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Abstract 

Buildings contribute significantly to global carbon emissions, highlighting the urgent need for improved 

sustainable operational practices. Enhanced efficiency promises cost savings amid climate concerns and 

digitalization and electrification trends. Intelligent controls are vital for integrating buildings into energy grids, 

crucial for achieving the EU's target of carbon neutrality by 2050 effectively managing the expanding 

availability of renewable energy sources. This paper aims to present a simulation-based framework for 

integrating Weather and Emission Predictive Control (WEPC) into building energy simulations, detailing how 

weather and emission forecast are simply incorporated to optimize control strategies. 

Keywords: weather-and-emission predictive control; dynamic emission; thermal storage; electrical storage; 

thermal inertia; intelligent control strategy 

1. Introduction 

At the Paris Climate Agreement in December 2015, nearly 190 parties committed to limiting global warming 

to 1.5°C, attributing manmade greenhouse gas emissions as the primary drivers of global warming (United 

Nations Environment Programme and Global Alliance for Buildings and Construction, 2024). The United 

Nations Environment Programme (UNEP) identifies the building sector as responsible for 38% of carbon 

emissions, encompassing emissions from both building operations (28%) and the production of building 

materials, notably concrete and steel. This underscores the urgency for action to mitigate emissions.  

Additionally, factors such as climate change, the increase of renewable energy sources like photovoltaic (PV) 

and wind energy, and the electrification of building technology, as noted by the Fraunhofer Institute for Solar 

Energy Systems, introduce fluctuations in both energy supply and demand. Consequently, power grids 

experiences daily and seasonal variability in emissions (Fraunhofer Institute for Solar Energy Systems, 2020). 

Within the current existing building norms and codes, a constant annual static emission factor serves as a 

parameter for assessing emission balances. 

Various concepts and data-driven control strategies, based on model predictive control, deep learning, weather 

forecast, or artificial intelligence, have been developed in the last decade, outlining energy- and CO2-saving 

potentials (Drgoňa et al., 2020; Halhoul Merabet et al., 2021; Hepf et al., 2022; Jia et al., 2019; Thieblemont 

et al., 2017). Thereby, a few hurdles make it difficult to transform the concept into practice: data-intense 

algorithms, the creation of digital twins, or the necessity of highly educated employees to manage building 

technology. Standard building users or building operation managers are not data science experts and cannot 

apply these concepts to the built world.  

Hence these dynamics, particularly concerning emission balance boundaries in building operations, the 

conventional concept of a static emission factor warrants scrutiny. This underscores the imperative to 

incorporate dynamic control factors to better address fluctuating emissions associated with building operations. 

Thus, this paper presents an integration of weather and emission forecasts in building energy simulations 

aiming to optimize energy consumption.  

This paper integrates weather and emission forecasts into building energy simulations to optimize energy 

consumption and emissions , with Figure 1 summarizing how these predictions influence shading, ventilation, 
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heating, cooling, and energy evaluation parameters within an integrated feedback loop. 

 

Fig. 1: General Overview 

2. Review 

As the focus of this paper is the workflow of the weather and emission predictive control, this review outlines 

the current state of literature in the fields of intelligent building control strategies and the concept of dynamic 

emissions.  

2.1 Intelligent Building Control 

Various control methodologies have been proposed, ranging from traditional to advanced systems, aiming to 

enhance energy efficiency and maintain thermal comfort in buildings. The widely adopted On/Off control 

method regulates building technology systems primarily based on room temperature thresholds, employing a 

straightforward three-position controller. Its simplicity and minimal data requirement facilitate practical 

implementation, especially with thermal building mass. However, other studies suggest that reliance on 

building thermal mass alone may lead to thermal discomfort, particularly without considering room heat gains 

or feedback from thermal zones (Gwerder et al., 2009). In contrast to On/Off control, proportional–integral–

derivative controllers (PID) provide continuous regulation, utilizing feedback loops to adjust system outputs 

based on past and present conditions (Deutsches Institut für Normung e.V, 2018). Although PID controllers 

generally outperform On/Off systems in terms of energy efficiency, they can still result in thermal discomfort 

due to their inability to handle simultaneous heating and cooling demands and dynamic disturbances like solar 

radiation changes and internal heat gains (Schmelas, 2017).  

