
 
DEEP LEARNING TECHNIQUES FOR PREDICTION OF NON-

VISUAL LUMINOUS CONTENT OF CELLULAR OFFICES 

 

Summary 

Simulation evaluation of non-image-forming (NIF) effects of daylight in the built environment necessitates 

using computationally demanding and specialised software. Therefore, this study introduces an alternative 

approach by exploring the potential of implementing Artificial Neural Networks (ANNs) to predict NIF effects 

in unilaterally daylit rectangular office spaces. The ANN models were trained on a dataset generated by 

simulating 349,445 cases of various office geometric configurations, optical material properties, location, sky 

types, and time of day in a year. The Circadian Stimulus model achieved the best ANN regression model 

performance with R2 of 0.965, while the melanopic Equivalent Daylight Illuminance model predicted 

compliance with minimum requirements with 96.7 % accuracy. The results show the practical implications of 

ANN models for fast prediction of NIF effects in the built environment, significantly reducing the time and 

effort required for such evaluations and particularly suited for early-stage design phases. 
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1. Introduction  

Over the past two decades, scientific findings have established that daylight is the primary synchroniser of the 

circadian rhythms in almost all organisms on Earth. The discovery of Intrinsically Photosensitive Retinal 

Ganglion Cells (ipRGC) introduced a new dimension to our understanding of light’s effect on humans. These 

cells contain the photopigment melanopsin, which has a maximum sensitivity to light between 460 and 480 nm 

(Bailes and Lucas, 2013). The impact of light on the circadian system is also substantially influenced by the 

intensity and temporal characteristics of light stimuli. Evaluating light from a non-image-forming (NIF) 

perspective is, therefore, much more complex than evaluating the visible effects of light. Unlike the visual 

effects of daylight, which are usually determined on a horizontal plane at a height of 0.85 m (at the level of 

desk work), the circadian aspects of daylight are evaluated on a vertical plane at 1.2 m above the ground, which 

matches the average cornea height of a seated occupant. Furthermore, the received spectral power distribution 

(SPD) may differ significantly with the orientation of the gaze despite identical positioning in the space 

(Potočnik and Košir, 2021).  

Several metrics have been established in the literature to describe light from the perspective of the circadian 

system. One key metric is the equivalent α-opic lux, which describes light based on the efficacy curves of each 

photopigment and follows a methodology comparable to the calculation of photometric lux. Equivalent 

Melanopic Lux (EML) is commonly used to quantify circadian influence among equivalent α-opic 

metrics(Lucas et al., 2014). This methodology was also adopted by the International Commission on 

Illumination – CIE(CIE S 026/E, 2018). The CIE, furthermore, proposed two additional metrics: the melanopic 

Equivalent Daylight Illuminance (mEDI), which depicts the measured source’s equivalent of non-image-

forming effect relative to the D65 illuminant, and the Equivalent Melanopic Irradiance (EMI), which represents 

a melanopically weighted irradiance. A scientific consensus was achieved in 2022 by Brown et al. (2022) that 

250 lx (mEDI) during daytime indoors is the recommended target quantity of light for optimal physical and 

mental health and performance. Rea et al. (2005, 2010), proposed an alternative method for assessing the 

circadian aspects of light the Circadian Light (CLA). CLA considers the contribution of all photoreceptors 

involved in NIF light perception. CLA of 1000 represents the effect of 1000 lx of standard CIE illuminant A 

on the NIF system. Moreover, the CLA method is directly linked to the Circadian Stimulus (CS) metric, where 

the CS represents the intensity of suppression of nocturnal melatonin. CS of 0.3 means 30 % suppression of 

nocturnal melatonin and corresponds to 275 CLA. The value of 0.3 CS has been confirmed by several studies 

(Figueiro and Rea, 2016; Figueiro, 2017; Figueiro et al., 2018) as effective in reducing fatigue and drowsiness 
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and improving attention and alertness in human subjects. 

