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Abstract 

In this work, a local adjustment is proposed for photosynthetically active radiation (PAR) estimates at 

several locations around the world with different Köppen-Geiger climate classes, resulting in a climate adjustment 

for PAR estimates. For adjustment, a site adaptation technique was used for each of the climates (hemiboreal, 

semi-arid, mediterranean, oceanic, and tropical) represented in this study. Remote sensing PAR data from 

thirteen locations were collected from the Copernicus CAMS global greenhouse gas reanalysis (EGG4) dataset to 

be used as initial PAR estimates, while observed PAR data from the same locations were also collected to 

perform the local adjustment. The results evidenced good fitting for four out of five climates; conversely, the 

semi-arid climate had to be divided into two subclimates (hot and cold semi-arid) to obtain good results. After 

division, the best results were obtained for the cold semi-arid and mediterranean climates. In the hot semi-

arid climate, the results were contradictory, since it had the worst determination coefficient and the second-

best MBE and RMSE among all climates. These results suggest that PAR is affected by local climatic and 

atmospheric conditions. 
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1. Introduction 

Photosynthetically Active Radiation (PAR) is the portion of solar radiation whose wavelength is located between 

4·10-7 m and 7·10-7 m. It is the range of the solar spectrum that plants use to perform photosynthesis, and it is the 

visible range for the human eye as well. PAR can be expressed as the photosynthetic photon flux density measured 

in µmol s-1 m-2 or as the energy flux density measured in W m-2. In this work, the term PAR refers to the energy flux 

density and is expressed as W m-2. 

Despite its many applications, for example in estimating biomass growth or in calculating gross and primary 

production (Iasimone et al., 2018; Pinker et al., 2010; Trofimchuk et al., 2019; Wu et al., 2009), PAR is not as 
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commonly measured as other solar components. When ground PAR data are not available, satellite-derived PAR 

estimates are a good option to consider because they usually cover long time periods and the entire surface of the 

world.  

PAR is strongly dependent on local atmospheric and climatic conditions (Ferrera-Cobos et al., 2020a). Consequently, 

PAR models also depend on the data used to train the models. Previous studies addressed PAR modelling, analysing 

climatology and meteorological conditions (Ferrera-Cobos et al., 2020b; García-Rodríguez et al., 2021; Wang et al., 

2021).  

Site adaptation is a process in which the long-term time series of a modelled variable is improved in accuracy by 

using the short-term observations of the variable. It is often used when the variable is the irradiance or one of the 

components of the irradiance, employing mathematical adjustments to perform the site adaptation process (Ferrera-

Cobos et al., 2020b; Mazorra Aguiar et al., 2019; Polo et al., 2016). 

This work presents a climate adjustment for satellite-derived PAR estimates from 13 locations around the world, 

covering five different climates according to their Köppen-Geiger clasification. The adjustment was performed using 

a site adaptation technique. 

2. Materials and Methods 

Satellite-derived PAR data from 13 locations were collected from the Copernicus CAMS global greenhouse gas 

reanalysis (EGG4) (Agustí-Panareda et al., 2023) dataset from 2013 to 2020 along with ground PAR observations 

from the GEOPAR network, AMERIFLUX (Yepez, 2020), CERZOS CONICET-UNS, São Paulo State University 

and Helsinki University-Viikki Campus (https://osf.io/e4vau/), overlapping at least one year in that time span from 

the same 13 locations. The daily average was calculated for both data sets. 

Thirteen locations, covering five climates according to the Köppen-Geiger climate classification (hemiboreal climate, 

semi-arid climate, mediterranean climate, oceanic climate, and tropical climate), provided PAR ground data. More 

details of each location can be found in the Tab. 1. Tropical (Aw) and subtropical (Cfa) climates were combined into 

a single class named tropical, while the climate subgroup Bsks was classified as a Mediterranean climate. 

For local climate adjustment, this work used a site adaptation technique for each of the climates represented in this 

study. Site adaptation consisted of a fitting between remote sensing data and observed data. In this case, satellite-

derived PAR estimates were fitted using ground-observed PAR data from the radiometric stations listed in Tab. 1 

and Fig. 1.  

