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Abstract

The combination of photovoltaic-thermal (PVT) hybrid modules with ground source heat pumps (GSHP) has 
the potential to increase renewable fractions of heating, cooling and power generation in buildings. The 
concept benefits each component in the system; the solar collector can be more efficient; collected heat can 
be stored in the boreholes and recovered in both short and long term; and the elevated temperatures of the 
boreholes improves the efficiency of the heat pump. System optimization is challenging due to the number of 
possible configurations, options in component designs and system control, and the close interrelation of 
performance between components. This study presents several system configurations which are designed to 
be a balance of performance, practicality, and cost. The designs are based on a state-of-the-art literature 
review from multiple fields (solar collectors, heat pump controls, seasonal thermal storage, and solar assisted 
heat pumps) and consultations with heat pump and PVT collector manufacturers.
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1. Introduction

In light of environmental challenges, throughout Europe there is an increased interest in integrating solar 
power with the built environment. At the same time, heat pumps are often considered an environmentally 
sound method for producing heat or domestic hot water and are often part of low-energy or net zero energy
building (NZEB) concepts (Cao et al., 2016). The combination of the two, known as a solar assisted heat 
pump (SAHP), has been investigated for decades (Andrews, 1981a; Freeman et al., 1979; Threlkeld, 1953)
with the idea that the two technologies can complement each other and improve the system as a whole.
Recently, research on the subject has accelerated as environmental and regulatory pressures to reduce energy 
demand in buildings increase.

SAHP systems are complex both in design and operation. For the heat pump, there are multiple potential heat 
sources (air, ground, water, aquifer, solar) and sinks for delivering space heating and domestic hot water (hot 
water tanks, traditional radiators, floor heating, combi-stores, etc.) that result in a multitude of design 
options. Likewise, solar collectors have several designs and configurations, such as thermal and/or 
photovoltaic, insulated (glazed) or not, and liquid or air based. The hydronic connection can be done in 
series, parallel, or both and can also include regeneration of a seasonal thermal store. All together, the 
options are quite broad.

The recently concluded IEA project on solar assisted heat pumps (Solar Heating and Cooling Task 44 / Heat 
Pump Program Annex 38, hereafter referred to as T44A38) resulted in a useful handbook for guiding 
engineers and researchers (Hardorn, 2015). While successful examples of most configurations could be 
found, the most promising solutions tended towards insulated (glazed) solar collectors working in parallel 
with the heat pump. At the same time, the best examples also tended to be the ones where components were 
specifically designed for a SAHP configuration and where the control strategy was well planned.
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The majority of the IEA project research, and the research on SAHP in general, has been done considering 
solar thermal collectors in single family houses (Haller et al., 2014). However, as noted in the handbook, 
photovoltaic/thermal (PVT) hybrid collectors are an interesting prospect that merit further investigation. The 
co-generation of heating, cooling, and electricity can produce more renewable energy per roof area than 
other solar solutions and will likely result in alternative control strategies to thermal-only systems (Dott et 
al., 2012). Multi-family houses (MFH) are often overlooked since 90% of European heat pumps are installed 
in single family houses (EHPA, 2015), even though 40% of Europeans live in multi-family houses (Eurostat, 
2015). Space for heat sources, in particular ground sourced systems, is a common limitation for MFH which 
are often located in denser urban areas. Regenerating the ground with solar heat could make ground source 
heat pumps (GSHP) a possibility for more MFH with limited space (Reda, 2015).

A recently initiated research project at KTH Royal Institute of Technology aims to fill a research gap for 
PVT plus ground source heat pump (GSHP) systems in MFH (Sommerfeldt, 2016). As a first step in the 
project, this study’s objective is to identify PVT+GSHP systems with a high probability of implementation 
through improved performance, ease of integration, and cost efficiency. This is done primarily through a 
state of the art review. However given the relative lack of examples for this type of system, guidance must be 
inferred from similar SAHP systems as well as reviewing the relevant literature of each component.