To accurately assess the NIF daylight conditions through simulations, software capable of multi-spectral 

simulations is necessary so that the SPD of light can be calculated at a given point. However, established 

approaches and tools for visible light simulations, which calculate light in three channels (R, G, B), are 

inadequate for this task. Currently, LARK (Inanici and LLP, 2015) and ALFA (LLC Sollemma, 2020) are the 

two most used software tools for simulating NIF effects in buildings. Of these, only ALFA utilises the built-in 

libRadtran (Emde et al., 2016) solar radiative transfer library to evaluate spectral radiation data of the climate-

conditioned sky in determination of indoor SPD. Both tools, however, require significant computation time, 

suitable hardware, and high user input. 

Both daylight and circadian simulations are computationally demanding and time-consuming, making them 

less appealing to practitioners who face iterative design on a daily basis (Ayoub, 2020). However, in the last 

decade, we have witnessed the expansion of artificial intelligence (AI), which enables faster acquisition of 

results based on predictive models offered within the vast field of AI predictive techniques. In the past decade, 

machine learning and deep learning techniques, such as Artificial Neural Networks (ANN), have been 

increasingly used in daylighting and lighting applications (Ngarambe et al., 2022). Between 2006 and 2023, 

over 30 relevant studies on machine learning applications in daylighting have been published (Liu et al., 2023), 

pointing to a growing interest in the subject. Machine learning has been employed to predict light levels and 

control various machine-controlled building components such as shades (Xie and Omidfar Sawyer, 2021) or 

automatic control of luminaires (Park et al., 2019) to ensure the appropriate indoor light levels. Machine 

learning and deep learning techniques offer an alternative to traditional simulation methods. They can be used 

to develop models that replace complex simulation tools, particularly in the early design stages. However, 

these approaches rely on robust databases for training the models. Many machine learning techniques are 

currently known, and approaches such as support vector machines – (SVM) are most commonly used in the 

literature for logical control. However, the most commonly used method reported in the literature for predicting 

the luminous environment is back propagation neural network (BPNN) (Liu et al., 2023), which is a type of 

ANN. Liu et al. (2023) have identified BPNN as the most efficient method for the regression of light quantity 

in the built environment. However, these studies addressed only the visual aspects of daylight (Ahmed et al., 

2011), artificial illumination (Bellochio et al., 2011) or daylight in combination with building energy 

performance (Wu et al., 2024). Typically, annual daylight metrics such as Useful Daylight Illuminance (UDI), 

spatial Daylight Autonomy (sDA), and Annual Sunlight Exposure (ASE) are predicted. For example, Han et 

al. (2021) have developed an early-stage design framework for BIM, which, based on the data available in the 

BIM model, can predict the UDI using BPNN techniques. Tests on a single room have shown high accuracy 

of the model with mean average percentage error (MAPE) under 10 %. Similarly, using BPNN, Lin and Tsay 

(2021) have predicted the ASE and sDA of different façade designs using the novel concept of pre-processor 

and intermediary features, which enabled the expansion of the model's application scope. Li et al. recently 

demonstrated (2024) that absolute values of daylight illuminance can also be predicted using ANN. They used 

a Generative Adversarial Network to generate daylight predictions, which saved 73 % of the computational 

time compared to the time required by the simulations with a mean average percentage error of 0.135. 

Although significant advancements have been made in applying ML and ANN algorithms for daylight 

prediction, our literature review revealed that no ML or ANN models currently predict the NIF aspects of 

daylight. This study aims to address this gap by creating a spectral simulation database and developing ANN 

models based on that database. In this study, we aim to develop the following models: 

• An ANN model for predicting Equivalent Melanopic Illuminance – EML regression model. 

• An ANN model for predicting melanopic Equivalent Daylight Illuminance – mEDI regression model. 

• An ANN model for predicting Circadian Stimulus – CS regression model. 