Weather-dependent control strategies adjust supply temperatures according to ambient conditions, using 

heating and cooling curves to define operational thresholds (Bollin et al. 2021). This method optimizes energy 

consumption by deactivating systems within specified temperature ranges. However, this approach lacks direct 

feedback on room conditions, necessitating additional systems to ensure thermal comfort. Model predictive 

controllers (MPC) anticipate future disturbances and system behaviors to optimize responses, aiming to 

minimize energy consumption and costs while enhancing thermal comfort (Thieblemont et al. 2017). A 

reasonable number of projects show significant energy savings and improved efficiency when employing MPC 

strategies (Halhoul Merabet et al., 2021). Despite its effectiveness, MPC requires substantial computational 

resources and complex modeling, limiting its potential application in the built world. Researchers explore 

intelligent control strategies based on reinforcement learning (RL) to address the limitations of MPC and other 

conventional methods. These adaptive systems offer flexibility in adapting to diverse building conditions and 

optimizing operational parameters, while promising, implementing RL-based strategies requires advanced 

technical expertise and significant initial investments, restricting their widespread adoption in conventional 
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building settings (Zoltan 2023). It is highlighted that various control strategies for optimizing building 

performance, emphasizing the trade-offs between complexity, efficiency, and practical implementation (Lee, 

2002). Future research should focus on developing simplified yet effective intelligent control approaches that 

mitigate the challenges posed by current methodologies. 

2.2 Dynamic Emissions 

The concept of the dynamic emission factor is not new. In Germany, the Agora Enegiewende provides hourly 

data to the public (Dambeck, 2021) on a national level. On a global scale, the "Electricity Maps" tool provides 

hourly electricity and emissions data for over 230 regions, covering past, present, and future periods. This 

platform includes information on CO2 emissions factors, electricity production, and consumption. (Electricity 

Maps, 2024). In their research "Dynamic CO2 Emission Factors for the German Electricity Mix," authors P. 

Wörner, A. Müller, and D. Sauerwein emphasize the need for hourly emission factors as a more realistic 

evaluation method compared to static emission factors. They argue that static emission factors cannot 

accurately reflect the future state of an electrified and volatile energy system. Motivated by this, they developed 

a methodology to calculate a quarter-hourly emission dataset for the electricity mix, which can be incorporated 

into dynamic simulations. In 2019, authors A. Müller and P. Wörner expanded upon their previous research 

by calculating future emission factors for the years 2030 and 2050 (Wörner et al., 2019). The article "Dynamic 

Prospective Average and Marginal GHG Emission Factors—Scenario-Based Method for the German Power 

System until 2050", N. Seckinger and P. Radgen outline a methodology for calculating and evaluating future 

greenhouse gas (GHG) emission factor. The GHG emissions from electricity generation are based on 

combustion emissions, excluding upstream emissions. The model also accounts for electricity trade (import 

and export), storage, and grid losses, making electricity consumption the reference for hourly emission factors 

(Seckinger, 2021).  

In their research "Plus minus zero: carbon dioxide emissions of plus energy buildings in operation under 

consideration of hourly German carbon dioxide emission factors for past, present, and future", A. Studniorz 

et al. discuss using hourly CO2 emission factors for evaluating building operations in Germany. They find that 

grid electricity is primarily used when emission factors are high (winter) and fed back into the grid when 

emission factors are low (summer). (Studniorz et. al., 2022) In their research “Impact of a Weather Predictive 

Control Strategy for Inert Building Technology on Thermal Comfort and Energy Demand” C. Hepf et al. aim 

to develop an intelligent, improved, yet simple weather predictive control strategy for thermally inert buildings. 

