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Abstract 

WRF-Chem is a powerful simulation tool for modeling atmospheric parameters and processes that influence 

solar radiation reaching the Earth's surface. By integrating aerosols and their interactions with radiation, WRF-

Chem provides estimates of solar radiation reaching the surface that can be used as valuable information for 

solar energy forecasting. However, the prediction of solar radiation comes with high uncertainties related to 

the high variability of atmospheric components, especially aerosols in clear-sky conditions. In this 

contribution, the aerosol optical depth (AOD) parameter is used to represent the optical property of aerosols. 

AOD derived from WRF-Chem and a reanalysis model (CAMS) are evaluated in comparison to ground AOD 

data. The resulting analysis will server to correct the forecasted WRF-Chem AOD products and thus the 

prediction of solar radiation based on additional analysis of AOD data in a region with mostly cloudless 

conditions in general, but with the presence of aerosols and airborne desert dust throughout the year. 

Keywords: WRF-Chem, aerosols, AOD, CAMS, direct normal irradiance 

 

1. Introduction 

The WRF-Chem model is a powerful numerical weather prediction (NWP) simulation tool for modeling 

atmospheric parameters and processes that influence solar radiation reaching the Earth's surface. It is a coupled 

model combining the weather forecasting capabilities from the Weather Research and Forecasting (WRF) 

model, as well as chemical transport capabilities that simulate the emissions, transport, and transformation of 

atmospheric gases and aerosols. WRF-Chem can be used as a valuable tool for solar radiation forecasting, with 

somehow large uncertainties, however, due to variability in clouds, in general, and in aerosols when clouds are 

absent (Ruiz-Arias et al., 2013). These uncertainties are even more pronounced on the direct solar radiation 

component, given its high sensitivity to the optical properties of the atmosphere, mainly coming from aerosols 

in cloud-free conditions (Gueymard, 2012). Among several parameters used to describe the aerosol optical 

properties, the aerosol optical depth (AOD) is commonly used to quantify the extinction of solar radiation by 

aerosols. AOD is acquired by ground-based sun photometers, such as the worldwide network of sun 

photometers provided by the AErosol Robotic NETwork (AERONET). Ground observations offer localized 

data of high quality; however, they are usually not available for long periods and suffer from data gaps. Other 

alternatives for AOD data retrieval are satellite products such as the Moderate Resolution Imaging 

Spectroradiometer (MODIS), or models such as NWP and global atmospheric chemistry models. Recently, 

atmospheric models, using data assimilation and reanalysis from satellite or ground observations, provide 

continuous time-series of AOD data with relatively high temporal resolution. The Modern-Era Retrospective 

analysis for Research and Applications, version 2 (MERRA-2), developed at NASA, and the Copernicus 

Atmosphere Monitoring Service (CAMS) model, developed at the European Centre for Medium-range 

Weather Forecasting, are two examples of reanalysis models widely used in solar resource applications to 

derive AOD data.  

In this contribution, AOD derived from CAMS and WRF-Chem model will be evaluated in comparison to 

ground AOD data, to assess the reliability of the derived data in Doha, Qatar, a region characterized by high 

concentrations of atmospheric dust. The results of the analysis will be used to study a possible correction on 

WRF-Chem AOD products in high aerosol loads conditions, which may improve WRF-Chem performance in 

predicting solar radiation when further analysis of AOD data is performed. 
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2. Methodology 

A high-precision monitoring station equipped with thermopile sensors is used here to collect ground-

measurements of the direct, global and diffuse components of solar radiation.  

At the same site, a sun photometer is used to derive ground AOD data, based on a spectrally selective detector 

measuring the spectral extinction of the direct radiation from the top of the atmosphere to the radiation at the 

earth surface for several wavelengths. The total optical depth is derived following the Lambert-Beer equation 

and AOD is derived from the total optical depth after removing the contribution of the other extinctions 

including the molecular scattering, ozone and other trace gas absorptions. To conform with satellite-derived 

data, the 500 nm channel is used here; this is also the closest wavelength to the representative wavelength (550 

nm) of the scattering properties of aerosols in the atmosphere.   