• Classification ANN models for predicting compliance with EDI or CS requirements – CS and mEDI 

classification models.  

2. Methodology 

To achieve the research objectives of environment developing predictive models for NIF environment, the 
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study implemented the following phases (Fig. 1): 1. Simulation model definition; 2. Data generation; 3. Feature 

selection /engineering; 4. ANN development and evaluation. 

 

Fig. 1: Workflow diagram of developed prediction models. 

2.1. Simulation Model Definition 

To provide a universal model, it was first necessary to determine the appropriate input parameters and their 

range for the simulation database upon which the ANN models were trained. Simulation models were created 

upon variation of 15 simulation variables. They can be divided into five main categories (see Tab. 1). The first 

category includes geometric parameters. The prediction models were limited to rectangular floor plans with 

unilateral façade openings. Consequently, the geometry of the space can be described by four parameters: 

depth (a), width (b), and height (h) of the space, as well as Window-to-Wall-Ratio (WWR). The window was 

fixed at a parapet height of 0.85 m, while cardinal directions of east, south, west and north were considered for 

its orientation (O). The last geometric parameter was the view orientation (VO) of the considered hypothetical 

occupant at a corneal height of 1.2 m above the finished floor. The hypothetical occupant positions were placed 

on a grid with 0.5 x 0.5 m spacing and an offset of 0.25 m from the walls. The grid size depends on the variation 

of the a and b parameters (see Tab 1). The second category included optical properties of the considered 

geometric elements. The melanopic reflectivity of walls (Rw-m), ceiling (Rc-m) and floor (Rf-m) were modified. 

Similarly, the melanopic (Tw-m) transmittance of glazing was varied. The third category of temporal parameters 

included the variation of the month (m), days (d) and hours in a day (h), while only the daylit part was 

considered. The last category included climate variables of location and sky type variation. Sky was modelled 

as sunny, hazy, and overcast, and the locations considered were Göteborg (57.71° N, 11.97° E), Frankfurt 

(50.11° N, 8.68° E), Ljubljana (46.05° N, 14.51° E), and Palermo (38.12° N, 13.36° E).  
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Tab. 1: Simulation model variables. 

Group Parameter Min Max Step 

Geometric 

parameters 

Depth - a [m] 3 12 2.25 

Width - b [m] 3 12 2.25 

Height - c [m] 3 12 2.25 

WWR [%] 10 72 varies 

View orientation - VO 

[°] 

0 270 90 

Room orientation - O 

[°] 

0 270 90 

Temporal 

parameters 

Month - m  1 11 2 

Day – d 1 30 15 

Hours in a day - h [h] 7 21 varies 

Optical 

parameters 

Rw-m [%] 10 100 varies 

Rf-m [%] 10 100 varies 

Rc-m [%] 10 100 varies 

Tg-m [%] 10 100 varies 

Group Parameter Categorical input 

Climate 

parameters 

Location Frankfurt, Ljubljana, Göteborg, Palermo 

Sky type  clear sky, hazy sky, overcast sky 

 

2.2. Data Generation 

All potential simulation parameter variations would result in over 1 x 109 cases. Therefore, a random selection 

script was run on all possible parameter permutations to select 349,445 cases to be modelled, simulated and 

included in the simulation database. The required geometric models were created using a custom script in 

Grasshopper and baked into layers in Rhinoceros accordingly. The geometry from Rhinoceros was then fed to 

the multispectral simulations, which were performed using the multispectral raytracing software plugin for 