The application for this system is in heating dominated climates, therefore less inspiration is taken from 
systems with significant cooling loads given their different operating conditions. There is also considerable 
interest in the ability to store the excess of solar energy from the summer to the winter, which is made easier 
with the use of boreholes in the GSHP. Direct-expansion collectors, i.e. those which use the PVT as the heat 
pump evaporator, are not considered due to their relatively low technology readiness for commercial use,
higher cost, and risk for environmental impact. The strengths, weaknesses, and motivations for each design 
will be presented and the study concludes with an outline of the future work planned for the chosen systems.

2. State-of-the-Art Review

The investigation of PVT+GSHP systems dates back to 1981, where series, parallel, and even ground 
regeneration were all considered (Andrews, 1981b). The conclusions were that in no case could PVT be 
economically justified over solar thermal due to the lower thermal efficiency and that all or most of the 
electricity is degraded into heat. It’s important to note, however, that PV modules in 1981 had a typical 
efficiency of 6-10% and cost 25 USD/Wp. Today’s commercial PV modules can routinely be 15% efficient 
for 0.75 USD/Wp (Fraunhofer ISE, 2015).This rapid decline in the cost of PV has significantly altered the 
approach designers take in adding solar generation to buildings, and could have a similar impact in the 
economics of SAHP systems.

Perhaps the most comprehensive review of SAHPs comes from Haller et al. (2014), which summarized the 
studies performed under T44A38 and was then adapted for the SAHP handbook. As previously mentioned,
solar thermal systems working in parallel with heat pumps of any source typically have the best energy 
performance. This correlates with the types of product available on the market, which are dominated by 
glazed solar thermal collectors working in parallel with air or ground source heat pumps (Hardorn, 2015).

Kamel et al. (2015) reviewed the fundamentals of SAHP systems and corresponding collector designs with 
an objective of identifying promising systems for cold climates. Their focus was drawn towards PVT 
collectors, where it was found that most studies consider the collector as the evaporator (direct-expansion) 
and that most SAHP systems in cold climates use liquid as the working fluid. Buker and Riffat (2016)
performed a review of SAHP for low temperature water heating with a focus on system classification and 
performance. They concluded that an optimal configuration cannot be identified for a given climate and 
application due to the wide range of possible system designs and methods for measuring performance, which 
is similar to the conclusions from T44A38. In light of this, they call for developing a standardized method for 
defining performance that can capture all designs.

The work performed under T44A38 is extremely helpful as a foundation, but additional input is necessary to 
guide system design. The remainder of this chapter will review specific PVT+GSHP systems, as well as 
relevant literature which can give important insights.
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2.1. PVT + GSHP Systems
Although not as common as solar thermal systems, there have been several PVT+GSHP studies performed in 
recent years. To be certain, there are several other SAHP oriented studies which have included PVT 
collectors and are not considered here. This is due to the structures of those studies not lending themselves as 
well to be used for system design inspiration.

Bertram et al. (2011) studied the measurements from a single family house near Frankfurt, Germany with 39
m2 of unglazed PVT collectors, a 12 kW GSHP, and 225m (3 x 75 m each) of borehole heat exchangers 
(BHE) for delivering space heating and DHW. Fig. 1 shows how the PVT collectors are connected in series 
to the BHE loop after the heat pump, thus delivering heat to the ground first and then to the evaporator. The
measurements showed that heating demands were underestimated, thus resulting in an undersized BHE.
TRNSYS simulations were used to estimate long term performance. After 20 years, the system without solar 
showed temperature degradation in the BHE whereas the solar equipped system did not, resulting in a 13% 
improvement in the seasonal performance factor (SPF) in year 20. Had the BHE been sized correctly 
however, the improvement would only be 6%. The electrical output of the PVT was also compared to 
uncooled PV modules on the same roof, which showed the PVT to produce 4% more electricity.