They find increased comfort in buildings of heavy and medium construction, although the energy balance 

improves only marginally. The authors suggest extending the research internationally to various climate zones 

and including CO2 emissions as an evaluation criterion. (Hepf et al. 2022). The research potential for 

calculating future dynamic emission factors is further highlighted in the work of C. Hepf, B. Gottkehaskamp, 

C. Miller, and T. Auer titled “International Comparison of Weather and Emission Predictive Building 

Control”. At five international locations, the authors compare weather and emission predictive control 

strategies to standard control methods for the years 2020 and 2050. They test the hypothesis that a simple 

control approach can harness potential energy and emission savings. The authors emphasize the need for 

intelligent control strategies due to future changes in the power grid from the increase in renewable energy and 

the need to meet European climate neutrality goals. (Hepf et. al., 2024) This work connects to the previous 

study and describes the weather and emission predictive control strategy methodology in detail.  

3. Methodology 

3.1 WEPC Integration 

This paper describes a framework to integrate WEPC into thermal dynamic simulations, which is designed to 

optimize building thermal performance by integrating dynamic simulations utilizing weather data and emission 

calculations. This approach considers emissions, factoring in the availability of renewable energy sources, and 

the buildings storage capacities and powers output of the supply systems. This framework is designed to be 

adaptable to various building technology configurations, though specific adjustments required for different 

setups are not detailed in this paper. The approach presented was tested and used using TrnSys18. A detailed 

overview of the process is depicted in Figure 3, showing the multistep process. The process can be broken 

down into: 
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• Conduct Initial Thermal Dynamic Simulation: Perform the initial simulation using current weather 

data to compute the Solar Heat Gains (SHG) and other relevant thermal metrics for each thermal zone. 

• Transpose Simulation Results: Calculate future weather conditions by transposing the initial 

simulation results, incorporating forecast data for ambient temperature and solar radiation. 

• Adjust Control Strategies: Modify shading, ventilation, heating, and cooling control strategies based 

on the transposed future data to optimize energy use and maintain comfort. 

• Run Second Thermal Dynamic Simulation: Perform a second simulation that includes the effects of 

the future data and the adjusted control strategies to predict the system's performance. 

• Incorporate Emission Control: Integrate hourly emission data and energy performance metrics into 

the simulation to evaluate and manage the environmental impact of the building's energy use.  

Detailed thermodynamic simulations typically utilize hourly timesteps to numerically verify thermal comfort 

and calculate energy consumption. This approach is in alignment with ASHRAE 90.1 (Halverson et al., 2014), 

a widely recognized standard, which often employs hourly simulations. Commonly used simulation engines 

like EnergyPlus and TRNSYS also default to hourly timesteps. Crawley and Barnaby (2019) indicated that 

hourly resolution weather data is sufficient for design and code compliance, offering adequate granularity for 

accurate simulations. While higher resolutions can yield more detailed results, they are often not readily 

available. 

In the context of electricity consumption and carbon intensity, hourly data becomes is necessary as exemplary 

data is depicted in Figure 3 from Agora. The carbon intensity of consumed electricity can differ significantly 

from that of produced electricity, especially when imports constitute a substantial share of the consumed 

electricity. Therefore, it is essential to adopt a consumption-based perspective to accurately capture the carbon 

footprint of electricity use within a specific zone and time. This can be achieved through flow tracing 

methodologies that trace the origin of electricity and calculate its carbon intensity (Soimakallio & Saikku, 

2012, Bialek, J. (1996). To determine the source of electricity and calculate its carbon intensity, Agora employs 

a flow tracing methodology. (Trnberg et al., 2019) Figure 2 exemplarily depicts such hourly emission values. 

 

 Fig. 2: Exemplary hourly Emissions data from Agora for Munich, Germany for the TRY 2020 
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Fig. 3: Detailed Framework Flowchart for Weather and Emission predictive control (WEPC) 
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3.2 Computation of future data 

The initial thermal dynamic simulation utilizes weather data to compute the Solar Heat Gains (SHG), which 

describe the total solar radiation transmitted through external windows for each thermal zone at each time step. 

