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Abstract 

The decarbonisation of heat supply in district heating network can be achieved through solar thermal systems, 

providing a carbon-free and competitive energy. Their integration with large-scale thermal storage allows for 

enhancing solar fraction by utilizing summer heat during winter months. However, conventional optimization tools 

often treat solar thermal production as a simple input, potentially leading to miscalculations and neglecting the 

influence of storage behavior on the thermal solar production. The presence of a thermal storage especially influences 

both the temperature and the mass flow observed by the solar plant. In this context, a good prediction of solar 

production is crucial for a better computation of the system. We propose here a 6-step methodology based on 

simulation and optimization models to enhance solar thermal production pre-calculation. With this methodology, the 

predicted solar production has resulted in an average error of 3.4% compared to the final solar production obtained 

after convergence of optimization/simulation of the entire plant, on six district heating cases studies. The latter has 

to be compared with an average error of 10% when using a state-of-the-art approach for the solar production 

calculation. 
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1. Introduction 

1.1. The role of solar thermal in district heating network 

A major part of final energy consumption in European countries is dedicated to space heating and domestic hot water 

needs. District heating networks (DHNs) have emerged as a promising solution for reducing carbon emissions in 

heat supply. Notably, the 4th generation of district heating currently under development across Europe, focuses on 

lower temperature networks compared to older generations (2nd and 3rd generation). This evolution enhances the 

integration of renewable heat sources, such as heat pumps and solar thermal plants (Lund, 2014). 

Solar district heating networks (SDH) are a specific type of district heating system that primarily relies on solar 

thermal plants as the main source of energy, aiming for a high solar fraction. Solar thermal systems offer several key 

advantages: they are renewable, carbon-free, and contribute to diversifying energy sources, thereby reducing 

dependency on fossil fuels and enhancing energy security. 

A particularly significant advantages of solar thermal systems is their compatibility with large-scale thermal storage. 

By coupling solar thermal plants with thermal storage, excess heat generated during the summer months can be stored 

and then utilized during periods of lower solar availability, such as in the winter. This coupling not only increases 

the overall efficiency and solar fraction of the system but also ensures a more stable and reliable heat supply 

throughout the year. The ability to shift energy production across seasons makes solar thermal coupled with storage 

a particularly attractive option for sustainable district heating networks. The presence of thermal storages can also 

benefit other production methods by optimizing the overall system efficiency and reducing heat production costs 

However, SDH are generally more complex than classical DHN. The inherent intermittency of solar resources adds 

further complexity to managing SDHs compared to traditional DHNs. Optimizing the operation of solar district 

heating (SDH) systems presents significant challenges due to the intricate interactions between various components, 

particularly when thermal storage is involved. Thermal storage operation affects both DHN temperature and mass 

flow rates. Since solar collectors are sensitive to operating temperatures, the behavior of thermal storage can 

significantly impact the overall system efficiency. Therefore, a deep understanding of the thermal-hydraulic behavior 

within these networks is crucial for optimizing their design, operation, and control strategies, to ensure maximum 

efficiency and reliability. To address these challenges, mathematical tools such as simulation or optimization models 

can help to address the intricate task of matching demand with supply in district heating networks.1.2. How SDH are 

modelled in the literature 
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In the literature, two main methods are used to model solar district heating network. The first approach involves 

simulation tools such TRNSYS (University of Wisconsin, 1975) or Modelica models (Brück, 2002). These methods 

employ expert rules such as plant priority settings for energy dispatch and are able to model non-linear equations, 

thus, offering a more accurate representation of solar production profiles (Giraud., 2014; Descamps, 2018; Renaldi 

2019). However, while simulations can enhance the understanding of system behavior, they do not ensure optimal 

economic or environmental solutions, as thermal plants production profiles are predefined from rules rather than 

optimization computation. Therefore, optimization methods are often used for optimal dispatch. 

Optimization methods involve modeling solar district heating (SDH) equations as constraints to minimize an 

objective function, which can be economic (e.g. operating costs), environmental (e.g. CO2) or a combination of both. 

Scolan et al (2020) and Delubac et al (2021) developed a multi-period optimization tool to enhance the integration 

of solar thermal into district heating networks using a Mixed-Integer Non-Linear Programming (MINLP) approach. 

