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Abstract 

We propose a building HVAC system, integrating local energy production and storage, together with a model based 
controller. The heating system integrates several local heat production and storage devices and multiple fluid circuits 
at different temperatures to minimize entropy production through mixing. The controller uses a model of the system 
and predictive knowledge of demand and weather information to minimize electrical energy import, while 
maintaining thermal comfort by solving mixed integer optimization problems online. Time-varying and unknown 
system parameters are estimated and adapted online, using an unscented Kalman filter. The adaptation greatly 
reduces modeling effort and maintenance cost. The proposed setup is tested in a co-simulation, using a physical 
(modelica-) model of the building and energy system as well as realistic weather and demand data. Our system 
delivers nearly seven times more energy in the form of heat, than it needs to import (electrical) energy from external 
sources. 

Keywords: PVT, MPC, Unscented Kalman Filter , Modelica. 

 

1. Introduction 
A HVAC system consists of the physical heating system and – equally important – an optimal control policy. The 
heating system proposed here integrates several local heat production and storage devices, operating on different 
time scales, including an ice storage. We use three separate fluid circuits at different temperatures to minimize the 
entropy arising from mixing temperature levels, and heat pumps to lift heat from one temperature level to another. 
For the control task, we use the framework of model predictive control (MPC). MPC offers a systematic framework 
to minimize the electrical import of energy while meeting heat demand. Its usage in building automation has been 
studied by e.g. (Fux, 2013), (Wimmer, 2004), (Bianchi, 2006), mostly focusing on the task of efficient generation of 
heat as well as (Sturzenegger, 2014), focusing on the consumer side i.e. reducing heat consumption, while 
maintaining  comfort.  

The rising share of electric power that comes from renewable and distributed energy sources fluctuates in a less 
predictable way, than energy from a “classical” power plant. Multiple demand response programs have been 
developed and implemented by grid operators during the past years (Ashouri et al., 2015). MPC is well suited to shift 
the load from a local energy management system towards low-tariff periods, due to the capability to include electrical 
cost and weather forecasts. 

MPC requires a thermodynamic model of the heating system. The amount of work for tuning such a model can be 
prohibitive (Serale et al., 2018) to the application of MPC in practice. We integrate a framework for on-line 
estimation of states (Tab. 2) and unknown or time varying parameters (Tab. 4) of the energy supply model, based on 
an Unscented Kalman Filter (UKF), (Julier et al., 1995), leading to the Parameter-Adaptive Energy Supply Model. 
Adaptive MPC schemes for building control in which both the unknown parameters and unmeasured states are 
estimated using UKF or Extended Kalman Filters (EKF), (Peter S. Maybeck, 1979) and (Peter S. Maybeck, 1982), 
were investigated in (Fux, 2013), (Maasoumy et al., 2014) and (Radecki and Hencey, 2015). The two latter compared 
EKF and UKF and both concluded, that UKF is superior. A particularly beneficial feature of UKF is the fact that it 
can handle a nonlinear model, while the model must be linearized for EKF. Detailed investigations of UKF can be 
found in (Haykin, 2001). 

The optimization problem itself is a mixed integer linear optimization problem (MILP), which must be solved once 
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per time-step (cf. sec. 3.1). In our case we must handle a MILP with 36 integer and 112 continuous decision variables. 

2. The HVAC system  
The investigated system, integrates a small-scale, grid-connected photovoltaic-thermal collector (PV/T), two heat 
pumps (HP) charging two thermal storages and supplying energy for surface heating (low temperature), radiator 
heating (high temperature) and Domestic Hot Water (DHW). The consumers are two single family houses with a 
heating demand of ~45 kWh/(m2 a) and ~100 kWh/(m2 a) respectively, denoted SFH45 and SFH100. Fig. 1 shows a 
simplified schematic of the installation which integrates 

• storage devices: ice storage (very long time constant, high capacity, low power, low temperature level) earth 
tubes, domestic hot water storage, room heating storage (short time constant, low capacity, high power, high 
temperature)  

• local energy production: photovoltaic thermal hybrid (PV/T) collector  
• fluid circuits operating at different temperatures levels with heat pumps to lift heat between temperature 

levels 

Unlike geothermal probes, which could also be integrated into the system, the ice storage system does not require 
planning permission. It provides a reliable, economic and environmentally compatible heat supply to buildings of 
almost any size, from single-family homes to large residential or commercial buildings. The ice storage is also used 
for natural cooling in the summer months. 
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Fig. 1: Simplified schematic of the thermohydraulic system, consisting of fluid circuits, two heat-pumps (HP1, HP2), hot water 

storages (DhwSt, RhSt), Earth-Tubes, Ice Storage, PV/T collector and two single family homes as consumers. 

The consumers,  SFH45 and SFH100 along with general boundary conditions such as climate, domestic hot water 
load and properties of ground and boreholes for the simulation of ground heat exchangers are defined in (Ralf Dott, 
2014) and (Haller et al., 2013). We use these definitions for the physical modeling of the energy plant and the building 
in Modelica. This ensures, that the results are directly comparable to other studies. The boundary conditions, as 
shown in Tab. 1, will – for the sake of comparability – not be changed, even if a change would further increase the 
efficiency of the MPC. 

