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Abstract 

This paper focuses on optimizing a building heating system consisting of a heat pump, photovoltaic collectors 
(PVT), an ice storage tank, and a buffer tank. The aim is to assess the potential of using Mixed-Integer 
Nonlinear Model Predictive Control (MI-NMPC) in a novel heat pump system with dual heat sources—PVT 
collectors and ice storage, along with buffer storage. The paper investigates dynamic interactions, algorithm 
development, and performance evaluation, emphasizing energy efficiency, cost-effectiveness, and demand 
response. We find that control-oriented dynamic simulation accurately captures the system’s behavior. The 
application of NMPC in this context highlights its potential for advanced control strategies in hybrid (switched) 
energy systems. The simulation results demonstrate the improved performance of the system using the MI-
NMPC strategy compared to a reference Rule-Based Control (RBC) strategy. This improvement is reflected 
in a 17.4% reduction in electricity costs over the heating season and a 15.4% decrease in net costs, including 
revenue from selling excess energy to the grid. In addition, the MI-NMPC strategy increases the self-
consumption rate of the generated PV power to 38.2%, further improving the economic and energy efficiency 
of the system. The application of MI-NMPC in this context underscores its potential for advanced control 
strategies in hybrid energy systems, particularly in multi-source heat pump systems. 
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1. Introduction  

To achieve a sustainable future, it is essential to address the limitations of finite resources, especially fossil 
fuels. Integrating renewable energy sources into the building sector is a critical part of this transition. Today, 
buildings account for approximately 30 percent of global final energy consumption and 26 percent of global 
energy emissions (International Energy Agency, 20/23). About 80 percent of households in Germany still rely 
on traditional heating systems based on fossil fuels (Bundesverband der Deutschen Heizung- und 
Warmwasserindustrie, 20/24). Modernization efforts have already helped avoid about 3 million tons of CO2 
emissions by 2023 (Umweltbundesamt, 2023). Achieving greenhouse gas neutrality by 2045 and the interim 
goal of a 65 percent reduction in emissions by 2030 will require a shift to cleaner technologies such as heat 
pumps. Optimizing heat pump performance when combined with renewable energy requires moving beyond 
traditional control strategies. Traditional heat pump controllers, which usually rely on a heating curve, fail to 
consider factors like solar radiation and internal gain (Rolando and Madani, 2013). Complex systems, such as 
heat pump systems with different sources can benefit from advanced methods of predictive control (Parisio et 
al., 2020). In addition, strategies such as MPC can account for variable electricity prices. This offers residential 
customers the opportunity to reduce costs by scheduling operations during periods of lower electricity prices. 

1.1 Solar-assisted heat pump system 

Heating, Ventilation, and Air Conditioning (HVAC) systems play a critical role in indoor comfort and energy 
efficiency. The integration of renewable energy sources with conventional systems, such as solar-assisted heat 
pump (SAHP) systems, has gained attention for its ability to utilize sustainable energy sources (Sezen and 
Gungor, 2023), improve system efficiency (Hengel et al., 2020), and support the transition to greener 
technologies. An effective control strategy is essential to optimize efficiency, reduce operating costs, and 
minimize the environmental footprint, especially in the SAHP system (Perella et al., 2024). In this context, 
MPC, the focus of this paper, has emerged as a promising approach to optimizing the performance of HVAC 
systems. The primary objectives of MPC have traditionally included minimizing energy consumption, 
maximizing comfort, and reducing energy expenses. These goals have been achieved through various methods 
such as optimal operation with storage systems, implementation of zone temperature control, and optimal 
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operation of heat pumps, among others (Drgoňa et al., 2020; Afram and Janabi-Sharifi, 2017; Frison et al., 
2019). 

