5 22.2 22.3 46.5 36.1 36.2 39.3 33.1 33.9 61.1 48.8 50.1 

 
  

Tab. 3: Relative MBE in % for each location and for each forecast horizon 

h+xx    
mins 

Las Vegas (NV) Oahu (HI) Saint-Pierre (RUN) Tampon (RUN) 
Climatology 8.30 Climatology 3.95 Climatology -4.25 Climatology 1.89 
Pers RLS SVM Pers RLS SVM Pers RLS SVM Pers RLS SVM 

h+10 0.15 0.15 0.45 0.15 0.47 0.59 0.08 -0.18 -0.65 0.42 0.45 -0.30 
h+20 0.27 0.25 1.31 0.30 0.81 1.01 0.15 -0.30 -1.35 0.83 0.71 -0.74 
h+30 0.37 0.34 1.79 0.47 1.03 1.23 0.18 -0.37 -2.25 1.24 0.94 -0.80 
h+40 0.46 0.37 2.20 0.65 1.21 1.57 0.20 -0.46 -2.52 1.61 1.13 -0.80 
h+50 0.56 0.40 2.70 0.82 1.35 1.75 0.20 -0.54 -2.72 1.97 1.29 -0.68 
h+60 0.65 0.37 3.06 1.00 1.45 2.20 0.18 -0.64 -2.99 2.30 1.28 -0.37 
h+70 0.73 0.36 3.39 1.19 1.52 2.34 0.14 -0.74 -3.26 2.62 1.32 -0.28 
h+80 0.80 0.36 3.69 1.37 1.60 2.59 0.10 -0.84 -3.42 2.91 1.33 -0.20 
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h+90 0.88 0.36 3.93 1.54 1.66 2.56 0.03 -0.92 -3.68 3.18 1.34 0.01 

h+100 0.95 0.36 4.11 1.70 1.71 2.55 -0.04 -0.99 -4.07 3.42 1.28 0.19 
h+110 0.99 0.35 4.32 1.86 1.72 2.76 -0.14 -1.06 -4.26 3.62 1.21 0.42 
h+120 1.04 0.33 4.55 2.00 1.72 2.96 -0.25 -1.15 -4.37 3.79 1.14 0.71 
h+130  1.07 0.31 4.78 2.12 1.74 2.87 -0.37 -1.22 -4.50 3.93 1.05 0.95 
h+140  1.10 0.29 5.01 2.23 1.76 3.00 -0.50 -1.30 -4.77 4.03 0.89 1.06 
h+150  1.12 0.25 5.28 2.33 1.73 3.24 -0.65 -1.39 -4.95 4.10 0.66 1.23 
h+160  1.14 0.22 5.48 2.42 1.71 3.39 -0.80 -1.50 -4.96 4.12 0.38 1.34 
h+170  1.14 0.20 5.68 2.50 1.68 3.39 -0.96 -1.57 -5.00 4.11 0.17 1.40 
h+180  1.13 0.22 5.79 2.56 1.70 3.54 -1.13 -1.71 -5.11 4.07 0.01 1.39 
   
   

Tab. 4: Relative MAE in % for each location and for each forecast horizon 

h+xx    
mins 

Las Vegas (NV) Oahu (HI) Saint-Pierre (RUN) Tampon (RUN) 
Climatology 14.6 Climatology 29.2 Climatology 29.2 Climatology 42.2 
Pers RLS SVM Pers RLS SVM Pers RLS SVM Pers RLS SVM 

h+10 5.1 5.5 5.0 16.1 16.1 15.9 9.2 10.1 9.9 16.4 17.6 17.1 
h+20 7.1 7.6 6.8 20.5 19.8 19.7 12.4 13.6 14.0 21.5 22.8 22.9 
h+30 8.2 8.6 7.7 22.6 21.5 21.5 14.4 15.6 16.7 24.2 25.7 26.1 
h+40 9.0 9.3 8.3 24.3 22.7 22.8 15.8 17.1 18.3 26.3 27.7 28.5 
h+50 9.7 9.8 8.9 25.6 23.6 23.7 16.9 18.2 19.5 28.1 29.4 30.3 
h+60 10.3 10.4 9.4 26.4 24.2 24.4 17.9 19.2 20.6 29.4 30.7 31.9 
h+70 10.9 10.9 9.8 27.1 24.7 24.9 18.8 20.5 21.5 30.7 31.9 33.2 
h+80 11.5 11.2 10.2 27.9 25.2 25.5 19.7 20.8 22.3 32.1 33.0 34.5 
h+90 12.0 11.6 10.5 28.5 25.6 25.9 20.6 21.5 23.0 33.4 34.1 35.7 

h+100 12.5 11.9 10.8 29.1 26.1 26.3 21.3 22.1 23.7 34.8 35.0 36.7 
h+110 12.9 12.2 11.0 29.7 26.4 26.7 22.1 22.6 24.3 36.2 35.8 37.6 
h+120 13.3 12.5 11.2 30.2 26.7 26.9 28.8 23.1 24.8 37.5 36.6 38.4 
h+130  13.8 12.7 11.4 30.8 27.0 27.2 23.4 23.5 25.3 38.6 37.4 39.0 
h+140  14.2 12.9 11.6 31.3 27.2 27.5 24.1 23.9 25.8 39.9 37.8 39.7 
h+150  14.6 13.1 11.7 31.7 27.5 27.7 24.7 24.2 26.3 40.8 38.2 40.2 
h+160  14.9 13.3 11.9 32.1 27.7 28.0 25.3 24.5 26.7 42.1 38.8 40.7 
h+170  15.3 13.4 12.0 32.7 27.9 28.1 26.0 24.7 27.1 43.1 39.2 41.0 
h+180  15.6 13.5 12.1 33.1 28.1 28.3 26.6 25.0 27.4 44.0 39.5 41.2 
 

6. Conclusion 

This work proposes a benchmarking of techniques for intra-hour solar forecasting. A machine learning 
technique such as support vector machine was evaluated against a recursive linear model and reference 
models like persistence and climatological mean. It was shown that a linear recursive technique like 
ARMA.rls performs equally well or slightly better than a non-linear method such as support vector machine. 

As a conclusion, it appears that a simple technique like ARMA.rls could be a viable solution to predict solar 
radiation at high resolutions. In addition, the recursive estimation of the model’s parameters makes the 
method very well suited to online forecasting.  
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