Rhinoceros ALFA (LLC Sollemma, 2020). ALFA is a well-established and reliable simulation tool for 

multispectral simulations of daylight (Diakite-Kortlever and Knoop, 2021; Potočnik and Košir, 2022). The 

mentioned software uses libradtran (Emde et al., 2016), a radiative transfer calculation software package for 

calculating the spectral sky according to the geographic location. It can calculate four different sky types: clear, 

hazy, overcast and heavy rain cloudy from the atmospheric profile for midlatitude locations. Since ALFA does 

not offer a batch function to simulate numerous study cases, a Python script with PyAutoGUI for graphical 

user interface automation was used to automate simulations by controlling the computer mouse pointer and 

keyboard input. The automation script and the simulation models were deployed to 25 individual computers 

connected to a common network, which simultaneously calculated the simulations and built a database of all 

simulation outcomes. The spectral daylight calculations were performed at the following settings for each case: 

ambient bounces – (ab) 8, limit weight (lw) 0.001 at 200 passes for each simulation. Default ALFA results 

include data such as SPD, EML, and lx. For this study’s ANN regression models, the photopic illuminance 

data was discarded, and SPD was used to calculate the mEDI and CS values. Afterwards, average values per 

case variation and occupant view orientation were calculated for each of the selected metrics. In the end, for 

the classification models, the average values mentioned before were evaluated according to the NIF 

requirement criteria for mEDI of ≥ 250 lx and ≥ 0.3 CS and output into the binary output of 0, meaning it does 

not meet the criteria, and 1, meaning the value meets the criteria.  

2.3. Feature engineering and selection 

In total, 14 properties (see Tab. 1) defined the simulation iterations performed to obtain the simulation data; 

however, for the ANN training, 16 variables were selected/derived (Fig. 2). All the input variables were coded 

as continuous. Sky was transformed from a categorical to a continuous variable where clear = 1, hazy = 0.5 
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and overcast = 0. Room orientation with window facing north equalled to 0°, the east oriented room was coded 

to 90° etc., in a clockwise direction. View orientation was coded so that the 0° view was always facing the 

window with other views coded in 90° increments clockwise accordingly. The location property was coded 

into longitude and latitude. The input combination of longitude, latitude, hour, day and month was used to 

calculate sun azimuth and elevation. Global horizontal EML (GHEML) data were gathered directly from the 

database. Other variables were input directly from the simulation model development. As can be seen in the 

correlation matrix in Fig. 2, no multicollinearity was present in the predictors. A stronger correlation of 0.81 

between sun altitude and GHEML was present, but the GHEML was not dropped since it directly affects indoor 

illuminance – higher/lower outdoor illuminances translate directly to higher/lower indoor illuminances.  

 

 

Fig. 2: Correlation matrix of input variables for ANN models. 

2.4. Neural Network Model Development 

Neural networks are computational models inspired by the human brain’s structure and functioning, designed 

to recognise patterns, learn from data and make predictions. They consist of nodes – neurons that receive input 

data – signal, process it, and produce an output. The nodes are usually connected using connections-weights, 

which are adjusted during learning and influence the signal's strength and direction to the next neuron. The 

connections between neurons are transformed using non-linear transformations. These functions introduce 

non-linearity into the network to learn complex patterns. Two different non-linear transformation functions, 

rectified linear unit function (ReLU) and hyperbolic tangent function (tanh), were explored for the regression 

of ANN models, and three different functions, ReLU, tanh and sigmoid, were explored for the classification 

ANN models.  

The neurons of an ANN model are organised into layers. First is the input layer, which matches the number of 

input variables used for the predictive model. For this study, each developed model had 16 input variables and 

one output layer. In between, an optimal number of hidden layers (hl) was determined for each developed 

model simultaneously with the number of neurons per hidden layer (n). The data input to the model follows 
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the principle of forward propagation, meaning that the input data is fed into the network, and the computations 

proceed layer by layer from input to output, producing a final prediction. To minimise the difference between 

the network’s prediction and actual target values, a backpropagation learning algorithm was used, where the 

principle of gradient descent is used to propagate the error backwards through the network to minimise the loss 

function (i.e. mean average error – MAE for regression tasks and binary cross-entropy for the classification 

tasks) using an optimisation algorithm that updates the model parameters. Two different optimisation 

algorithms were explored in the development of ANNs for this study Root Mean Square Propagation 

(RMSProp) and Adaptive Moment Estimation (ADAM), which are controlled by the learning rate (lr). The 

learning rate determines the step size at each iteration while moving towards the minimum of the loss function. 