1.2 Related work 

In Multi-Source Heat Pumps (MSHP) systems, supervisory controllers fall into two main categories: MPC and 
RBC (Pean and Costa-Castello, 2008). These controllers regulate MSHP operation by setting parameters based 
on factors like solar irradiance, temperatures, and energy storage. RBC, though more advanced than traditional 
heating curves, lacks MPC’s clear objective formulation (Pean and Costa-Castello, 2008) and can become 
complex with increasing system components. MPC is attractive in HVAC systems for its ability to integrate 
predictive data from renewable sources and model dynamics, thus improving energy efficiency (Serale et al., 
2018). The concept of optimal control for SAHP systems dates to the 1980s (Molyet et al., 2020). Fiorentini 
et al. (2015) investigated a similar system with PVT collectors, a PCM storage tank, and a heat pump, using 
Hierarchical Model Predictive Control (HMPC) with a suboptimal two-level control scheme: a high-level 
controller for a 24-hour horizon and a low-level controller for 1-hour intervals, which may not always yield 
optimal performance. Hierarchical control strategies are often used in HVAC systems to simplify complex 
problem formulations and handle nonlinearities, splitting the control into a high-level convex problem and a 
low-level heuristic-based problem. Switched dynamics in MSHP systems lead to challenging Mixed-Integer 
Nonlinear Programming (MINLP) formulations, which are managed through techniques like convexification 
and linearization, transforming problems into Mixed-Integer Linear Programming (MILP) formulations (Atam 
and Helsen, 2015). Derivative-free methods such as Genetic Algorithms (GA) (Xia et al., 2018) and Particle 
Swarm Optimization (PSO) (Beghi et al., 2013) are also used. However, GA may yield suboptimal 
performance if mode selection relies on heuristics rather than being optimally chosen. This work focuses on 
addressing MINLP problems in MSHP systems, utilizing the Combinatorial Integral Approximation (CIA) 
technique, previously applied to solar thermal systems (Bürger et al., 2021) and heating networks (Frison et 
al., 2024). 

1.3 Contributions 

This paper presents a detailed analysis of MPC applied to an advanced solar-assisted MSHP system that 
integrates PVT collectors, ice storage, a heat pump, and a buffer storage tank. The optimization of this system 
is complicated by nonlinearities in the model, such as heat transfer interactions between components, hybrid 
behaviors arising from various operation modes, and the phase change properties of ice storage. These 
challenges, typically addressed using discrete variables, result in a complex mixed-integer nonlinear 
optimization problem. To address this, we investigate a real-time control approach using Mixed-Integer 
Nonlinear MPC (MI-NMPC), offering practical insights into its implementation. Our analysis compares the 
effectiveness of MPC with an RBC strategy in minimizing energy costs while maintaining indoor comfort. 
The results reveal that the RBC strategy, as implemented in this study, faces significant difficulties in rule 
selection and is less effective than MPC. 

1.4 Paper outline 

In this paper, we first outline the heating system description, followed by a mathematical model describing 
each component and the interactions between them. Section 3 provides a detailed MPC formulation and our 
solution to the arising optimal control problem. Next, in Section 4, we present and discuss the results obtained 
from simulations.          

2. Model development 

This section begins with a brief description of the system, followed by a detailed mathematical description of 
the system model, which is essential for developing the control strategy. The system under consideration is 
modeled using state-space representation, a method that effectively captures its dynamics. 

2.1 System description  

Figure 1. shows a simplified schematic of an elaborate heating system that integrates photovoltaic thermal 
(PVT) collectors, an ice storage tank, a heat pump, and a buffer storage tank. At the core of this system is a 
brine/water heat pump with a rated thermal capacity of 12.1 kW (B0W35, with a 0°C brine source and a 35°C 

 
B. Nienborg et. al. / EuroSun 2024 / ISES Conference Proceedings (2024)



 

sink). This heat pump consists of four main components: the evaporator, which absorbs heat from the source 
fluid; the condenser, which transfers the absorbed heat to the buffer tank; the compressor, which pumps the 
refrigerant through the system; and the expansion valve, which regulates the refrigerant flow. On the left side 
of the heat pump, referred to as the source side, the evaporator is connected to PVT collectors and an ice 
storage tank. The PVT collectors capture solar energy and convert it into thermal and electrical energy. The 
ice storage tank stores thermal energy. In this work the ice storage is buried underground, and it is not insulated. 
Thus, it can gain heat from the ground or lose heat to the ground. The ice fraction in the ice storage cannot 
exceed 70% in this study. The source side of the heat pump system operates in four different modes, visually 
illustrated in Figure 2. In Mode 1, solely the ice storage serves as the heat source for the evaporator, with brine 
circulating between them. Conversely, Mode 2 activates only the PVT collectors, directing brine circulation 
between the collectors and the evaporator. The Parallel mode (Mode 3) combines both sources, efficiently 
delivering heat to the refrigerant. Lastly, Mode 4 involves the regeneration of the ice storage tank by the PVT 
collectors during periods when the heat pump is inactive. These modes provide versatility in managing heat 
sources for optimal system performance. On the right side of the heat pump, called the sink side, the condenser 
exchanges heat with the buffer tank, which provides heat to the house. The buffer tank plays a crucial role in 
storing and regulating the heat delivered to the house. The heating system in the house, which includes 
radiators, uses hot water from the buffer tank to provide consistent and efficient heating. In cases where the 
heat pump is unable to generate enough heat to reach the set flow temperature of the heating circuit, the 
auxiliary heating system is activated to provide the required heat. 