In their model, temperatures at the input and output of the solar field as well as mass flows are modeled as problem 

variables. Solar thermal power output is then computed based on global irradiance, ambient temperature, solar field 

temperature and DHN mass flows. As a result, thermo-hydraulic equations of the network are well modeled, thereby 

ensuring a comprehensive representation of the network, particularly regarding the impact influence of storage 

behavior on solar production. However, due to the large complexity and to avoid intractability issues, the MINLP 

problem is translated in NLP problem through the use of sigmoid functions, and representative days are used. The 

problem remains complex to solve and computationally expensive. 

The other class of optimization problems is Mixed-Integer Linear Programming (MILP). MILP is commonly used 

for unit commitment problems to determine the optimal production plan for thermal plants to meet demand while 

minimizing costs or carbon emissions. In MILP models, mass flows and temperatures are treated as parameters rather 

than variables, as the thermo-hydraulic equations are linearized. This linearization enables the use of powerful linear 

solvers such as CPLEX, which provide stable solutions with guaranteed convergence, albeit with some 

approximations. Consequently, the model constraints in MILP are energy constraints like energy and power balances 

rather than temperature and flow rate balances. As a result, thermal solar production is often treated as a fixed input, 

computed solely based on solar radiation and solar field size (Buoro, 2014; Carpaneto 2015; Van Der Heijde, 2019). 

However, Lamaison et al (2018) highlighted the limitation of MILP models to get realistic trajectories noting that 

errors of several percent in the energy mix can arise, particularly due to oversimplification of storage modelling (i.e., 

the omission of temperature effects). Similarly, the oversimplification inherent in MILP models and neglecting 

temperature effects on plant performance can lead to an overestimation of solar production, as they fail to account 

for the impact of thermal storage, fluid inertia, and thermal losses in the solar field on overall system dynamics. 

1.3. Aim of the paper 

To address this gap, we propose a comprehensive six-step methodology designed to enhance the pre-calculation of 

solar thermal production for MILP optimization problems. By incorporating insights from the aforementioned 

studies, our methodology encompasses solar field and storage sizing, as well as a more precise computation of solar 

thermal production. Our methodology relies on efficient non-linear simulations with Modelica models and small 

optimization problems. The refined solar thermal production data can then be effectively utilized in classical MILP 

optimization problems for energy production, paving the way for more efficient and sustainable operation of Solar 

District Heating systems. 

2. Methodology 

 
The methodology is described in Figure 1 below and consists of six steps and an additional validation step. 

• The first six steps represent the core of the methodology presented here. The objective is to improve the 

computation of solar thermal production by taking into account the behavior of thermal storage. It results in an 

improved thermal solar production trajectory Psol1. 

• The six steps are based on Modelica models of increasing complexity (figure 2), alongside Python codes for 

sizing and optimization. 

• The last 7th step involves a validation procedure. An iterative loop is established between a comprehensive 

Modelica model of the DHN plants, which generates a solar production profile called Psol[k]. This profile is then 

used in a MILP optimization model to determine optimal trajectories for biomass plant, gas plant and Pit Thermal 

Energy Storage (PTES). Convergence is assessed using the mean RMSE between two iterations Psol[k] and 

Psol[k+1]. 
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• The inputs of the methodology are the external temperature, solar radiation, DHN temperatures and mass 

flow rate. 

• The outputs are solar field area, pit thermal energy storage capacity and a more precise solar thermal power 

trajectory. 

 

The different steps are detailed in the next subsections. 
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Figure 11- Methodology for precomputation of thermal solar production Psol1 and validation procedures 

 

 
Figure 22 - Modelica models for step 1, 3, 5 and 7 
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2.1 Step 1: Solar field simulation for sizing 

The first step involves a solar field Modelica model, developed using an in-house CEA Modelica library (Giraud, 

2015). The objective of this simulation is to obtain a solar yield per unit area, in order to size the solar field to meet 

the system’s solar energy requirements. The simulation is conducted using network temperature data (supply and 

return temperatures) and meteorological data (solar irradiation, ambient temperature). The simulation assumptions 

are the following: 

• The return temperature of the network is set at the solar field heat exchanger secondary-side inlet. 

• The solar field secondary flow rate is controlled to achieve the desired network supply temperature. 

• The network flow rate is assumed to be unlimited so that all the energy from the solar field can be absorbed 

by the network 

The outputs are time series of production in W/m² and annual 𝑆𝑜𝑙𝑎𝑟_𝑦𝑖𝑒𝑙𝑑 in kWh/m²/year). The resulting time 

series here obtained is denoted Psol0. 