It is recommended to use hourly time steps, though more detailed intervals can be adopted depending on the 

resolution of the weather data and emissions. Lower resolution data can reduce the accuracy of predictions. 

The ambient air temperature from the provided weather file, along with the SHG, is then transposed to describe 

future conditions. This transposition process involves using data from the current simulation step and 

incorporating forecast values for future steps. The forecast horizon can vary, typically they have been set 

between 12 or 24 hours. Weather forecasts tend to lose accuracy the further ahead they predict environmental 

variables, hence this framework recommends adhering close to this range for good accuracies, but it has not 

been further investigated. For each future step, the influence of the prediction is reduced by a factor, alpha, to 

account for the decreasing accuracy of weather forecasts over longer time periods. 

Equation 1 describes the transposition of the future data, hence computes an exponentially weighted sum of 

input variables over a specified number of future timesteps t. In this functi1on, a is a parameter that controls 

the rate of exponential decay, ensuring that more recent inputs have a greater influence. Each input 𝑧𝑘 is 

weighted by 𝑎𝑘, and the overall sum is scaled. This formulation allows the function to adapt to different 

numbers of input terms, making it useful for scenarios that require weighted sums over multiple future 

timesteps. 

 

𝑓(𝑎, 𝑧0, 𝑧1…𝑧𝑡) = (1 − 𝑎)∑ (𝑎𝑘 ∗ 𝑧𝑘)
𝑡
𝑘=0    (eq. 1) 

with 

• 𝑓(𝑎, 𝑧0, 𝑧1…𝑧𝑡): Exponentially weighted sum of input  

variables over t future timesteps. 

• a: Decay parameter controlling the rate of exponential  

decay, with 0 ≤ a < 10 

• zk: Input variables at each timestep k (where k ranges 

from 0 to t). 

• t: Total number of future timesteps considered. 

 

3.3 Controller Adjustments 

The future data for SHG and ambient temperature is than utilized to adjust the heating, cooling, shading and 

ventilation controls for the initial thermal dynamic simulation to perform a second run, to calculate the hourly 

energy performance for each zone. 

Shading greatly influences the solar heat gains transmitted into the thermal zone, hence adjusting the shading 

controller, for better temperature control and its impacts on the heating and cooling system to maintain indoor 

comfort and lower energy consumptions. Shading controllers are often activated based on an ambient 

temperature setpoint or time based, which could be, with the setpoint sometimes being controlled by a 

schedule, allowing to adapt to seasonal changes. The adapted equation (eq. 2) also utilizes a setpoint for the 

ambient temperature, the current solar heat gains and future solar heat gains to print out an active signal. 
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𝑆ℎ𝑎𝑑𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 =  { 

1
1
1
0

𝑖𝑓 𝑇𝑎𝑚𝑏,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > 14 

𝑖𝑓 𝑆𝐻𝐺𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > 200
𝑖𝑓 𝑆𝐻𝐺𝑓𝑢𝑡𝑢𝑟𝑒 > 150

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

}
 

 
  (eq. 2) 

with 

• ShadController: Control signal for the shading device, equal 

 to 1 if the shading should be activated, and 0 otherwise. 

• 𝑇𝑎𝑚𝑏,   𝑐𝑢𝑟𝑟𝑒𝑛𝑡 : Current Ambient temperature [∘C] 

• 𝑆𝐻𝐺𝑐𝑢𝑟𝑟𝑒𝑛𝑡: Current solar radiation [W/m2]. 

• 𝑆𝐻𝐺𝑓𝑢𝑡𝑢𝑟𝑒: Forecasted solar radiation for t timesteps 

ahead [W/m2]. 

 

To maintain thermal comfort, temperature control must minimize energy losses or maximize energy gains. 

This requires controlling air exchange based on transposed future data. Air exchange can be managed using 

various strategies, such as day and night cooling, different setpoints for varying intensities, and schedules. 

However, the general concept of integrating future data remains consistent. By incorporating an additional 

statement that utilizes the Ambient Future Temperature, we can further enhance a Simple Controller. 

Equation 3 demonstrates a controller designed to output a specific airflow rate at a certain temperature range. 