 

Fig. 1: Simplified scheme of the system 

 

 

Fig. 2: Operating modes of the source side of the system 

2.2 System model 

The system under consideration is modeled using a state space representation. This approach captures the 
dynamics of the system through differential equations that describe the temperatures at different levels of the 
system components. The state variables listed in Table 1, are critical for describing the thermal dynamics of 
the system. The differential equations governing the system states are derived from energy balance principles 
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applied to the system components. 

Tab. 1 Notation of state variables 

Symbol Description Bounds 
  ୡ୭୪_୭୳୲ Temperature of the brine leaving the PVT collectors  [-15, ∞],( ∘C) 
  ୧ୡୣ  The heat stored in the ice storage  [-∞, 15],( ∘C)  
  ୧ୡୣ_୭୳୲  The ice storage hex outlet source fluid temperature  [-∞,∞],( ∘C) 
  ୪ୟ୷ୣ୰,୧  The temperature of layer i in the buffer storage tank  [0,80],( ∘C) 

 

Besides the state variables, the system model includes control variables (see Table 2.), disturbances or time-
varying parameters (see Table 3.) and finally in Table 4. the model parameters (constants) are given. The 
control variables can be divided into discrete ones, which describe the modes of the source side, and continuous 
ones, which describe the power consumption of the compressor and the auxiliary heater.   

Tab. 2 Notation of control variables 

Symbol Type Description Bounds 
  ୣ୪_ୡ୭୫୮ Continous Compressor electrical power consumption  [0, 6000],(W) 

ୟ୳୶  Continous Auxilary heater electrical power consumption  [0, 6000],(W)  

  ୧ Binary Binary variable for mode i  {1,2,3,4} {0,1},(-) 

 

Tab. 3 Notation of time-varying parameters 

Symbol Description 
 ୟ୫ୠ The ambient temperature ( ∘C) 
 ୱ୳୮୮୪୷ The supply temperature of the heating circuit ( ∘C)  

୰ୣ୲୳୰୬ The return temperature of the heating circuit ( ∘C) 
୲୭୲ Solar irradiance (W/ ଶ) 
ୣ୪ The price of electricity from the grid (EUR/W ) 

 ୪୭ୟୢ The thermal load of the building (W) 
 

Tab. 4 Notation constant parameters 

Symbol    Description   Value   Unit 
 ୣ୤୤   Effective thermal capacity of PVT collectors   7879   J/(m ଶ  K)  
 ୦୶   Heat transfer coefficient of heat exchanger   80   W/(m ଶ  K)  
 ୦୶   Heat exchange area of hex   30   m ଶ  
 ୧ୡୣ_ୱ୲୭୰ୟ୥ୣ   Heat transfer coefficient of the ice tank walls to the ground  4   W/(m ଶ  K)  
 ୧ୡୣ   Density of ice   920   kg/m ଷ  
 ୵   Density of water   1000   kg/m ଷ  
 ୧ୡୣ   The latent heat of fusion for ice   335  kJ/kg 
 ୟ୫ୠ_୧ୡୣ   Surroundings temperature (ice tank)   5   °C  
 ୰ୣ୥ୣ୬   Mass flow rate during regeneration mode  0.35   kg/s  
 ୣ୴ୟ୮   Evaporator mass flow   1   kg/s  
 ୱ୲ୡ   Mass flow at PVT collectors  1  kg/s  
 ୧ୡୣ_ୣ୴ୟ୮   Mass flow rate at ice storage   1   kg/s  
 ୡ୭୫ୠ୧୬ୣୢ   Mass flow rate during combined mode  0.5  kg/s  
 ୧ୡୣ, ୧ୡୣ   The radius and volume of tank (ice storage)  1, 5.2  m, m ଷ 
ୠ୰   Brine specific heat capacity   3595  J/kg/K  