2.2. Step 2: Solar field sizing 

The size of the solar field is computed by the following equation: 

𝑎𝑟𝑒𝑎 [𝑚2] = 𝑆𝑜𝑙𝑎𝑟𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛[−] ⋅
∑ 𝑃𝐷𝐻𝑁(𝑡)[𝑘𝑊ℎ]𝑡

𝑆𝑜𝑙𝑎𝑟_𝑦𝑖𝑒𝑙𝑑 [𝑘𝑊ℎ/𝑚2] 
 (1) 

Where ∑ 𝑃𝐷𝐻𝑁(𝑡)𝑡  is the DHN total annual energy and 𝑆𝑜𝑙𝑎𝑟_𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑙𝑒 is the solar energy yield per unit area, 

obtained from step 1. 

The solar fraction is a SDH parameter and is computed by 𝑆𝑜𝑙𝑎𝑟𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛[−] =
∑ 𝑃𝑠𝑜𝑙(𝑡)[𝑘𝑊ℎ]𝑡

∑ 𝑃𝐷𝐻𝑁(𝑡)[𝑘𝑊ℎ]𝑡
 where Psol is the 

solar production. 

2.3. Step 3: Solar field simulation 

In large district heating networks where solar production constitutes a significant portion, the solar field may be 

extensive (potentially several thousands of square meters). In such cases, the impact of thermal loss and field inertia 

may not be neglected as it affects solar production. Therefore, the same Modelica model of step 1 is resimulated but 

with a corrected area and coherent pipe diameter, corresponding to the desired solar fraction. 

It results in a new solar production called Psol_0bis. 

After step 3, the simulation provides a solar production for a solar field corresponding to the required solar fraction 

within the network. The next step involves sizing the seasonal thermal energy storage (PTES) to achieve this solar 

fraction effectively. 

2.4 Step 4: Pit storage sizing 

Solar production exhibits high intermittency with significant variations between nights and days. Peak production 

can exceed DHN demand during several time steps, especially during summer. Thus, to meet the desired solar 

fraction (computed based on annual energy production), coupling solar field with Pit Thermal Energy Storage (PTES) 

is essential. The critical question is determining the appropriate capacity for this thermal energy storage. 

The process is explained in Figure 3. This figure depicts the evolution of the cumulated difference between DHN 

demand and solar production ∑ 𝑃𝐷𝐻𝑁(𝑠) − 𝑃𝑠𝑜𝑙(𝑠)𝑠≤𝑡 . At the beginning of the year, solar production is lower than 

DHN demand, causing the cumulative difference to increase until the day T0. At T0, solar production surpasses DHN 

demand indicating a production surplus that should be stored. This production surplus continues until TF, where 

cumulative DHN demand exceeds again solar production. 

Therefore, storage size corresponds to the difference of cumulative energy between T0 and TF, as depicted in the 

figure. This approach accounts for daily variations in PTES loading and unloading. 
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Figure 33 – Illustrative cumulated difference between PDHN and Psol 

2.5 Step 5: MILP model for hypothetical charging and discharging profiles 

The next step after PTES capacity design is to determine feasible charging and discharging profiles for the PTES. 

This is achieved through a small optimization problem formulated in PulP (Mitchell, 2011). The following 

assumptions to dispatch the energy are as follows: 

• The charging power corresponds to the surplus of thermal solar production compared to DHN demand. 

• The discharging power outside the period [T0-TF] should approximate a mean discharging value. 

 

The optimization problem is the following (variables are shown in bold): 

min ∑ 𝝐+[𝑡] + 𝝐−[𝑡]𝑡     (2) 

 
With the following constraints: 

𝑬[0] = 𝑬[𝑇𝑒𝑛𝑑]    (3) 

𝑬[𝑇0] = 0     (4) 

𝑬[𝑇𝐹 + 1] = 𝐸𝑃𝑇𝐸𝑆
𝑚𝑎𝑥     (5) 

 
T0 and 𝑇𝐹 corresponds to the time steps where the storage is empty and fulfilled. These time steps are computed in 

step 2, simultaneously with the storage sizing. 