Fig. 1: PVT used to boost brine temperatures to the BHE (Bertram et al., 2011)

Another single family house in Montreal, Canada was simulated by Brischoux and Bernier (2016), shown in 
Fig. 2, which included a 140 m BHE with independent dual u-tube circuits, where one tube was connected to 
a 10 m2 unglazed PVT array and the other to a 10 kW heat pump. The annual SPF only increased from 2.82 
to 2.88. The mild performance increase was attributed to the unglazed collectors providing little benefit 
during the heating season, only having a single borehole (such that it could not act as a seasonal store), and 
that the BHE was appropriately sized. The cooled PV cells produced 7.7% more electricity than a traditional 
PV module. It is also worth noting that when the system boundaries are moved to include the PV production
the SPF improves by 18%. This demonstrates the importance of defining relevant performance indicators,
particularly when considering electrical and thermal co-generation.

Fig. 2: PVT+GSHP concept using dual u-tubes in a single family house (Brischoux and Bernier, 2016)
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In Switzerland, a low-exergy building concept presented by Meggers et al. (2012) and Baetschmann and
Leibundgut (2012) includes unglazed PVT collectors combined with a novel dual-depth BHE where there are 
a set of 400 m boreholes for higher temperatures and a set of 200 m boreholes for lower temperatures. As 
shown in Fig. 3, the PVT collector heat can be used directly (in parallel) as a boost for the heat pump (in 
series) or to recharge the boreholes (regeneration). The concept focuses on low temperature differences 
between all components in the building energy system and requires a specially designed low-lift heat pump. 
The simulations suggest that the average coefficient of performance (COP) could be near eight and an SPF 
during the heating season of six. This is about double what is typically expected in European GSHP systems
and highlights the performance opportunities in taking a systems approach to building energy supply.

Fig. 3: Low exergy building concept configuration (center) in heating (left) and cooling modes (right) (Meggers et al., 2012)

2.2. PVT Collectors
PVT collectors come in an extremely varied range of configurations and designs (Michael et al., 2015; Riffat 
and Cuce, 2011; Tyagi et al., 2012; Zondag, 2008). In building applications, flat plat collectors using a liquid 
working fluid are the most common, leaving the primary categorization in designs being between glazed and 
unglazed (Kamel et al., 2015). A glazed collector typically has greater thermal efficiency but lower electrical 
efficiency than unglazed, so the design choice is partially influenced by which energy form is more 
important. In the case of unglazed collectors, there is also the choice to insulate the rear side of the panel.

The operating condition of the collector in conjunction with the GSHP is an important factor since
temperatures can fall outside the typical operating conditions (Haller et al., 2012). In a series or regenerative 
configuration, collector temperatures can be below ambient thus making glazing or insulation a barrier to 
added heat gains from the ambient air. Bunea et al. (2012) tested four collector designs (flat plat, evacuated 
tube, unglazed-insulated, unglazed-uninsulated) with low inlet temperatures. The results show that unglazed 
collectors have higher efficiency during periods of low temperature or irradiance. They also showed that 
condensation gains can be a significant portion of the energy gains during periods of low or no incident 
radiation. This can be particularly helpful during winter months when heating demands are highest, but on an 
annual basis condensation is not likely to be a significant heat source (Bertram et al., 2010). From a product 
reliability standpoint, condensation does need to be attended to.