Two general types of ANN models for predicting non-visual luminous environments were developed for this 

study. The first model type are regression ANN models, developed for the prediction of EML, CS and mEDI, 

expressing the absolute NIF luminous content. The second type of ANN model was the classification model, 

which predicted whether the average CS and mEDI of the space passed their respective requirements. 

ANN’s ability to learn depends on the structure and other hyperparameters. Furthermore, the optimal 

hyperparameters vary from case to case. There are three most commonly used methods to determine the 

optimal structure of an ANN: random search (James Bergstra and Yoshua Bengio, 2012), grid search (Pontes 

et al., 2016) or hyperparameter optimisation using Bayesian optimisation (Snoek et al., 2012). The first two 

methods are brute force principles, which demand the calculation of a large pool of different parameter 

combinations to find the optimal model performance. In this study, a substantial amount of training data (349 

445) was collected to build the ANN models. Consequently, a large average calculation time was expected to 

be required to train a single ANN model. Therefore, the Bayesian optimisation of hyperparameters was used 

to find the optimal models. Bayesian optimisation uses a surrogate model, a Gaussian Process, to approximate 

the objective function of hyperparameters. It utilises an acquisition function to decide which hyperparameters 

to evaluate next, balancing exploration and exploitation. This process iterates until the optimal 

hyperparameters are found or a stopping criterion is met, making it a highly efficient method for 

hyperparameter tuning in ANNs (Snoek et al., 2012). In the search for the optimal models, we have identified 

six hyperparameters, which would be optimised using Bayesian optimisation. As shown in Tab. 2, the chosen 

hyperparameters to be optimised were: number of hidden layers (hl), number of neurons per layer (n), batch 

size (bs), optimiser (opt), activation function (a_f) and learning rate (lr). The Bayesian optimisation was applied 

to TensorFlow models using the Bayesian optimisation API (Nogueira, 2014). 

Tab. 2: Results of the performed ANN regression models. 

Hyperparameter name Optimization pool 

hl 1 – 6 hidden layers 

n 16 – 128 neurons 

bs 32 – 256 samples 

opt ADAM, RMSProp,  

a_f RELU, tanh , sigmoid 

l_r 0.00001-0.001 

 

Data used for the training of models was split into training, validation and test datasets in a ratio of 70/20/10 %. 

All models were configured to train for up to 300 epochs, with the training process governed by an early-

stopping algorithm. The patience parameter was set to 10 epochs, meaning the algorithm would wait for 10 

epochs for any improvement in the model's validation metric. The training would halt if no improvement was 

observed within these ten epochs. This approach effectively prevented the potential overfitting of the models. 

The algorithm was set to select the best training weights along this process. 

2.5. Model evaluation 

Both regression and classification models were evaluated using commonly used evaluation metrics in machine 

learning. Regression models were evaluated using mean average error (MAE) presented in eq. 1 and coefficient 

of determination (R2).  
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𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1     (eq. 1) 

Classification models were evaluated using Accuracy rating (eq. 2), which is the ratio of correctly predicted 

instances (TP – true positive and TN – true negative values) to the total of instances (including FP – false 

positive and FN – false negative values), the ratio of 1 presents a perfect score. Additionally, models were 

tested using the F1 score (eq. 5), which, in addition to Precision rate (accuracy of positive predictions – eq. 4), 

evaluates recall rate (false positive occurrence – eq. 3), a value of 1 presents perfect F1 score.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (eq. 2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (eq. 3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (eq. 4) 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (eq. 5) 

3. Results 

3.1. Dataset results 

The dataset contains calculated values for the NIF environment simulations obtained from the ALFA 

simulations. Fig. 3, presents the simulation data distribution used to train the model. Most EML values ranged 

from 240 EML (Q1) to 1869 EML (Q3), with a median value of 707 EML and an average of 1788 lx. Similarly, 

the mEDI values ranged from 217 lx (Q1) to 1693 lx (Q3), with a median value of 640 lx and an average of 

1620 lx. The CS values are defined on a logarithmic scale between 0 and 0.7. The database yielded a median 

value of 0.48 CS, with most data falling between 0.29 CS (Q1) and 0.61 CS (Q2) and an average of 0.44 CS. 