From 𝑇𝐹 to T0, we want to approximate a mean discharging value : 

𝑷𝒅𝒊𝒔𝒄𝒉[𝑡] = 𝑃𝑚𝑒𝑎𝑛
𝑑𝑖𝑠𝑐ℎ[𝑡] + 𝝐+[𝑡] − 𝝐−[𝑡] (6) 

 
Where 𝝐+ and 𝝐− represent deviations from the mean discharge value 𝑃𝑚𝑒𝑎𝑛

𝑑𝑖𝑠𝑐ℎ which is computed from the following 

equation: 

𝑃𝑚𝑒𝑎𝑛
𝑑𝑖𝑠𝑐ℎ[𝑡] = {

0 𝑤ℎ𝑒𝑛 𝑃𝑐ℎ[𝑡] > 0
𝐸𝑚𝑎𝑥

Δt
 𝑒𝑙𝑠𝑒

    (7) 

where Δt corresponds to the length of interval of time from 𝑇𝐹 to T0. 

The discharging power must be less or equal to the DHN demand: 

𝑷𝒅𝒊𝒔𝒄𝒉[𝑡] ≤ 𝑃𝐷𝐻𝑁[𝑡]     (8) 

Charging and discharging cannot occur simultaneously: 
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𝑷𝒅𝒊𝒔𝒄𝒉[𝑡] ⋅ 𝑃𝑐ℎ[𝑡] = 0     (9) 

The energy balance of the storage is computed: 

𝑬[𝑡 + 1] − 𝑬[𝑡] = 𝑃𝑐ℎ[𝑡] − 𝑷𝒅𝒊𝒔𝒄𝒉[𝑡]  (10) 

The energy is the storage should remain positive within the storage capacity obtained in step 2: 

𝑬[𝒕] ≤ 𝐸𝑃𝑇𝐸𝑆
𝑚𝑎𝑥      (11) 

Note that we do not take into account thermal losses in the storage. The approach is to provide theoretical load 

profiles, matching with step-4 PTES sizing, close to a physical reality, rather than getting perfect loading and unload 

profiles matching the reality. 

Solving this problem gives discharging profiles, close to a mean value during non-heating season. The optimization 

problem is linear, and does not involve any binary variables. A solution is then obtained in a few seconds. 

2.6 Step 6: Simulation of a solar field model combined with thermal storage 

After determining theoretical storage profiles, the next step is to assess the impact of these profiles on the solar field 

and overall district heating network. Therefore, a new Modelica model is developed, adapted from step 1 Modelica 

model including a PTES with loading/unloading setpoints and load-following thermal plant to meet DHN demand 

continuously. A simulation is performed with the following assumptions: 

• The flow rate through the secondary side of the solar field heat exchanger is controlled in order to achieve 

the desired network supply temperature. 

• The actual district heating network flow rates are considered. 

• PTES operational setpoints (charge and discharge) from step 5 are used. 

This new solar production is expected to be lower than Psol_0bis because of 1) the limited DHN mass flow (mass 

flow is no longer considered unlimited, and solar energy may need to be dissipated to prevent the solar field from 

overheating when the flow rate is restricted) and 2) the storage influence on the return temperature of the solar field 

heat exchanger when charging. Indeed, during PTES charging, network return temperature is mixed with PTES 

bottom temperature. The latter results in a higher temperature observed by the solar plant, compared to a simulation 

without storage. This can reduce the thermal solar output. 

This simulation gives a new solar production Psol_1. The validity of this solar production is then assessed in an 

iterative loop between MILP optimization problem (to get optimal thermal plant trajectories satisfying heat demand) 

and a Modelica simulation model representing the whole district heating production plants. 

 

2.7 Step 7: Validation 

The validation step consists in an iterative loop and relies on two models: 

•  7.1: a MILP optimization model based on the tool PERSEE (Ruby, 2024). This optimization model 

represents the district heating production plants, including the solar thermal plant and the PTES. Solar production 

Psolk is considered as fixed input profile. The objective is to satisfy heat demand while minimizing the operational 

costs. This step gives the production level plants Pplants and PTES profiles PPTES
ch  and PPTES

disch. 

• 7.2: A Modelica model representing the entire district heating production plants, including the solar field. 

The inputs are the production levels plants from PERSEE. This gives a revised solar production profile, noted 

Psolk+1, k+1 corresponding to the k+1th iteration. 

The convergence criteria is the mean root mean square difference between two iterations of Psol: 

𝑁𝑅𝑀𝑆𝐷 =
√(𝑃𝑠𝑜𝑙𝑘̅̅ ̅̅ ̅̅ ̅̅ −𝑃𝑠𝑜𝑙𝑘+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2 

𝑃𝑠𝑜𝑙𝑘̅̅ ̅̅ ̅̅ ̅̅
   (12) 

 

The goal of this iterative loop is to align the production plant profiles with the solar production levels, thereby refining 

the optimization results to ensure they reflect a realistic and operationally feasible solar district heating system.  