୵   Water specific heat capacity   4181  J/kg/K  
 ୠ୰   Brine density   1000   kg/m ଷ  
 ୮୴୲   PVT collector area   40   m ଶ  
 ୠ୳୤୤ୣ୰   Volume of tank (buffer storage)   1   m ଷ  
 ୠ୳୤୤ୣ୰   Height of tank (buffer tank)   1   m  
 ୟ୫ୠ_ୠ୳୤୤ୣ୰   Surroundings temperature (buffer tank)   20   °C  
 ୠ୳୤୤ୣ୰   Heat transfer coefficient (buffer tank walls)   0.4   W/(m ଶ  K)  
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We have developed a control-oriented model that represents the dynamics of the multisource heat pump 
system. This model includes equations for the heat pump, PVT collectors, ice storage tank, and buffer tank. 

For the thermal part of a PVT system, the energy balance on the absorber plate is given by: 

 
ୢ

ୢ୲ ୡ୭୪_୭୳୲
ଵ

஼౩౪ౙ
ୡ୭୪ ଶ ୱ୲ୡ ୠ୰ ୡ୭୪_୭୳୲ ୣ୴ୟ୮_୭୳୲  

 ଷ ୡ୭୫ୠ୧୬ୣୢ ୠ୰ ୡ୭୪_୭୳୲ ୣ୴ୟ୮_୭୳୲  
 ସ ୰ୣ୥ୣ୬ ୠ୰ ୡ୭୪_୭୳୲ ୧ୡୣ_୭୳୲  (eq. 1) 

Where ୱ୲ୡ ୣ୤୤ ୮୴୲  and ୡ୭୪ is the total heat gain: 

ୡ୭୪ ୡ୭୪ ୮୴୲ ୲୭୲                                                                                                                                     (eq. 2) 
Here ୡ୭୪ is the efficiency of collector, which for a flat plate collector can be approximated by the polynomial: 

௖௢௟ ଵ ଶ
்ౙ౥ౢ_౥౫౪ି்౗ౣౘ

ீ౪౥౪
ଷ
ሺ்ౙ౥ౢ_౥౫౪ି்౗ౣౘሻ

మ

ீ౪౥౪
                                                                                (eq 3) 

where ଵ ଶ ଷ are parameters of solar thermal collector (-), (
୛

୏୫మ), (
୛

୏మ୫మ).  

The electrical power generated by the PV system is: 

୮୴_୥ୣ୬ ୮୴ ୮୴୲ ୲୭୲                                                                                                                          (eq. 4) 

The electrical efficiency of the PV panel calculated using the following equation (Zondag et al., 2003):  

୮୴ ଴ ୡୣ୪୪ ୰ୣ୤                                                                                               (eq. 5) 

where ଴ electrical the efficiency of pv at reference temperature ୰ୣ୤ = 25 °C, ୡୣ୪୪ is the temperature of the 
solar cell. 

For the ice storage model, we first define the ice fraction as a sigmoid function: 

 
ଵ

ሺଵ ା ௘మሺ೅೔೎೐ష೅೘ሻሻ
                                                                                                                                   (eq. 6) 

The energy balance equation for the ice storage is: 

 
ୢ

ୢ୲ ୧ୡୣ
ଵ

௠౟ౙ౛ቀ௖౦ା௅౟ౙ౛
ౚ೑ሺ೅ሻ
ౚ೅

ቁ
ସ ୠ୰ ୰ୣ୥ୣ୬ ୡ୭୪_୭୳୲ ୧ୡୣ_୭୳୲  

ଵ ୠ୰ ୧ୡୣ_ୣ୴ୟ୮ ୧ୡୣ_୭୳୲ ୣ୴ୟ୮_୭୳୲  ଷ ୠ୰ ୡ୭୫ୠ୧୬ୣୢ ୧ୡୣ_୭୳୲ ୣ୴ୟ୮_୭୳୲  

୧ୡୣ_ୱ୲୭୰ୟ୥ୣ ୧ୡୣ ୟ୫ୠ_୧ୡୣ                                                                                              (eq. 7) 

To determine the output temperature of the fluid in a heat exchanger immersed in the ice storage system, the 
energy balance is applied. The rate of change of the brine outlet temperature can be expressed as: 
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 ସ
௠ሶ ౨౛ౝ౛౤
ఘౘ౨

ୡ୭୪_୭୳୲ ୧ୡୣ_୭୳୲
ொሶ౤౛౪,ర

ఘౘ౨⋅௖ౘ౨
                                                 (eq. 8) 