In this study, the three-dimensional WRF-Chem meteorology-chemistry model was implemented over the 

Arabian Peninsula, with a focus on enhanced grid resolution specifically for Qatar. The model simulated three 

primary processes: the emission of atmospheric components (both gases and aerosols), their transport, and 

their physicochemical transformations in the atmosphere. It was applied to the Middle East region using a 3-

D grid system within a two-way nesting configuration, allowing communication between three domains with 

varying grid resolutions, all of which ran concurrently (Fountoukis et al., 2022). Aerosol concentration data 

moved in and out of all computational domains during model integration. The parent domain utilized a 50 km 

× 50 km grid resolution, while the intermediate nested domain (centered on the Arabian Desert) used a 

resolution of 10 km × 10 km. The third domain, covering Qatar, was resolved at 2 km × 2 km. The GOCART 

(Georgia Institute of Technology–Goddard Global Ozone Chemistry Aerosol Radiation and Transport) aerosol 

scheme was employed in all simulations, alongside the RACM (Regional Atmospheric Chemistry Mechanism) 

scheme for chemistry. The HTAP (Hemispheric Transport of Air Pollution emissions; http://www.htap.org/) 

anthropogenic emissions were used, featuring a grid resolution of 0.1° × 0.1°. Dust emissions were simulated 

using the US Air Force Weather Agency (AFWA) scheme, which incorporates the MB95 dust emission 

parameterization with typical airborne dust size distributions. Initial conditions for all pollutant concentrations 

are taken based on typical measurements of air quality in the region.  

AOD is also derived from the reanalysis products CAMS. The CAMS Radiation Service v4.6 all-sky 

irradiation is used to derive 1-minute AOD values at 550 nm as the sum of all available optical depth products, 

and from these, hourly-averaged AOD values are calculated. 

The statistical parameters used to compare the modeled and ground AOD data are the mean bias error 

(Bias) and the root mean square error (RMSE). For each entry, the difference and its square between the 

estimated (AOD WRF and AOD CAMS) and measured (AOD Ground) at the same time stamps (t) are 

calculated for the corresponding period. Then, these differences and their squares are summarized to determine 

the corresponding bias and root mean square error. The values are also expressed in relative values with respect 

to the mean values calculated from the measured AOD. Equations 1 to 6 are used to determine the statistical 

parameters where N is the total number of considered values.  
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3. Results 

3.1 Ground AOD 

To quantify and study the range of AOD values seen in Doha’s conditions, we study in figure 1 the hourly 

variations of AOD derived by the sun photometer for a period of ~one year, showing all months consecutively 

excluding August due to the unavailability of processed data for this month at the time of analysis. Note that 

the months are shown in order from January until December for clarity, although the included January and 

February corresponds to year 2023 while the other months are in year 2022. The blue lines on the figure 

correspond to the beginning of a new month. For some months AOD variation is confined within a defined 

band, while for other months the variation is more obvious with an observed high range (between 0.3 and 1.4 

in July for instance). The observed AOD mean is ~ 0.5 with a standard deviation of 0.27, indicating a dynamic 

fluctuation of AOD in the region with a more turbid atmosphere in the summer season. This variation in AOD 

induces a pronounced variation in solar radiation; when simulating the beam normal irradiance component 

with SMARTS2 (Simple Model of the Atmospheric Radiative Transfer of Sunshine) model, the maximum is 

reduced by ~ 5 % when AOD is 0.1, and by ~ 50 % when AOD is equal to 1, with respect to AOD = 0 (Bachour 

et al., 2023). 

 

Figure 1. Variations of hourly AOD through one year, measured by a sun photometer in Doha, Qatar. 

3.2 Model-derived AOD 

Hourly AOD data were also derived from the CAMS reanalysis database and WRF-CHEM. Figure 2 shows 

an example of the normalized frequency distributions of AOD from these models in comparison with the 

ground data for two months: May, and July 2022.  

 

Figure 2. Normalized frequency distribution (in %) of hourly AOD per month.  

Looking to the overall distribution, AOD values obtained from CAMS (blue line) agree partially with AOD 

obtained from the ground (red line), with differences observed mainly in the tail part of the two histograms, 

where higher AOD values are being captured by the ground measurements. AOD values between 0.7 and 1 are 

frequent in the CAMS data; AOD higher than 1, values attributed to local dust events, are observed in the 
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ground measurements. For WRF-Chem, the distribution of modeled AOD (green line) does not conform with 

the ground-derived values, with an observed underestimation. A clear discrepancy is seen towards the low 

AOD values where WRF-Chem reports very low values with high frequency (even for other months not shown 

here), which may not be possible in the turbid atmosphere of Doha. WRF-Chem is clearly not able to capture 

high AOD values, with mean values significantly lower than those derived by the sun photometer, highlighting 

the model limitations when predicting AOD in Doha’s desert environment (Fountoukis et al., 2020), and the 

need to reconfigure or correct the model with new parameters based mainly on AOD, in order to improve the 

ability of WRF-CHEM to predict local dust events in a desert environment, consequently improving the 

prediction of solar radiation in a desert location with high aerosol loads.  