 

Fig. 3: Data gathered for the EML, CS and mEDI prediction models. 

3.2. ANN regression model results 

Based on the dataset's calculated NIF values presented in section 3.1, three ANN regression models were 

developed using the Bayesian optimisation process. The optimal hyperparameters and resulting prediction 

accuracy are shown in Tab. 3. The Bayesian optimisation has effectively tuned the models, with the CS 

regression model emerging as the most effective in explaining variance (R2). The CS model reached the best 

performance in terms of R2 score (0.965), indicating it explains 96.5 % of the variance, which can be 

considered an excellent result. In addition, it is also worth mentioning that the CS model required the least 

complex structure among presented models, namely four hidden layers with 96 neurons each were required by 

the optimal CS regression model. In contrast, both EML and mEDI required five hidden layers with 120 and 

123 neurons for EML and mEDI regression models respectively. Despite having a more complex structure, the 

regression models performed excellently with 91.1 % and 91.2 % of variance explained for the EML and EDI 

models, respectively.  

Tab. 3: Results of the performed ANN regression models. 

ANN regression models 

M #f h-l n b_s a_f opt lr MAEtrain MAEval MAEtest R2 
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EML 14 5 120 46 RELU RMSProp 0.001 186.4 188.9 181.1 0.911 

CS 14 4 96 123 RELU ADAM 0.001 0.0117 0.0126 0.0135 0.965 

EDI 14 5 123 49 RELU ADAM 0.0009 163.32 168.13 165.5 0.912 

 

 
Fig. 4: Performance and training process of regression ANN regression models. 

Each regression model shows consistent performance and good generalisation ability, which is expressed by 

slight differences in performance between training (MAEtrain), validation (MAEval), and test (MAEtest) datasets 

(Tab. 3). The small difference in MAEtest is particularly significant, as it describes the model's performance on 

unseen data. If the model were overfit, the MAEtest would result in considerably higher errors. As shown in 

Fig. 4. all models learned well, with good convergence and stable training performance. No major deflection 

of validation loss (orange lines in Fig. 4) can be detected for either of the models, which would indicate 

overfitting. Both mEDI and EML models stopped at the 98th epoch, while the CS model’s training was stopped 

at the 287th epoch. Predicted vs. actual values plots of models in Fig. 4 show the best performance for the 

mEDI regression model in the range between 101 and 102 mel lx and approximately 104 and 105 mel lx. A 

similar is true for the EML regression model. Meanwhile, the CS model shows almost consistent performance 

throughout the entire range, with slightly higher inaccuracy between 0.6 and 0.7 CS.  
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3.3. ANN classification model results 

The optimal model architecture and hyperparameter values for the ANN classification models performed in 

this study are shown in Tab. 4. As seen from the table, these data introduced much less complexity than the 

data for regression models (see Tab. 3) and required considerably simpler model architectures. CS compliance 

classification prediction model required two hidden layers with 32 neurons using a sigmoid activation function 

with a 0.0002 learning rate and a batch size of 32 samples. The model performed excellently, as expressed by 

the 96.7 % accuracy on the training dataset (acctrain). Tests on validation data (accval) and test data (acctest) also 

expressed excellent performances with a difference in performance on validation and test dataset compared to 

the training dataset with only 0.3 percentage points (pp) for each respective dataset. When testing the model’s 

performance by evaluating false positive and false negative predictions, the F1 score showed that the model 