Then ୬ୣ୲,୧ is given as follows: 

୬ୣ୲,୧ ୦୶ ୦୶ ୑୘ୈ,୧ , where i refers to the mode of operation, and                                                    (eq. 9) 

୑୘ୈ,୧  

The buffer storage tank is modeled as a stratified tank divided into n (n=4) layers based on Eicker (2003). From 
the energy balance equations applied to each layer, the rate of temperature change for each layer is derived. 
For the intermediate layer i, it is given as:  
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ୢ

ୢ୲ ୪ୟ୷ୣ୰,୧
ଵ

௠ౢ౗౯౛౨,౟௖౭

୪ୟ୲ ୪ୟ୷ୣ୰,୧ ୟ୫ୠ ୪ୟ୷ୣ୰ ୪ୟ୷ୣ୰,୧ ୪ୟ୷ୣ୰,୧ାଵ

୪ୟ୷ୣ୰ ୪ୟ୷ୣ୰,୧ିଵ ୪ୟ୷ୣ୰,୧

ୡ୭୬ୢ ୵ ୪ୟ୷ୣ୰,୧ିଵ ୪ୟ୷ୣ୰,୧ ୪୭ୟୢ ୵ ୪ୟ୷ୣ୰,୧ ୧ାଵ

                    (eq. 10)        

Here ୪ୟ୲, ୪ୟ୷ୣ୰ represent the overall transfer coefficients for lateral-to-ambient transfer and transfer 

between layers, respectively and ୪ୟ୷ୣ୰,୧ .                                              

In total, Equations (1), (7), (8), (10), and three equations for the remaining layers based on Equation (10) are 
the differential equations describing the evolution of the system's states. In these equations, the thermal power 
output of the heat pump is defined by: 

୲୦_ୡ୭୬ୢ ୣ୪_ୡ୭୫୮ ଵ ଵ ଶ ଶ ଷ ଷ                                  (eq. 11) 

For each mode ௜ (  corresponding to mode i  {1,2,3}), it is defined by a function with corresponding inlet 
temperature of evaporator and temperature at sink side This approach avoids double multiplication of the 
binary control variable, so only the outer multiplication of a binary variable is carried out. The condenser mass 
flow is calculated by: 

 ୡ୭୬ୢ
ொሶ ౪౞_ౙ౥౤ౚሺ௧ሻ

௖౭൫∆்ౙ౥౤ౚ౛౤౩౛౨ሺ௧ሻ൯
                                                                                                                  (eq. 11) 

We assume a constant temperature difference between the inflow and outflow from the condenser: 

ୡ୭୬ୢୣ୬ୱୣ୰ ୡ୭୬ୢ_୭୳୲ ୪ୟ୷ୣ୰,ସ                                                                                      (eq. 12) 

In this paper, COP and the maximum thermal output of the heat pump are estimated using a polynomial 
function that depends on the temperatures of the source and sink sides.  

2.3 Assumptions  

To simplify the system model for optimization, several key assumptions were made. First, mass flow rates are 
assumed to be constant across all operational modes, which reduces the number of dynamic variables in the 
system. Additionally, the power of the compressor is treated as a continuous variable, avoiding the 
complexities associated with discrete power levels. Concerning the sink side, a constant temperature difference 
is assumed, and heat losses to the environment from both the evaporator and condenser are considered 
negligible. Ambient temperature around the ice storage and buffer tanks is also assumed to be constant, which 
simplifies the boundary conditions. Furthermore, the densities and viscosities of the brine and water are treated 
as constant, eliminating the need to account for temperature-dependent variations. The model maintains mass 
balance by ensuring that the mass flow rates entering and exiting each control volume are equal. Lastly, both 
the source and sink fluids are considered incompressible, which simplifies the fluid dynamics equations. 

2.4 Boundary conditions 

In terms of MPC, the boundary conditions are given in the form of a disturbance vector, which partially 
includes calculated variables. In our case, ambient temperature, solar irradiance, and the price of electricity are 
predicted variables, while the heating demand, supply, and return temperatures of the heating circuit are 
calculated. The predicted variables are provided for the simulated period. For simulation purposes, dynamic 
pricing is used, with data obtained from the European Energy Exchange (EEX), visually shown in Figure 3. 
The calculated variables in the disturbance vector are derived using the house parameters and the predicted 
variables. 