2.3. Borehole Thermal Energy Storage
Several SAHP studies have shown that borehole regeneration using a single BHE is not energy efficient due 
to the heat dissipating too rapidly in the earth (Bertram, 2014; Bertram et al., 2012a, 2012b; Kjellsson et al., 
2010). Additionally, appropriately sized boreholes (i.e. those which would operate successfully without solar 
regeneration) do not significantly benefit the heat pump’s SPF (Kjellsson et al., 2010; Reda, 2015). In a 
MFH, it is usually expected that there will be multiple boreholes and thus there is the opportunity for 
creating a borehole thermal energy store (BTES). The design of these stores depends on many local factors, 
but some general design principles can be garnered from previous work.
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Most solar BTES have been designed for low mean temperatures (10-40 °C), are usually supplied by glazed 
solar thermal collectors, and are used in combination with heat pumps (Dalenbäck, 1990; Rad and Fung, 
2016). These systems are usually designed for a high solar fraction (50-90%) and often have relatively short 
boreholes (30-65 m) in order to give a compact volume for minimizing heat losses. Thermal stratification, 
which is done radially rather than vertically as in a hot water tank, is helpful for reducing losses and 
improving collector efficiency but can be difficult to achieve in the ground (Dalenbäck, 1990). Nordell and 
Hellström (2000) state that the heat losses, and thus the efficiency, of a BTES depend primarily on the size 
and shape of the store, average cycle temperature (more specifically, the temperature at the boundary of the 
store), and the thermal properties of the ground. The optimal BTES volume is highly dependent on size of 
the heating demand and the desired supply temperature, and the most efficient conditions are with large loads
and low temperatures (Nordell, 1994; Pahud, 2000). It is suggested that only systems with high thermal loads
(greater than 500 MWh/yr) can be built cost effectively (Dalenbäck, 1990; Pahud, 1996).

Drake Landing, a solar community of 52 single family houses in Alberta, Canada, uses flat plate collectors 
with a high temperature BTES that feeds directly to the buildings (McClenahan et al., 2006; Wong et al., 
2006). The BTES is a 35,000 m3 cylinder with 144, 35 m deep boreholes, 2.5 m spacing, six boreholes in 
series, a maximum storage temperature of 80 °C and was expected to have an efficiency of 40%. 
Measurements after five years show that the system is performing very close to the simulations and the 
BTES has an efficiency of 36% with an operating temperature range of 45-70 °C (Sibbitt et al., 2012).

Chapuis and Bernier (2009) examine a redesign of Drake Landing by lowering the store temperature to have 
a range of 10-16 °C and then combine with a GSHP. The solar collector area is reduced by 75% and the 
BTES volume enlarged nearly 300% by increasing the borehole spacing to 4.5 m. The result is greater 
collector efficiency (58% vs. 23%) due to the lower inlet temperatures and reduced heat losses by over 70%. 
This configuration does require significantly more auxiliary energy input (144 vs. 11 MWh) thus lowering 
the solar fraction to 78% from 98%. Unfortunately no economic comparison was performed to compare the 
savings from the solar collectors to the cost of the heat pump and electricity.

In addition to the BTES, Drake Landing uses short term thermal storage in the form of two hot water buffer 
tanks with a total volume of 240 m3. A buffer tank is a common component in a solar thermal system, and
Pohud (1996) identified that a BTES only becomes economically interesting when targeting solar fractions 
higher than 60%. Since some solar collectors are capable of producing heat faster than the BTES can absorb 
it, the buffer tanks can play an important role in the control of the system and increase the efficiency of the 
storage system as a whole. The size of the buffer tank is predominantly linked to the collector area, and less 
so with the heating load type and the size of the BTES (Pahud, 2000).

2.4. Control Strategies
With the increased deployment of solar PV in buildings, there has been a decrease in financial support 
schemes in many countries which make it less profitable to sell overproduced electricity to the grid. It can 
also be the case that high penetrations of PV in a power grid will erode the tariffs during these hours and thus 
reduce profitability. Therefore increasing self-consumption of solar generation using load shifting and/or 
energy storage is likely to be increasingly important in coming years (Luthander et al., 2015).