This formular is then used in a greater formular with combined other Airflow formular to control the specific 

airflow rate for other temperature ranges to a final specific airflow rate. 

Temperature is chosen as the primary parameter because temperature control systems are already widely 

established and integrated into most building HVAC systems (Rehrl and Horn, 2011), making it cost-effective 

and practical to leverage existing infrastructure. Additionally, temperature is easily measurable and can be 

accurately predicted using ambient temperature forecasts, allowing the controller to anticipate changes and 

adjust airflow rates proactively, thus enhancing both comfort and energy efficiency. 

 

𝐴𝐶𝐻_𝑔𝑡23 =  { 
3
0

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑖𝑓 𝑇𝑎𝑖𝑟  >  𝑇𝑎𝑚𝑏,   𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑛𝑑 𝑇𝑎𝑚𝑏,   𝑓𝑢𝑡𝑢𝑟𝑒  >  23

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 }   (eq. 3) 

 

with  

• 𝐴𝐶𝐻_𝑔𝑡23: Is a specific airflow rate [m s-1] 

• Schedule: An optional schedule, equal to 1 if activated, and 0 otherwise. 

• Tair: Current Zone Air temperature [∘C] 

• Tamb,   current: Current Ambient temperature [∘C] 

• Tamb,   future: Futurue transposed Ambiant Temperature [∘C] 

 
After managing passive strategies for shading and ventilation, heating and cooling methods are also adjusted 

to maintain comfort with low energy consumptions. Both heating and cooling controllers are typically defined 

by specific curves, which include a supply temperature and a power output. To enhance these controllers, 

future data is integrated into their formulas. Instead of using the current ambient temperature, the heating or 

cooling curve incorporates the future ambient temperature (eq. 4). Additionally, future solar radiation is 

factored into the supply temperature adjustments to reduce energy consumption (eq. 4, 5). 

Future solar radiation impacts the power output of the heating and cooling systems: it reduces the heating 

power output and increases the cooling power output (eq. 6). This adjustment ensures that the systems respond 
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appropriately to anticipated solar gains. The influence of future solar radiation and ambient temperature on 

these adjustments depends on the specific location, as different regions experience varying solar intensities 

and weather patterns. 

 

𝑇𝑠𝑢𝑝,   𝐻𝑇 = max (25.4 − 0.27 ∗  𝑇𝑎𝑚𝑏,   𝑓𝑢𝑡𝑢𝑟𝑒, 22)    (eq. 4) 

δ𝑇𝑠𝑜𝑙𝑡𝑟,   𝑓𝑢𝑡𝑢𝑟𝑒 =
𝑄𝑠𝑜𝑙𝑡𝑟,𝑓𝑢𝑡𝑢𝑟𝑒
𝑚𝑠𝑝𝑒𝑐 ∗ 𝑐𝑤  

3.6

    (eq. 5) 

𝑃𝐻𝑇,   𝑓𝑢𝑡𝑢𝑟𝑒 = max (𝑃𝐻𝑇,   𝑚𝑎𝑥 − 𝑄𝑠𝑜𝑙𝑡𝑟,   𝑓𝑢𝑡𝑢𝑟𝑒 , 0)  (eq. 6) 

 

with 

• 𝑇𝑠𝑢𝑝,   𝐻𝑇: Representing the Supply Temperature for the Heating Curve [∘C] 

• 𝑇𝑎𝑚𝑏,   𝑓𝑢𝑡𝑢𝑟𝑒: Transposed Future Ambient Temperature [∘C] 

• 𝑇𝑠𝑜𝑙𝑡𝑟,   𝑓𝑢𝑡𝑢𝑟𝑒: Transposed incoming solar radiation referring at the area [
𝑊

𝑚²
] 

• 𝑚𝑠𝑝𝑒𝑐: specific mass flow [
𝑘𝑔

ℎ𝑚²
] 

• 𝑐𝑤: specific heat capacity of water [
𝐾𝐽

ℎ𝑚²
] 