 

Tab. 1. Locations. Positive degrees indicate north latitude or east longitude. 

Country Location Latitude Longitude Altitude 

(m) 

Köppen-Geiger 

classification 

Climate type 

Spain Tabernas  37.092 -2.364 491 Bskw Semiarid 

México Alamos  26.997 -108.789 367 Bsh Semiarid 

Spain Albacete 39.041 -2.082 698 Bsks Mediterranean 

Spain Salamanca 40.978 -5.715 777 Bsks Mediterranean 

Spain Lubia  41.601 -2.508 1099 Bsks Mediterranean 

Spain Córdoba 37.857 -4.803 91 Csa Mediterranean 

Spain Zaragoza 41.727 -0.814 226 Bsks Mediterranean 

Spain Lugo 42.995 -7.541 447 Csb Oceanic 

Spain Villaviciosa  43.476 -5.441 6 Cfb Oceanic 

Spain Vitoria 42.854 -2.622 520 Csb Oceanic 

Argentina Bahía Blanca  -38.678 -62.232 42 Cfa Tropical 

Brasil Baurú  -22.351 -49.033 610 Aw Tropical 

Finland Helsinki 60.225 25.017 8 Dfb Hemiboreal 
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Fig. 1. Locations used in this work. 

 

All data from the 13 locations were classified according to their Köppen-Geiger class. As there were some similar 

climate classes, the climatic classification was simplified into the following five groups. 

 

• Hemiboreal 

• Semi-arid 

• Mediterranean 

• Oceanic 

• Tropical 

 

A linear regression between the PAR satellite-derived data and the PAR ground observations was used to perform 

site adaptation for each of the climates, as illustrated in eq. 1. This method implies the use of observed data to refine 

satellite estimates.  

 

𝑦𝑙𝑜𝑐𝑎𝑙 = 𝑎 · 𝑥𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 + 𝑏   (eq. 1) 

 

Where the slope of the linear regression is 𝑎, the intercept is  𝑏, 𝑦𝑙𝑜𝑐𝑎𝑙  refers to the ground-observed data, 𝑥𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒  

indicates the satellite-derived data.  

In this work, this methodology is applied to PAR data. Therefore, the ground-observed PAR data is used as 𝑦𝑙𝑜𝑐𝑎𝑙 , 

whereas the satellite-derived PAR data is used as 𝑥𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒. To perform the training of the models, the fittings were 

conducted for each of the groups of PAR data (hemiboreal climate, semiarid climate, mediterranean climate, oceanic 

climate, and tropical climate) allowing us to obtain the corresponding parameters 𝑎 and  𝑏 for each of the climates. 

These parameters can be used to estimate PAR in a location with the same climate, using PAR satellite-derived data 

from this location, as eq. 2 shows. Thus, using eq. 2 we can obtain local climate-based PAR estimates from satellite-

derived data. 
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The mathematical expression of the resulting PAR model derived from the linear regressions is shown in eq. 2.  

 

𝑃𝐴𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝑎 · 𝑃𝐴𝑅𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 + 𝑏  (eq. 2) 

 

To eliminate outliers, the data were previously checked and filtered. Any data whose ratio between ground-observed 

PAR and satellite-derived PAR differed more than 40% from the mean of the dataset ratio were dismissed. 

The corresponding PAR data for each of the climates were randomly divided 70/30 into two groups. The first group, 

which contained 70% of the data, was used to train the models and obtain the parameters 𝑎 and  𝑏 for each climate. 

The remaining data were subsequently used to validate the models. 

3. Results 

The preliminary results training the models showed good correlations in all climates except in the semi-arid case, 

where the R2 was 0.563. Furthermore, two different data groups can be observed in Fig. 2, since the scatterplot 

between the measured and remote-sensing PAR shows a ‘V’ shape. As a consequence, semi-arid climate was divided 

into two subclasses: Cold Semi-arid and Hot Semi-arid. After division, the R2 numbers improved significantly, from 

0.563 to 0.918 and 0.801, respectively. The statistics MBE (mean bias error) and RMSE (root mean squared error) 

improved as well in the cold semi-arid climate. In contrast, these statistics showed worse numbers in the hot semi-

arid climate. Interestingly, the slopes obtained differ significantly from the cold to the hot semi-arid climate (1.20 to 

1.67). 