 

Fig. 3: The price of the electricity used in the simulations 

Since the current project develops the control strategy for a house in Ulm, Germany, the house parameters and 
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the disturbance vector are specific to this house and location. The calculated variables represent the operating 
parameters of a heating system designed to maintain a comfortable indoor environment. This includes 
maintaining an indoor temperature of 20°C. At a nominal outdoor temperature of -13°C, the heating system 
should provide heat to the house, and have a supply (flow) temperature of 45°C and a return temperature to 
the heat exchangers (radiators) of 35°C. These calculations are performed for the actual house with the goal of 
developing a cost- and energy-efficient control strategy. By integrating the predicted variables with the house 
parameters, the control strategy aims to optimize the performance of the heating system while minimizing 
energy consumption and costs. 

3. Model predictive control formulation 

Model Predictive Control (MPC) is a widely used optimization-based control strategy in process engineering. 
This approach uses a mathematical model of the controlled system to predict its future behavior over a finite 
time horizon, known as the prediction horizon. In our system, the mathematical model is defined by the 
differential equations described in the previous section. MPC solves an optimization problem to determine the 
optimal trajectory of the system states, producing control inputs that meet the desired objectives while 
satisfying the constraints.  MPC considers future disturbances, such as weather conditions, demand and 
electricity prices, as detailed in the previous section. Predictions of these disturbances are provided for this 
study. For more realistic results, the control data from the optimization is applied on the system with 
disturbances, including random noise. This approach introduces discrepancies between the model and the 
actual system to better capture real world scenarios. 

3.1 Optimal control problem formulation 

Given the previously defined states ௡ೣ ( ௫ ) as described in Table 1, and the differential equations 
are given in the previous section, the OCP is formulated.  The controls include continuous variables ௡ೠ 
( ௨ ) and binary variables ௡್ ( ௕ ), time-varying parameters ௡೛ ( ௣ ), and slack 

variables ௡ೞ ( ௦ ).  The objective function aims to minimize the cost of electricity consumed, 
maximize the utilization of solar energy, and minimize the use of the auxiliary heating system (see Equation 
13, where Wi is a weighting coefficient for each component of the objective function). Additionally, it includes 
quadratic penalty terms for the slack variables. Constraints are then defined, leading to the formulation of the 
OCP. 

min 
௧௙
଴

ସ
௜ୀଵ ୧ ୣ୪ ୣ୪ ୣ୪,ୡ୭୫୮ ୣ୪,ଶ ୣ୪,ୡ୭୫୮ ௧௢௧

ୟ୳୶ ୟ୳୶ ୱ,୯
ଶ                            (eq. 13) 

s.t.  

଴ ଴                                                                                                                                                 (eq. 14) 
ସ
௜ୀଵ ௜ ௕                                                                (eq. 15) 

ସ
௜ୀଵ ୧                                                                                                                                        (eq. 16) 

୦ୡ_ୱ୳୮୮୪୷ ୪ୟ୷ୣ୰,ଵ                                                                                                           (eq. 17) 

ୣ୪_ୡ୭୫୮ ୲୦,୫ୟ୶                                                                                                           (eq. 18) 

ୣ୪_ୡ୭୫୮,୑୍୒
ଷ
௜ୀଵ ௜ ୣ୪_ୡ୭୫୮                                                                                            (eq. 19) 

ୣ୪_ୡ୭୫୮
ଷ
௜ୀଵ ୧                                                                                                           (eq. 20) 

ୣ୪_ୡ୭୫୮ ସ                                                                                                           (eq. 21) 

lb ub
௡x                                                                                                                                     (eq. 22) 

lb ub
௡u                                                                                                                                     (eq. 23) 

௡b                                                                                                                                           (eq. 24) 

Eq. (14) ensures that the system starts from a specified initial state. The system's evolution is described by the 
differential equations in Eq. (15). The binary constraint in Eq. (16) guarantees that only one mode is active at 
any given time. Eq. (17) involves the tank temperature and supply temperature to consistently meet the house's 
heat demand. By introducing a slack variable, this constraint is relaxed, allowing for more solver flexibility, 
though it results in a minor negative temperature deviation, which is penalized in the objective function. Eq. 
(18) pertains to heat pump operation, stating that the electric power consumed by the heat pump, multiplied by 
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the COP, cannot exceed the maximum possible thermal power output. Eq. (19) defines the minimum input of 
the heat pump in terms of the electric power of the compressor, which is active in one of the operational modes 
when the heat pump is on. Conversely, Eq. (20) ensures that when the heat pump is off, its electric power input 
is zero. Finally, Eq. (21) ensures that when the regeneration mode is active, the electric input to the compressor 
is zero. In these equations, M refers to the Big M method. Eqs. (22, 23, and 24) constrain the lower and upper 
bounds for the state variables, continuous control variables, and binary control variables, respectively. 