• 𝑃𝐻𝑇,   𝑓𝑢𝑡𝑢𝑟𝑒: Resulting Power Heating Output considering the future data [W] 

• 𝑃𝐻𝑇,   𝑚𝑎𝑥: Maximum Power Heating Output [W] 

 

𝑇𝑠𝑢𝑝,   𝐶𝐿 = min(25.4 − 0.27 ∗  𝑇𝑎𝑚𝑏,   𝑓𝑢𝑡𝑢𝑟𝑒 , 18)    (eq. 7) 

𝑃𝐶𝐿,   𝑓𝑢𝑡𝑢𝑟𝑒 = max (𝑃𝐻𝑇,   𝑚𝑎𝑥 − 𝑄𝑠𝑜𝑙𝑡𝑟,   𝑓𝑢𝑡𝑢𝑟𝑒 , 90)  (eq. 8) 

 

with 

• 𝑇𝑠𝑢𝑝,   𝐶𝐿: Representing the Supply Temperature for the Cooling Curve [∘C] 

• 𝑇𝑎𝑚𝑏,   𝑓𝑢𝑡𝑢𝑟𝑒: Transposed Future Ambient Temperature [∘C] 

• 𝑇𝑠𝑜𝑙𝑡𝑟,   𝑓𝑢𝑡𝑢𝑟𝑒: Transposed incoming solar radiation referring at the area [
𝑊

𝑚²
] 

• 𝑃𝐶𝐿,   𝑓𝑢𝑡𝑢𝑟𝑒: Resulting Power Cooling Output considering the future data [W] 

• 𝑃𝐶𝐿,   𝑚𝑎𝑥: Maximum Power Cooling Output [W] 

 

Using the adjusted Zone Model, which incorporates controls for shading, ventilation, heating, and cooling, the 

second simulation run results can describe thermal comfort and provides the energy balance. The Energy 

balance is then used as an input for the pseudo-predictive post-simulation processing, which incapsulates the 

CO2 calculation based on some given parameters named the System Model calculations. 

3.4 System Model for Emission calculations 

The System Model utilizes the hourly energy balance output from the second run of the thermal dynamic 

simulation, including 24-hour average ambient temperature and an hourly emissions dataset. This model 

incorporates various building technologies for heating, cooling, and auxiliary consumptions (equipment, 

electrical, etc.), as well as electrical storage capacities, loading and unloading powers, efficiencies, and the 

overall dimensions of the system as depicted in Figure 2. This results compute into CO2 emission with loading 

and unloading times as well as storage capacity levels. 

Complex control strategies are modeled using a pseudo-predictive approach. Instead of developing an 

algorithm for real-time data prediction, the model assumes that the future data is already known, since the 

thermal dynamic simulation has already provided all necessary results. Hence, it is possible to identify minimal 

values within specific periods (typically 1-2 days) and schedules the charging period around these minimal 
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values. Thus, the model: 

• Specifies the periods during which storage systems are charged based on the minimum energy 

requirements identified. 

• Determines the timeframe for loading and unloading operations is determined based on the 24-hour 

average ambient temperature, energy performance loads and low CO2 emissions. This helps ensure 

that the system operates efficiently and maintains optimal thermal comfort. 

Also, both thermal storage (heating and hot water) and battery storage are modeled using a simple input-output 

approach. The discharge power required by the storage (e.g., for heating demand) must be available within the 

storage capacity. If the storage is "empty," the required energy is supplied externally during defined charging 

periods.  

The following equations to define how storage loading capacity and supplementary power are processed, 

determining the energy purchased from the grid (eq. 9). This energy is subsequently used, along with emission 

data and the Annual Performance Factor, to compute the system's resulting dynamic CO2 emissions (eq. 10). 