To examine the comparison in more detail, the profile of the hourly AOD data from the 3 sources is plotted at 

the same time stamps for two one-month periods (May and July of 2022): CAMS and ground data in Figure 3, 

WRF-Chem and ground data in Figure 4. The data of the x-axis, labeled as ‘entries’ in the plots, are 

chronologically sorted but they are not consecutive in time, and they include commonly available AOD data 

from both sources at the same timestamp. The dotted red vertical lines are plotted to discern the first entry of 

a new day. The statistical comparison with the ground data is reported in table 1 for CAMS and table 2 for 

WRF-Chem; the mean bias error (Bias) and the root mean square error (RMSE) are determined, respectively, 

by calculating the differences and their squares between the modeled and ground AOD values at the same time 

stamps, and their corresponding mean Bias and RMSE and their relative values (rBias, rRMSE) with respect 

to the mean values of AOD-Ground. The number of data points in the comparison is also shown in the tables. 

 

Figure 3. Hourly AOD variations of CAMS in comparison with ground data in Doha, Qatar. 

 

Figure 4. Hourly AOD variations of WRF-Chem in comparison with ground data in Doha, Qatar. 

Table 1. Comparison of AOD CAMS and ground. 

MONTH BIAS RBIAS (%) RMSE RRMSE 
(%) 

DATA POINTS 

05/22 -0.15 -20.81 0.34 49.2 340 

07/22 -0.03 -4.44 0.16 22.4 176 

09/22 -0.04 -8.27 0.12 25.28 322 

02/23 0.03 7.95 0.22 66.99 145 
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Table 2. Comparison of AOD WRF-Chem and ground. 

MONTH BIAS RBIAS (%) RMSE RRMSE 
(%) 

DATA POINTS 

05/22 -0.23 -31.69 0.49 68.51 327 

07/22 -0.22 -30.51 0.38 51.87 170 

09/22 -0.2 -41.81 0.29 59.75 322 

02/23 -0.09 -29.10 0.26 79.43 145 

 

From figures 3 and 4, it is observed that CAMS captures better the local variability observed in the ground 

data, with larger discrepancies observed in WRF-Chem data. However, high AOD values observed in the 

ground data are not properly modeled by either CAMS or WRF-Chem. When comparing the statistics for each 

of the months in tables 1 and 2, CAMS is mostly underestimating the AOD values with a relative bias less than 

10 % except for May. For WRF-Chem the AOD values are underestimated for all the months and the relative 

RMSE is considerably high.  

3.3 Data validation 

The solar radiation measurement is used For AOD data validation; the measured direct component, Gb, is 

compared with a clear-sky Gb (Gb_cs) calculated with the European Solar Radiation Atlas (ESRA) clear-sky 

model, with a Linke turbidity value of 1 to get the maximum Gb representing a perfectly clear atmosphere free 

from any aerosols or water vapor. This component is then reduced by the AOD parameter to obtain Gb_cs, 

which quantifies the reduction in solar radiation caused by aerosols. See Equation 1 for more details, where m 

is the air mass and AOD is the value derived from ground, CAMS, and WRF-Chem. 

Gb_cs = Gb-ESRA (max) * Exp (-m*AOD) (Eq.1)  

Figure 5 shows an example of 3 daily profiles of measured (red line) and modeled Gb, as described previously. 

It is observed that Gb modeled using ground AOD data as input follows the measured Gb, while Gb modeled 

using AOD from CAMS and WRF-Chem deviates from the measured Gb with a significant overestimation 

due to an underestimation of AOD values. For a broader validation, the scatter plot of one month of data 

between the measured and modeled Gb shows a reasonably good agreement when using AOD data derived 

from the ground measurement (Bachour et al., 2023).  

 

Figure 5. Daily profiles of measured and clear-sky DNI. 

3.4 Data filtering 

Although the processing of the sun photometer data includes a cloud screening algorithm that identifies cloudy 

periods and flags the corresponding AOD data, some days with relatively high AOD values identified from 

figures 3 and 4 will be further analysed to eliminate the possibility of outliers in the ground AOD data, which 
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may indicate cloud contamination and thus inaccurate ground AOD values. For this analysis, the direct solar 

radiation component Gb measured by a solar monitoring station located close to the sun photometer will be 

analysed. Although it is not straightforward to distinguish between the attenuation in Gb caused by clouds or 

aerosols without using additional data, days with clouds exhibit a profile with sharp decreases and recoveries 

as compared to the aerosol effects that tend to cause a more gradual reduction in irradiance throughout the day. 