3.2 Solution approach 

The following is the methodology used to solve the Optimal Control Problem (OCP) described in Eqs. (13-
24). The OCP includes both continuous and discrete control variables, where the discrete variables are binary. 
This results in a Mixed Integer Optimal Control Problem (MIOCP). To solve the continuous-time OCP, the 
problem is discretized using the direct collocation method, which converts the infinite-dimensional 
optimization problem into a Mixed-Integer Nonlinear Programming (MINLP) problem. While solvers such as 
BONMIN (Bonami et al., 2008) can handle MINLP problems, they are often impractical for real-world 
applications due to their long computation times and the need to satisfy real-time constraints, especially when 
dealing with large problems at each time step. In this study, the Combinatorial Integral Approximation (CIA) 
technique, as described by Sager et al. (2011) and practically demonstrated by Bürger et al. (2021), is 
employed. This algorithm consists of three main steps, which are outlined in Algorithm 1. 

Algo. 1 Algorithm for Solving the MIOCP 

1. Solve the relaxed discretized MIOCP (MINLP) with bi  [0, 1] 

2. Solve the CIA problem to obtain bi  {0, 1} 

3. Solve the discretized MIOCP (MINLP) with bi  {0, 1} 

Output: x, u, b 
 
In the closed loop simulation, the obtained control variables are applied to the system after step 3 in Algorithm 
1. The system is simulated using the fourth-order Runge-Kutta (RK4) integration scheme. To improve 
computational efficiency, warmstarting is used to transfer solution information from the previous MIOCP 
problem to the current one as an initial guess. According to Rawlings et al. (2017), shift initialization is 
particularly beneficial for systems with time-varying parameters in their dynamics. In this technique, the 
solution of the previous MINLP problem is shifted to the next one and adapted to the next time step. We apply 
the shift initialization technique specifically to the relaxed MIOCP problem.  

All the computations were carried out on a desktop PC equipped with an Intel(R) Core(TM) i5-9500 @ 3.00 
GHz CPU and 16 GB of RAM, running on the Windows 10 operating system. The CasADi symbolic 
framework (version 3.6.3) (Andersson et al., 2019), which provides algorithmic differentiation capabilities, 
was used to formulate and solve the (MIOCP) problems. IPOPT (3.14.11) (Wächter and. Biegler, 2006) has 
been used for solving the sparse NLP problems using the linear solver MUMPS (5.4.1.) (Amestroy et al., 
2001). For solving the CIA (Sager et al., 2011) problems, the open-source package pycombina (Bürger et al., 
2020) was used, with MILPs solved using the branch-and-bound algorithm. All code was written in Python. 

4. Results 

4.1 Overview of controllers 

To evaluate the performance of the MI-NMPC strategy, a reference control strategy was needed. This work 
included the implementation of the RBC strategy, which is based on simple heuristics. These heuristics were 
partially derived from observations of the MI-NMPC simulation. The RBC strategy utilizes solar energy when 
it is available. 

4.2 Case study: Heating season simulation 

This section presents and analyzes the outcomes of closed-loop simulations comparing the MI-NMPC strategy 
to the RBC strategy for the heating heat pump system during a heating season. A sampling time for MI-NMPC 
is ΔT = 900 seconds, and RBC inputs are updated every 900 seconds. To begin with, there is a notable disparity 
in the utilization of the auxiliary heater when comparing RBC and MI-NMPC control strategies. Specifically, 
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the MI-NMPC strategy reduces auxiliary heater usage by a factor of 4.3, compared to RBC. In percentage 
terms, the auxiliary heater accounts for 4.3% of the total heat delivered when the system is controlled by the 
RBC strategy, versus only 1% with MI-NMPC.   