The use of a heat pump makes it possible to convert excess electricity into thermal energy for use in the 
building later on, and is a concept which has seen increasing research interest. Thygesen and Karlsson (2014)
compared the cost effectiveness of storage using a hot water tank with a direct electric element for DHW to 
lead acid batteries. For an equivalent increase in self-consumption for both technologies (from 56% without 
storage to 88% with) the PV + battery system was found to cost double the PV + thermal storage. Thygesen 
and Karlsson (2016) went on to study a weather forecasting control for the GSHP, foregoing any direct 
electric storage. In this case self-consumption increased from 56% without predictive control to 63% with,
however heat pump demand also increases due to additional running time called for by the controller.

Control systems, particularly with a complex hydronic configuration such as in a PVT+GSHP, can create 
difficult optimization problems. Salpakari and Lund (2016) presented a non-linear, cost-optimization 
algorithm considering appliance load shifting, battery storage, and GSHP control for a single family NZEB 
in Helsinki. The method was compared to a baseline building without controls and found to perform 
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significantly better, with self-consumption increasing by as much as 30 percentage points and annual 
electricity costs decreasing 13-25%. A simpler rule based control algorithm was also tested and increased 
self-consumption, but usually resulted in higher annual costs due to increased storage losses and less efficient 
heat pump operation. The best performance was found with combined thermal and battery storage, however 
investments were not considered in a cost-benefit analysis. Storage was found to be more effective than load 
shifting towards improving PV self-consumption, which correlates with previous work (Widén et al., 2009).

Dar et al. (2014) compared several simple air source heat pump control strategies with PV in Oslo,
considering; self-consumption maximization, electricity cost minimization, and grid import/export 
limitations. For a given system configuration, it was found that self-consumption could be improved by six 
percentage points and as much as 12 points if larger thermal stores were considered. Using spot price signals 
as a control input, the annual electricity cost could be reduced by up to 19%. These two objectives are 
currently at odds with each other, as the lowest electricity prices are currently during the night when there is 
no solar production. It was also shown that SPF of the heat pump was made worse in every case by 10-20%
and that self-consumption by the heat pump is limited to about 35% without the use of seasonal storage.

3. Resulting System Configurations

Prior to the review, there were some design features which were planned to be a part of the system, such as 
the use of PVT modules, a GSHP, and a BTES. The method(s) in which these components would be 
connected and controlled however was unknown. In light of the review, it is clear that the complexity of the 
system makes objectively selecting a single best SAHP design difficult if not impossible. There are some
overarching design principles which guide system design in this study to help identify a configuration. The 
focus is techno-economic, meaning that cost-optimized solutions are important, not only performance 
optimized. This places emphasis on relatively simple components and configurations, which has been 
previously highlighted as a design goal for future SAHP systems (Dalenbäck, 1990).

The design process can begin with the PVT collectors and the decision to use glazed versus unglazed. Glazed 
collectors can be more thermally efficient at the expense of electrical efficiency, but are likely to be restricted 
to the sink side of the heat pump (parallel configuration) due to the risk of condensation inside the collector
from the low inlet temperatures of the BHE loop. Unglazed collectors have the advantage of acting as an air-
to-water heat exchanger during periods of low irradiance, having lower cost due to less materials and can 
more easily integrate with PV systems (physically and aesthetically).

Having access to seasonal storage via the BTES is a major element in the design considerations. The elevated 
temperatures will supply the heat pump higher source temperatures, thus improving efficiency, but not 
without limits. The BTES core temperatures should be planned to be low enough such that it can continue to 
work with the heat pump during the summer when temperatures are highest. Integrating the collectors on the 
source side makes it easier to access the BTES for regeneration. It also has the advantage of being relatively 
easy to integrate into existing systems, as there would be no need to change the hydronic system between the 
heat pump and the building. A series configuration also pairs well with the unglazed PVT collectors, since 
much of the time outlet temperatures from the PVT will likely be too low to supply the building directly.