Following this assumption, all days identified as days with possible clouds contamination are removed.  

In addition, the cumulative distribution of the ground AOD has been analysed for each of the month; it was 

noted that AOD values less than 0.1 are extremely rare (<1% for all the studied months), and 0.14 are also 

quite rare (<1% for the studied months except for Feb, when it was ~ 3.5%). Table 3 shows the comparison 

excluding the suspected cloudy days. In addition to the exclusion of cloudy periods, tables 4 and 5 show the 

same parameters excluding also AOD data with values less than a fixed threshold: 0.1 in table 4 and 0.14 in 

table 5; only months with changes are reported.  

Table 3. Statistical parameters between AOD WRF-Chem and ground, excluding cloudy periods. 

Month Bias rBias RMSE rRMSE Data Points 

05/22 -0.22 -31.44 0.49 68.71 308 

07/22 -0.16 -23.28 0.33 48 127 

09/22 -0.19 -39.71 0.27 55.95 299 

02/23 -0.02 -8.8 0.16 55.79 108 

Table 4. Statistical parameters between AOD WRF-Chem and ground, excluding cloudy periods and AOD<0.1 . 

MONTH BIAS RBIAS RMSE RRMSE DATA POINTS 

02/23 -0.02 -5.85 0.15 54.41 104 

 

Table 5. Statistical parameters between AOD WRF-Chem and ground, excluding cloudy periods and AOD<0.14 

MONTH BIAS RBIAS RMSE RRMSE DATA POINTS 

09/22 -0.19 -39.48 0.27 55.37 285 

02/23 0.01 -0.1 0.15 49.85 76 

 

From the bias values of the WRF-Chem, the model tends to underestimate the AOD values consistently. To 

keep consistency among all months, only periods with AOD values less than 0.1, seen only in WRF-Chem 

data, were eliminated as it is not ‘physically’ possible (not seen in the ground measurements during these 

months) in Doha’s conditions.  

3.5. Correction of WRF-Chem AOD data 

Since the WRF-Chem data consistently underestimated AOD, the bias correction method is used to improve 

forecasting results. This method consists of determining a mean bias error of the data within a certain period 

and using it to correct the forecasted results. The bias is calculated using the data of three months analysed 

together and used to correct the data of the remaining month (table 6).  

Table 6. Statistical parameters for the comparison of ground and WRF-Chem AOD, using the bias correction method.  

MONTH BIAS RBIAS RMSE RRMSE DATA POINTS 

05/22 -0.03 -5.47 0.42 64.25 356 

07/22 -0.03 -4.47 0.28 42.10 131 

09/22 -0.07 -14.15 0.2 41.84 317 

02/23 0.14 50.44 0.21 73.59 107 

While the bias of the forecasted data has been reduced for most of the tested months, their relative RMSE 

hasn't improved much, and the applied correction amplified the errors for February. This means that it is not 

adequate to apply the same correction on the forecasted results without considering some sort of data clustering 

based on data distribution similarity, or data seasonality. As a first attempt, looking to the frequency 

distribution of AOD WRF-Chem, a certain similarity is observed between months 5 and 7 (wider range with a 

relatively high mean of AOD values) compared to months 9 and 2 which show a somehow narrower 

distribution with lower mean AOD values. However, month 9 has a higher mean AOD value and exhibits 
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higher AOD variations than month 2. Table 7 shows the results of the bias correction method determined with 

the data of one month (i.e. month 5 and 9) and validated using the data of the similar month respectively (i.e. 

month 7 and 2), and vice versa. The errors for 5 and 7 are reduced, however the errors in months 9 and 7 are 

high as expected, suggesting the use of another correction factor for winter months with low AOD values.  

Table 7. Statistical parameters for the comparison of ground and WRF-Chem AOD, using the bias correction method.  