performed at an even higher precision rating of 97 % on the test dataset. mEDI compliance classification 

model’s structure, similar to the CS model, required lower complexity than the regression models to achive 

optimal performance. The optimal architecture of the model was found at six hidden layers with 16 neurons 

per layer at a learning rate of 0.0006 and 123 batch sample size. Similarly, to the CS classification model, 

mEDI used a sigmoid activation function and ADAM optimiser. The model resulted in even higher accuracy 

on the train data set of 97 % with accval and acctest with comparable accuracy (Tab. 4) and the difference to the 

acctrain performance of only 0.1 pp and 0.3 pp, respectively. The F1 score of 97.7 % is almost the same as for 

the CS classification model, indicating robust performance.  

Tab. 4: Results of the performed ANN classification models. 

Classification models 

M #f hl n b_s a_f opt lr acctrain accval acctest F1 

CS 14 2 32 32 sigmoid ADAM 0.0002 0.967 0.964 0.964 0.970 

mEDI 14 6 16 123 sigmoid ADAM 0.0006 0.970 0.969 0.967 0.977 

 
Fig.5 shows the training process of the presented CS and mEDI classification prediction models. Both models 

show good convergence with no possible overfitting of the models, and no notable deflection between the 

accuracy and validation loss was detected with the models. CS model’s early stopping algorithm stopped the 

learning at the 53rd epoch, while mEDI’s early stopping algorithm halted the training at the 74th epoch, thus 

prohibiting possible overfitting of the model. As mentioned before, minute differences in acctrain, accval and 

acctest express that overfitting is not present. Therefore, we can say the model generalises well. 
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Fig. 5: Performance of classification ANN models. 

4. Discussion and Conclusion 

The presented study introduced a novel framework for predicting the NIF indoor potential of unilaterally lit 

spaces. We have successfully developed an NIF simulation database, which served as a training basis for the 

development of predictive Artificial Neural Networks, using backpropagation algorithms. The Bayesian 

Optimisation methodology of hyperparameter optimisation was successfully applied to the framework, where 

model hyperparameters were optimised to develop accurate prediction models of the NIF environment. The 

best-performing model among regression models was the Circadian Stimulus (CS) model, whose predictions 

were able to explain 96.5 % of the variance. The Equivalent Melanopic Illuminance (EML) and melanopic 

Equivalent Daylight Illuminance (mEDI) models also performed well, with over 91 % of explained variance 

in the test predictions. Additionally, two classification models were trained using the ANN methodology. The 

same Bayesian Optimisation algorithm was applied to the models to find the optimal architecture of the models. 

As a result, models could discern the compliance of the average CS or mEDI requirements for healthy luminous 

environments. Both model's accuracy was exerted at over 97 %. 

The results have shown that the NIF properties of indoor environments can be predicted using the principles 

of deep learning, specifically Artificial Neural Networks. Results from the trained models can be used by the 

practitioners for early-stage building design checking in regard to the designed space NIF luminous aspects. 

They can also be used as an informative tool by property managers or occupants to assess the NIF potential of 

their properties without the need for complex and lengthy simulations. Such models, due to their fast 

performance (1 input into ANN predictive model is calculated in 850 μs), could potentially, in future studies, 

be used on annual weather data, which would enable the prediction of yearly NIF potentials of the validated 

unilaterally lit spaces.  

Nevertheless, it is essential to recognise that the study's findings are confined to average room values and do 

not account for spatial variations in the space. Moreover, the current model is restricted to rooms daylit through 

a single window on one façade and rectangular room geometries. Currently, the models were developed based 
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on data from just four locations. For more accurate predictions at other latitudes, it would be necessary to 

include data from additional locations. Future efforts should aim to develop models capable of predicting NIF 

daylight potential based on specific sensor positions within a room, enabling the evaluation of the spatial 

distribution of daylight within the considered space. In addition, further research is needed to assess prediction 

accuracy in spaces illuminated from multiple directions. 
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