3. Results 

3.1. Case study 
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The methodology presented here is applied on a hypothetical case study, representing a solar district heating network, 

with two different level of temperature (3rd and 4th generation district heating), with 3 different solar irradiances 

(corresponding to the meteorological areas H1, H2 and H3 in France). Network heat demand and supply/return 

temperatures are derived using the HeatPro tool (CEA Liten, 2024). The solar district heating network is composed 

of solar thermal plant, a pit thermal energy storage, biomass plants and gas plants. The desired solar fraction is 40%. 

(fig4) 

 

Figure 44 - DHN production plants 

 

3.2. Solar precomputing production profile Psol1 

The following Table 1 presents the results of the precalculation methodology. It reports the difference between the 

corrected pre-calculated solar field production (Psol1) with respect to the initial ideal simulation (Psol0bis). It shows 

that Psol0bis overestimates the solar production level when storage is incorporated. 

 

Table 1: Reduction in annual solar output between Psol0bis and Psol1 due to storage operation. 

H1 3G H1 4G H2 3G H2 4G H3 3G H3 4G 

-11.6% -10.8% -11.3% -10.5% -7.4% -8.3% 

 
New solar fraction, recalculated using Psol1 is shown in Table 2. 

Table 2: Solar fraction computed with Psol1. Desired solar fraction is 40% 

H1 3G H1 4G H2 3G H2 4G H3 3G H3 4G 

35.3% 35.2% 35.7% 35.3% 36.7% 36.2% 

 
As expected, solar fraction and annual solar output decrease when considering storage. This effect can be explained 

by Figure 5 representing the storage state of charge (right-axis) and the solar production Psol0bis (grey) and Psol1 

(black) (left-axis). For clarity, solar production is represented as the maximum value over a one-week rolling window. 

As expected, solar production Psol1 is now lower than Psol0bis. Several reasons can be identified: 

• A limited mass flow of the solar field exchanger at the network side can lead to an overheating of the solar 

field, requiring to dissipate a part of the solar energy. 

• At the beginning of the year, Psol1 is lower than Psol0bis because of storage operation: PTES is discharging, 

thus limiting the mass flow available for the solar field. This limitation is more pronounced compared to Psol0bis, 

which assumes unlimited mass flow rates to capture all potential solar production 

• During summer, Psol1 production levels are lower than Psol0bis. This is also explained by storage operation: 

PTES is charging and its temperature is increasing. Thus, temperature observed by the solar field is higher than 

expected and solar production is reduced. This effect becomes even more pronounced at the end of summer when 

the storage is full. 
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Figure 55 - Solar production and state of charge of H1 3G. Solar production is the max value over 1 week. 

3.3. Validation step  

Psol1 is generated using hypothetical storage profiles, which may not align with economically optimal profiles. To 

address this, an iterative loop between optimization and simulation is employed. PERSEE optimization model will 

generate optimal DHN plants trajectories to meet DHN demand over a year, with an hour time step precision. The 

objective function is the minimization of the operating costs. Then, Dymola simulation is conducted to generate 

actual solar production level when considering optimal discharging and charging profiles and the influence of other 

production plants. This iterative process not only refines the solar production profile but also highlights model 

mismatch between the simulation and optimization models. The validation loop is stopped after 6 iterations or if the 

convergence criteria (NRMSE) gets lower than 3%.  

Figure 6 shows the RMSE evolution for the six different cases. Notably, for Montpellier 4G, NRMSE drops below 

3% after three iterations at which point we consider that Psol has converged.  

 

Figure 66 - Mean RMSE evolution 

Throughout the iterative process, the solar production profiles gradually converge, as evidenced by the decreasing 

mean RMSE values across different iterations. The RMSE values, all of which are under 5%, indicate a high level 

of agreement between the optimization and simulation models. This suggests that the solar production profiles are 

becoming increasingly stable and consistent between these two models. However, perfect convergence is 

unattainable due to inherent model mismatches (e.g., different thermal loss models) and considering the fact that 
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MILP optimization can give multiple optimal solutions within an optimization gap (set here at 5%). 

New solar fractions from solar production of the last iteration can be computed, presented in the Table 3.  

Tab 3 - New solar fraction after convergence 

H1 3G H1 4G H2 3G H2 4G H3 3G H3 4G 

36.5% 36.4% 37.2% 36.9% 37.8% 36.9% 

 

New solar fractions are slightly higher than the ones obtained from Psol1 (they were around 35-36%). Actually the 

increase in solar production can be attributed to the modified storage behavior that results from considering 

economically optimal profiles. 