 

Fig. 2. Training models for semi-arid climates 

 

Fig. 3 illustrates the results of training the models, with the semi-arid climate divided into two subclasses. 

 

Fig. 3. Results of the training process for each climate. 
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Interestingly, all climates showed good correlations, the worst being tropical, where the R2 was 0.795. Although 

MBE and RMSE did not show numbers lower than 26%. It is also noticeably that the slopes vary from one climate 

to another; the highest slope is for the hot semi-arid climate, and the lowest slope is for the cold semi-arid climate. 

The remaining slopes range between these two extremes. Thus, according to these results, the model adjustment for 

each climate is illustrated in Tab. 2. 

 

Tab. 2. Model expressions for each climate. 

Climate type Model expression 

Hemiboreal PAR = 1.59·PARsatellite − 2.35 

Cold Semi-arid PAR = 1.20·PARsatellite + 4.71 

Hot Semi-arid PAR = 1.67·PARsatellite + 10.07 

Mediterranean PAR = 1.38·PARsatellite − 0.54 

Oceanic PAR = 1.34·PARsatellite − 4.39 

Tropical PAR = 1.25·PARsatellite + 5.42 

 

The expressions for the adjusted models were validated using the remaining 30% of the data that were not used in 

the training process. Fig. 4 shows the validation results. 

 

 

Fig. 4. Results of the validation process for each climate. 

 

The results indicate a good performance of the models, as all slopes range from 0.99 to 1.01, and a good determination 

coefficient, as the lowest R2 is 0.774 and three of them are above 0.9. The MBE in absolute value is below 2% in all 

cases. However, the worst statistics obtained were RMSE, which in no case was lower than 10%. Model adjustment 

seems to perform better in dry and stable weather climates such as cold semi-arid or Mediterranean climates. Models 

obtained worse results in climates where precipitations are more common, such as tropical or oceanic. Interestingly, 

the error statistics in the hot semi-arid climate are good, despite having the worst R2. In fact, its MBE and RMSE (-

0.23% and 11.61%, respectively) are the second lowest among all climates under study. This climate is only covered 

by one location, thus local perturbations or disturbances cannot be ruled out, and further research is needed to 

understand and improve the model adjustment in this climate.  
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4. Conclusions 

A local adjustment was proposed for photosynthetically active radiation (PAR) estimates in 13 locations around the 

world with five different climate types. The proposed methodology develops local models using satellite-derived and 

ground-observed PAR data. Merging data from sites with the same climatic features enable to develop models based 

on their climatic classification. Therefore, these models can also be used to estimate PAR in other locations whose 

climate is the same. The estimates provided by the proposed models are a useful tool for obtaining PAR data at 

locations where no ground observed data are available and can be of interest for energy balance in ecosystem 

calculations, biomass production models, agrofood industry, etc. that need PAR data as input. 

The statistical results showed a good correlation between the adjusted satellite-derived PAR estimates using the 

proposed method and the ground-measured PAR data at the locations studied. The type of semi-arid climate initially 

showed a poor correlation; indeed, two groups of data could be observed. This made it necessary to divide the 

semiarid climate type into two classes (hot semiarid and cold semiarid) to obtain good fitting results, supporting the 

idea that PAR is strongly dependent on local climatic and atmospheric conditions. The best results were obtained for 

the cold semi-arid and mediterranean climates. This good performance of the models in the cold semi-arid and 

mediterranean climates was expected, as both are usually dry and stable weather climates, so that the satellite-derived 

estimates are normally more accurate and so does the model adjustment proposed. Noticeably, the results in the hot 

semi-arid climate are shocking. On the one hand, it had the worst determination coefficient among all climates, and 

nevertheless its MBE and RMSE are the second best. This could be explained due to local disturbances as this climate 

is only covered by one location. These results suggest that PAR is affected by local atmospheric conditions, and 

further research in this field is needed. 
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