 


𝑔𝑟𝑖𝑑

(𝑡) =∑ (
𝑙𝑑(𝑡) + 𝑝𝑥𝑙𝑟(𝑡)

𝐽𝐴𝑍
)

8760

𝑡=1
  (eq. 9) 

𝐸𝑑𝑦𝑛 =∑ (𝑔𝑟𝑖𝑑(𝑡)  ∗  
𝑒𝑓(𝑡)

1000
)

8760

𝑡=1
  (eq. 10) 

 

with 

• 
𝑔𝑟𝑖𝑑

(𝑡): Grid volume of purchased energy [kWh] 

• 
𝑙𝑑
(𝑡): Storage loading capacity [kWh] 

• 𝑝𝑥𝑙𝑟(𝑡): Supplementary Power [kWh] 

• JAZ: Annual Performance Factor 

• 𝐸𝑑𝑦𝑛: Resulting dynamic CO2-Emissions [kg CO2 ] 

• 𝑒𝑓(𝑡): Emission factor [g CO2/kWh] 

 

This System Model framework offers a streamlined approach to integrating thermal and electrical storage, 

enabling efficient emission calculations and providing a foundation for future enhancements. The model does 

not simulate complex physical processes such as temperature stratification in thermal storage.  With a pseudo-

predictive the solar radiation data could be precomputed in the first simulations runs of the thermal dynamic 

simulations, or in a separate solar radiation study, to additionally incorporate the effects of Photovoltaics into 

the loading and unloading methods. 

4. Discussion 

The workflow developed in this study demonstrates both potential and limitations when considering its 

applicability in thermal models and its transferability to real-world building systems. While the workflow's 

simplicity in utilizing basic mathematical equations and widely available weather data allows for easy 

implementation in thermal simulations, it faces challenges in direct application to the built environment. 

Firstly, the workflow, though simplified, still requires some level of computational power and understanding 

of HVAC systems. This makes it unsuitable for a straightforward application in real-world scenarios without 

the support of a computational unit such as a computer or smart controller. Additionally, basic knowledge in 

HVAC engineering is necessary to comprehend and apply the process, creating a barrier for non-specialists. 

These factors highlight the complexity that remains despite attempts to simplify, making the direct transfer of 

the workflow into built environments challenging. 
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On the other hand, the low technological requirements and the simplicity of the equations used suggest that 

the workflow could be implemented using basic devices, such as smartphones or low-cost controllers. This 

broadens the potential for integration into building systems, offering a path for easier connectivity and 

application in various settings. Moreover, the availability of weather data for any location further supports the 

feasibility of using this workflow in real-world applications. However, the lack of granular emissions data, 

available only at a national level, could potentially limit the precision of the workflow when applied to specific 

local contexts. 

In terms of its relevance to ongoing climate change and adaptation strategies, the workflow presents a mixed 

case. The need for optimization remains significant, especially as the integration of renewable energies and the 

stability of the grid become increasingly important. The workflow effectively delivers energy savings, 

emissions reductions while sustaining thermal comfort, aligning with objectives to enhance energy efficiency 

and support grid stability. This paper focuses on presenting the framework, while prior studies by Hepf et al. 

(2022, 2024) have implemented this approach. The 2022 study evaluated four configurations, showing energy 

savings between 3.5% and 11%, impacted by variations in thermal and battery storage. In 2024, the analysis 

expanded internationally, covering diverse climate zones and reporting emissions reductions of 5% to 25% 

across various building types. However, the current framework does not consider humidity, which is one of 

the driving factors in energy consumption, particularly in humid climates where dehumidification significantly 

impacts energy usage. This limits the workflow's effectiveness in tropical climates.  

Additionally, the long-term effectiveness of this approach is debatable. As emission factors decrease in line 

with European and governmental targets, the impact of further optimization may diminish, reducing the 

necessity for such workflows. Furthermore, focusing on sufficiency improvements might offer more 

substantial benefits than efficiency improvements alone. Despite these considerations, in large building energy 

systems where HVAC management is crucial, the simplicity of this workflow could offer significant benefits 

by streamlining complex optimization processes. 

In conclusion, while the workflow offers promising advantages in certain scenarios, its broader application in 

the built environment and its alignment with long-term climate strategies require careful consideration. Its 

success will depend on the specific context, particularly in terms of technological capability, data availability, 

and the evolving priorities of energy and emission management. 
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