Considering the economic goals of the system and the inclusion of a seasonal BTES, a series/regenerative 
configuration is chosen for this project. Not using the solar energy directly may lead to a less energy or 
exergy efficient system (Haller and Frank, 2011), however it may be that the cost efficiency will be greater. 
The integration of the PVT collectors to the BHE loop remains an open question, and there are several 
possibilities to do this that are difficult to rank without more information. Therefore the following four 
design concepts will be simulated to determine performance and cost effectiveness; PVT-in-loop, heat 
exchanger, buffer tank, and dual u-tube.

The first concept, shown in Fig. 4 places the PVT collector in the same hydronic circuit as the connection 
between the heat pump and BHE, similar to the system presented by Bertram et al. (2011). The strengths of 
this configuration are its simplicity and low cost, where only one three-way and one check valve are 
required. The weaknesses include lack of control over flow rate or fluid properties, as the PVT collector is 
directly bound to the requirements of the heat pump and BHE.
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Fig. 4: Concept One using PVT in the BHE loop to boost incoming fluid temperature to the HP

There are two additional components that appear in every concept; batteries and an inline heater connected to 
the BTES. These allow the storage of electricity with the batteries being short term chemical storage and the 
BTES being long term thermal storage. While there may be large amounts of exergy destruction by heating 
the BTES with electricity, the heat is reducing the need for electricity from the heat pump in the winter thus 
acting as a method for storing electricity rather than simply converting it to heat. It can also test the cost 
efficiency of the BTES in comparison to selling electricity to the market.

Another consideration for all concepts is the connection point for the PVT collectors, which can go in either 
the supply or return lines from the BHE to the heat pump. Thermodynamically it would be the most logical 
to use the heat to boost the temperature supply into the heat pump, however they have a source temperature
limit that could cause faults. Therefore a pre-study will need to be made to determine the appropriate 
connection point, which will then be used in all concepts.

Concept two uses a liquid-to-liquid heat exchanger to integrate the PVT collectors, as shown in Fig. 5. This 
configuration overcomes a weakness of concept one by allowing the PVT circuit flow rate to be controlled 
independently from the BHE circuit. It also allows for a separate working fluid, which may be important in 
later years when the BTES is fully charged and it’s possible to reduce the fractions of antifreeze in the BHE 
circuit. The primary weaknesses are the additional cost of a heat exchanger and the higher pumping demands 
due to the additional pressure drop. From a practical standpoint, the integration of this concept into the 
physical system should be similar to concept one and does not require a prohibitive amount of space.

Fig. 5: Concept two using a liquid-to-liquid heat exchanger to boost incoming fluid temperatures to the HP
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In concept three, the heat exchanger in concept two is replaced with a buffer tank as shown in Fig. 6. This 
concept’s strength is that it could result in more efficient use of the solar heat by avoiding delivery to the 
BTES until there is an excess of solar energy beyond daily use, as recommended by Pahud (1996). The 
control of the buffer may require forecasting to decide when to release the heat into the BTES. This concept 
has the potential for improved control options over concept two, but has the weakness of the cost and space
for space for the tank.

Fig. 6: Concept three using a storage tank to boost incoming fluid temperatures to the HP

Concept four, shown in Fig. 7, uses the BHE as the heat exchanger for the PVT collectors and the heat pump
via a dual u-tube, similar to Brischoux and Bernier (2016). This configuration has the same strengths as
concepts two and three, where independent working fluids and flow rates can be used. It also removes the 
need for valve control strategies since the circuits are completely separate and can be controlled 
independently. The greatest weakness for this concept is that it applies predominantly to new systems, since 
many existing systems only use a single u-tube and adding a second tube may be prohibitively expensive or 
impractical. There will also be high pumping losses in the PVT circuit since it includes the BTES as well.

Fig. 7: Concept four using dual u-tubes as a heat exchanger and regeneration method

Recent market trends have seen new solar thermal system installations decline with the rise of solar PV, 
particularly on rooftops. PVT collectors have traditionally been used to create DHW directly but have never 
had a significant market share. In this application it is interesting to ask if the additional thermal energy 
collection justify the costs. Therefore a fifth concept, shown in Fig. 8, is considered which only uses PV 
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collectors that are coupled to the BTES. This concept tests the marginal value of adding a thermal component 
to the PV collectors and the associated hydronic complexities. In this concept, the battery acts as short term 
storage, similar to a thermal buffer tank, while the BTES is used as long term seasonal storage.