MONTH BIAS RBIAS RMSE RRMSE DATA POINTS 

05/22 -0.02 -2.47 0.42 64.06 356 

07/22 -0.04 -5.37 0.29 42.2 131 

09/22 -0.17 -35.87 0.25 53.27 317 

02/23 0.16 59.6 0.22 80.15 107 

 

Other correction methods are tested here and consist of finding a possible fit between two datasets, as will be 

defined in Figures 6 and 7, to check if errors improve compared to the bias correction method. Figure 6 shows 

an example of a scatter plot between AOD ground and WRF-Chem, with the x-axis presenting the WRF-Chem 

data and the y-axis presenting the ground data. The black line indicates the one-to-one line, while the red line 

represents the linear fit function found between the data, determined in the range 0 to 1.5 to eliminate some 

outliers, which might help the fit function to better represent the relation between the two datasets. Figure 7 

shows the scatter plot between the point-by-point bias of WRF-Chem and ground AOD (y-axis) and AOD 

WRF-Chem (x-axis), and the fit function is shown with a solid red line. Following the same method discussed 

in the bias correction method, the fit functions are determined using the data of three months and validated 

using the data of the remaining month.  

 

Figure 6. Scatter plot between measured and WRF-Chem AOD. 

The linear fit function parameters (c0, c1) are determined from figure 6, in this case using the three months 

(5,7,9), and applied to correct AOD_WRF of month 2. The fit function is shown in equation 2. Table 8 shows 

the results of applying this correction on all forecasted AOD_WRF, alternating the used/removed months to 

have all possible combinations. 

AOD_ground = c0 + c1 * (AOD_WRF) (Eq.2) 

Table 8. Statistical parameters for the comparison of ground and WRF-Chem AOD, using the linear fit correction.  

MONTH BIAS RBIAS RMSE RRMSE DATA POINTS 

05/22 -0.09 -13.69 0.42 63.89 356 

07/22 -0.09 -12.58 0.27 39.87 131 

09/22 -0.01 -3.18 0.17 37.21 317 

02/23 0.2 70.68 0.23 82.3 107 
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Figure 7. Scatter plot between bias and WRF-Chem AOD. 

Figure 7 is used to determine the fit function between the residuals PR (as percentage of AOD_WRF), and 

AOD_WRF, following the formula shown in equation 3. The residuals are the differences between each 

AOD_WRF value and the corresponding ground-derived AOD. 

𝑃𝑅 = 𝑃2 − 𝐸𝑥𝑝 (𝑃0 + 𝑃1 ∗ (𝐴𝑂𝐷𝑊𝑅𝐹𝐶ℎ𝑒𝑚))  (Eq. 3) 

P2, P0, P1 are the fit parameters determined from the scatter plot using the data of three months. The correction 

is then applied on the remaining month comparing the calibrated WRF-chem AOD with ground data (table 9).  

Table 9. Statistical parameters for the comparison of ground and WRF-Chem AOD, using the residuals correction.  

MONTH BIAS RBIAS RMSE RRMSE DATA POINTS 

05/22 -0.26 -40.37 0.51 78.2 356 

07/22 -0.22 -32.62 0.39 56.88 131 

09/22 -0.30 -64.94 0.36 76.79 317 

02/23 -0.12 -43.94 0.18 65.39 107 

 

The results of the linear fit on AOD show a somewhat similar improvement as seen in the bias correction 

method; in some months the relative RMSE is even lower, thus reducing the dispersion of WRF-Chem data 

compared to the ground data, however the bias of the month of Feb is amplified similarly to the previous 

method, suggesting the need of aggregating the data by season following the sky turbidity level as discussed 

previously. The correction determined from the fitting of the residuals failed to improve the errors and in fact 

worsened them. This was expected looking to the wide band of data dispersion around the fit line (figure 7), 

reflected in the errors associated to the parameters of the fit (shown in the statistics box on the plot), mainly 

for P2.  

4. Conclusions 

Among different parameters used to quantify the aerosols, AOD is used to account for the attenuation of the 

solar radiation in the atmospheric column due to aerosols, and AOD quantification, whether short- or long-

term, is required in many applications such as climate change, air quality, and solar radiation. Due to the high 

dynamicity of the aerosols in the atmosphere, AOD obtained by ground measurements remains the reference 

method for deriving reliable data with high temporal resolution, and models based on satellite observations 

and reanalysis databases provide AOD data with high uncertainties, mainly in regions with high aerosol loads. 

In this contribution, AOD (with hourly temporal resolution) is quantified with a sun photometer deployed in 

Doha, Qatar to obtain ground-derived AOD data and evaluate the AOD products obtained from CAMS and 

WRF-Chem model. CAMS model data show relatively good agreement with the ground data. However, the 

assessment of the WRF-based data shows non-conformity and high discrepancy with the ground data, leading 

to the suggestion of correction methods to WRF-Chem reducing the errors of the forecasted values. By 

considering AOD post correction into WRF-Chem simulation process, the accuracy and reliability of the solar 

radiation prediction can be improved, mainly in region characterized by high concentrations of atmospheric 

dust. 
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