 

Fig. 4: Heat flow (in percent, %) from PVT and ice storage in each mode  

Next, Figure 4. demonstrates the amount of heat delivered to the evaporator from each source and during each 
mode when controlled by MI-NMPC and RBC strategies and Figure 5. shows the ice fraction, temperature 
inside the ice storage tank, and the thermal power output of the auxiliary heater throughout the simulation 
period for both MI-NMPC and RBC strategies. The utilization of ice storage is lower for the RBC strategy due 
to the depletion of ice storage, with the ice fraction achieving its maximum allowed value. In contrast, the MI-
NMPC strategy better utilizes ice storage in mode 1, with 24% utilization compared to 4% for RBC. During 
the combined mode with MI-NMPC, the PVT collectors contributed 8% of the total heat, compared to 1% with 
RBC over the entire simulation period. In total, solar thermal energy (PVT) accounts for more than 65% of the 
total heat source for both controllers. This high proportion is likely due to the under sizing of the ice storage 
system for this application. When the ice storage tank is depleted, both strategies employ the auxiliary heater. 
However, MI-NMPC reduces utilization to 0.25 MWh compared to 1.08 MWh for RBC. In addition, the 
economic analysis revealed that with MI-NMPC, the electricity bill is 1776 EUR, with a PV feed-in revenue 
of 233 EUR, resulting in net expenses of 1543 EUR. In contrast, for RBC, the electricity bill is 2151 EUR, 
with a PV feed-in revenue of 327 EUR, indicating less PV self-consumption. Economically, MI-NMPC results 
in net expenses of 15.4% less compared with RBC, further demonstrating its superior cost performance. Figure 
7. illustrates the cumulative cost of electricity for both cases over the simulated period. From an energy 
management perspective, MI-NMPC optimizes the operation of the heat pump, resulting in better energy 
consumption management and significant cost savings. The utilization of solar energy is notably more effective 
with MI-NMPC, showcasing a higher self-consumption of generated PV electricity, with 38.2% compared to 
34.5% for RBC. 

 

Fig. 5: Ice fraction, temperature inside ice storage, activation of auxiliary heating system for both MINMPC and RBC 
controlled cases 
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Fig. 6: Cumulative electricity costs over simulated time 

 

Fig. 7: Simulation Results: Detailed visualization of key parameters and operational aspects under MI-NMPC (left) and RBC 
(right) control strategies. 

To provide a detailed analysis, we look at the results of a one-day simulation. While a general overview of the 
entire heating season was provided, the detailed one-day simulation results offer insights into the specific 
operational differences of MI-NMPC. The sampling time for MI-NMPC is ΔT = 900 seconds, and RBC inputs 
are updated every 900 seconds. Figure 8. presents plot of the simulation results from 00:00 to 00:00 the 
following day for both control strategies, with MI-NMPC on the left and RBC on the right. The first subplot 
displays changes in temperature and solar irradiance levels over the day, with the average ambient temperature 
on the selected day above 0°C. The second subplot shows the temperature of the top layer of the tank and the 
supply temperatures, with both controllers meeting the heating demand. The third subplot illustrates the heat 
pump's thermal output and demand changes over a 24-hour period, with the electricity price on another y-axis. 
The fourth subplot demonstrates that MI-NMPC charges the buffer tank when electricity is cheap or PV 
generation is available, consuming 100% of PV-generated electricity compared to 48.5% with RBC. The last 
subplot illustrates the input temperatures of the evaporator, with MI-NMPC maintaining higher, steadier 
temperatures, leading to fewer mode changes compared to RBC.  

Several observations can be made based on the simulation results. The MI-NMPC strategy effectively meets 
heating demand while minimizing electricity costs, dynamically adapting to changing conditions, and 
optimizing storage utilization. This adaptability shows potential in dynamic pricing scenarios. The study also 
highlights the benefits of combining expertise from different fields to address complex HVAC and energy 
management challenges. 

5. Conclusion 

In conclusion, this study confirms the effectiveness of the MI-NMPC strategy in meeting heating demands 
while minimizing electricity costs. The MI-NMPC strategy significantly reduces auxiliary heater utilization 
and demonstrates superior economic performance, with electricity costs reduced by up to 17.4% over the entire 
heating season and net costs lowered by 15.4%, including income from electricity sold back to the grid. 
Additionally, the MI-NMPC strategy optimizes energy consumption, achieving a higher self-consumption rate 
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of 38.2% for generated PV electricity. The research contributes to control-oriented modeling and 
implementation of MI-NMPC strategies and paves the way for future research in MPC for multi-source heat 
pump systems. Overall, the MI-NMPC strategy shows superior performance in terms of demand satisfaction, 
cost minimization, and energy efficiency compared to the RBC strategy. 
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