Fig. 8: Concept only considering PV and borehole regeneration

4. Discussion

A significant challenge when reviewing SAHP systems, particularly when comparing thermal to PV systems, 
is the lack of consistency between metrics used in studies (Buker and Riffat, 2016). Many authors use 
traditional key performance indicators (KPI) such as SPF, solar fraction, self-consumption, self-sufficiency, 
or renewable fraction, however the system boundaries are often not defined or do not capture the 
performance of the entire system as it relates to the owner. For example, if the indicator boundaries are 
limited to the heating system, the value of the PV generation to the rest of the building loads can be missed.
The traditional indicators are still valuable to SAHP analysis, however care must be taken not to emphasize 
any particular one to the detriment of the others (Dar et al., 2014).

An extensive discussion surrounding the selection and use of KPI can be found in the SAHP handbook 
(Hardorn, 2015), and the top level systems definition of SPF is given by eq. 1. In the numerator is the total 
space (QSH) and domestic hot water (QSH) energy supplied to the building. The denominator includes the
electricity used by the heat pump (EHP), all auxiliary heaters (EAUX,H), and all auxiliary pumps (EAUX,P). One 
missing factor in this definition is electricity supplied from PV. In PV-HP literature there is often a focus on 
self-consumption and the definition for SPF is the same as in a non-solar HP, however as noted earlier, PV 
generation can make a significant improvement to SPF (Brischoux and Bernier, 2016).

, = +[ + , + , ] (eq. 1)

In a SAHP with PVT cogeneration, the handling of the electricity generation raises interesting questions 
about KPI. What fraction of PV generation should be applied to the heat pump? Is it necessary to make such 
a distinction in SPF? Are there other KPI (or combination of indicators) which would be more useful to the 
owner? Environmental or economic indicators can often be important to the purchaser of energy related 
equipment. In an economic KPI, it is important to capture the impact PV generation has on the entire 
building load and not limit it to the SAHP system. It is also necessary to capture all costs and benefits in 
order to make a fair comparison between options. Further research and careful consideration will be made 
towards the selection of KPI to ensure fair and relevant evaluation of the PVT+GSHP systems.
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5. Summary and Future Work

Solar assisted heat pumps are complex in design, operation, and analysis. The review presented in this paper 
briefly captures some of the facets to be considered in the design of a PVT+GSHP system, including; 
collector design, borehole thermal energy storage, hydronic configurations and control strategies. The four 
PVT system concepts presented are focused on simplicity and practicality, and are of the series/regenerative 
configuration with various integration methods for the PVT into the BHE hydronic loop. They are designed 
primarily to maximize cost efficiency with the expectation that energy or exergy performance may not be as 
high as other designs. The marginal benefit of collecting heat from a PV array will also be tested by 
simulating a PV-only system which can also feed into the BTES.

The next steps in the project are to create system models in TRNSYS, finalize the remaining questions about 
system configuration, and identify appropriate ranges of component sizes. Input from component 
manufacturers for PVT collectors, heat pumps, and boreholes will be used to ensure that the practical limits 
of the components are respected and to identify opportunities for designs specific to this application. Care 
will be taken to ensure that most representative costs are used for the installed system, which is particularly 
important given the uniqueness of the concept. Control strategies will also be tested to optimize the use of 
the batteries, heat pump compressor speed, circulation pumps, etc. Effort will also go into defining 
meaningful KPI to evaluate and optimize systems that are relevant to the system owners. The primary area of 
application is in the Nordic region, therefore building construction, usage, and GSHP system designs will be 
taken from regional norms.
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