Unlike in step 5 where only solar was able to be stored, step 7.1 considers the possibility of storing heat from biomass 

or gas plants (if it is economically profitable), which influences solar production profiles. As a result, charging and 

discharging profiles differs from those obtained in step5 (fig. 7). Storage is not used as expected and is maybe 

oversized as SOC in PERSEE (red continuous line) does not reach 1. In Psol1 (blue line), the storage is charged and 

discharged more frequently and for longer durations than in the full simulations. As a result, during charging periods, 

the maximum temperature is reached more quickly, thereby limiting solar production earlier (Psol1). Additionally, 

with more frequent discharge periods, the flow rate is more often restricted, further limiting solar production. That 

explained the difference of solar production between Psol1 (black line) and Psol7 (the last iteration, red line), as seen 

in Figure 8. 

  

Figure 77 - Comparison of storage state of charge between Persee, Dymola and step 5 (H1 3G) 
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Figure 88 - Solar production rate in kW/m² for the first steps of the methodology and last iteration after convergence for H1 3G. Solar 

production is the max value over a week. (Solar production rate is shown to compare it with Psol0 which is computed with a different 

surface) 

 

Finally, Table 4 sums up the results and the difference on solar production and computation time for the methodology 

and the validation. 

 

Table 4 - Methodology performance on precision and computation time 

 H1 3G H1 4G H2 3G H2 4G H3 3G H3 4G 

Esol0bis [GWh] 260 252 200 192 137 134 

Esol1 [GWh] 230 225 177 172 127 123 

Error on Esol0bis [%] -11,6 -10,8 -11,4 -10,5 -7,4 -8,3 

Esol after convergence [Gwh] 237 232 185 180 131 126 

Error on Esol1 [%] 3,26 3,30 4,25 4,33 3,12 2,06 

Computation time : step 1->6 (sec) 418 394 374 369 348 383 

Computation time: step 7 (sec) 7126 6100 4950 6069 7412 3322 

 

While the average error between annual solar production of Psol1 (with estimated load profiles) and Psol0 

(computation with solar field efficiency) was about -10%, the error between annual production of Psol1 and actual 

annual solar production after convergence is below 3.5%. However, the validation step is computationally intensive 

as it lasts from one hour to two hours, depending on the case. Moreover, the optimization step in PERSEE is costly, 

and we do not reach full optimality, the optimality gap was set at 5%. In contrast, steps 1 to 6 are very fast, with only 

few minutes to success 3 simulations (with simpler model than step 7.2) and an LP optimization. This seems to be a 

good compromise between accuracy and computational time for obtaining hourly solar production profiles and this 

within a methodology that is agnostic to other production sources.  

4. Conclusion & perspectives 
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In conclusion, we present here a comprehensive methodology in order to enhance the pre-calculation of solar thermal 

production, particularly tailored for MILP-based optimization problems in Solar District Heating systems. By 

integrating solar field and pit thermal energy storage Modelica models with a LP optimization model for determining 

storage charging and discharging profiles, our approach offers a systematic framework for improving solar 

production pre-calculation levels. 

These pre-calculated solar production levels are validated through a feedback loop utilizing in six different cases. 

Convergence between an optimization model (PERSEE), which fixed input solar thermal production to establish 

storage setpoints, and simulation models that account for the behavior of district heating plants and its influence on 

solar thermal production. After few iterations, our analysis revealed a final error rate of 3.4% between our pre-

computed solar production and the actual solar production levels demonstrating the effectiveness of our 

methodology. 

This method could be further refined to address model mismatches observed between the simulation and linear 

optimization, particularly in the representation of storage. Temperatures are not taken into account in MILP models, 

as a result, thermal losses are underestimated, and charging flow rates are overestimated. A potential solution could 

be to implement a rolling horizon approach within the validation loop. This approach would continuously update 

storage states in the optimization model based on non-linear simulation results, ensuring that charging flow rates and 

power outputs of other generators are more accurate as they are regularly updated by physical models. Consequently, 

the solar production calculated by Dymola would better account for the behaviors of other generators, leading to 

more precise results and fewer iterations in the validation loop. Such integration promises to refine the accuracy of 

our predictions and optimize system performance, thereby advancing the efficacy and sustainability of Solar District 

Heating systems 
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