PV cell’s electrical efficiency exhibits linear temperature dependency (Dubey et al., 2013), (Carigiet et al., 2014). 
(eq. 1) shows the electrical efficiency of a PV cell. 𝜂𝜂𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the module's electrical efficiency at the reference 

temperature 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 and at solar radiation of 1000 𝑊𝑊
𝑚𝑚2 . 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟 = 0.0043 1

K
 is the temperature coefficient and 𝑇𝑇𝑐𝑐 the 

actual  temperature of the cell.  

𝜂𝜂𝑐𝑐 = 𝜂𝜂𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟(1 − 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟(𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟) ) (eq. 1) 

In the proposed integration the PV/T panel’s main purpose is to regenerate the heat sources (ice storage and earth 
tubes) during the summer season. Because the thermal energy is led to the cold sources of the heat pumps, the 
temperature of the PV cells is kept below the reference temperature 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 , which increases electrical efficiency by 
about 3%.  

The main components and some chosen key figures of the heating plant are: 
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• Brine to water HP with nominal heat output 3.93 kW at B0/W35 with a Coefficient of Performance (COP) 
of 4.65. 

• Brine to water HP with nominal heat output 7.07 kW at B0/W35 with a COP of 4.65. 
• Room heating storage tank (RhSt)  3000 liter, domestic hot water tank (DhwSt)  2200 liter  
• Ice storage (IceSt) 84 m3  
• Two earth tubes length 60 m  
• Photovoltaic thermal hybrid solar collector (PV/T) 40⋅1.641 m2, south facing 

3. Parameter Estimation and Control 
Fig. 2 shows the co-simulation setup. For the simulation environment, shown in the upper half, the open-source and 
free Modelica (Fritzson and Engelson, 1998) libraries and the Functional Mockup Interface (FMI) were used. Both 
are results from the IEA EBC project 60 New Generation Computational Tools for Building & Community Energy 
Systems (Wetter and van Treeck, 2017). The parameter identification and online optimization scheme are 
implemented in MATLAB. The optimization problem (including the model) is formulated in MATLAB, using the 
YALMIP toolbox (Lofberg, 2004) and solved by the Gurobi solver (Gurobi Optimization, LLC, 2018). 

Matlab / Simulink

Modelica

Model Predictive 
Controller

Modelica plant 
model 

current  disturbance
-weather 
-solar irradiation
-temperatur

Unscented  Kalman 
Filter

measured statespredicted  disturbance
(weather forecast)

estimated states 
and parameters

seasonal 
operation mode

 
Fig. 2: Co-simulation setup. The upper half represents the simulated environment including heating system and consumers, the lower 

part represents the controller and state/parameter identification algorithms. The MPC contains a simplified plant model. 

 
Tab. 1: Boundary conditions for simulation according to (Ralf Dott, 2014) and (Haller et al., 2013) for moderate climate of 

Strasbourg. 

Parameter Unit SFH45 SFH100 
Space heating demand kWh/a 6’500 14’000 
DHW demand kWh/a 2’100 2’100 
Heating demand at design conditions kW 4.1 7.4 
Design supply and return temperature of the heating system °C 35/30 55/45 

 

3.1 Model Predictive Control 
(eq. 2) is the Mixed Integer Linear (MILP) Program formulation of the optimization problem 

 

𝐽𝐽0→𝑁𝑁∗ (𝑥𝑥0,𝑈𝑈0→𝑁𝑁 ) = max
𝑈𝑈0→𝑁𝑁

�𝑞𝑞𝑤𝑤(𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘, 𝑏𝑏𝑘𝑘 ,𝑑𝑑𝑘𝑘)
𝑁𝑁

𝑘𝑘=0

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡               𝑥𝑥𝑘𝑘+1 =  𝐹𝐹𝑤𝑤(𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘 , 𝑏𝑏𝑘𝑘,𝑑𝑑𝑘𝑘),       𝑘𝑘 = 1, … ,𝑁𝑁 − 1  

                                    ℎ(𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘, 𝑏𝑏𝑘𝑘 ,𝑑𝑑𝑘𝑘) ≤ 0,                𝑘𝑘 = 1, … ,𝑁𝑁 − 1 

                                    𝑥𝑥0 = 𝑥𝑥(0) 

(eq. 2) 
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with states 𝑥𝑥𝑘𝑘 , control inputs 𝑢𝑢𝑘𝑘, input sequence 𝑈𝑈0→𝑁𝑁 = [𝑢𝑢0, … ,𝑢𝑢𝑁𝑁], discrete variables 𝑏𝑏𝑘𝑘, disturbances 𝑑𝑑𝑘𝑘, such 
as weather and electricity costs, and the planning horizon 𝑁𝑁. The stage cost function 𝑞𝑞𝑤𝑤 (cost for one time step) and 
the possibly nonlinear system dynamics 𝐹𝐹𝑤𝑤, both depending on a set 𝑤𝑤 of system parameters. These parameters are 
identified with the UKF (see 3.2). The function ℎ encodes the system constraints. 

The stage cost function 𝑞𝑞𝑤𝑤(eq. 3) consists of two parts, the energy 𝐸𝐸𝑒𝑒𝑙𝑙𝑖𝑖 = 𝑃𝑃𝑒𝑒𝑙𝑙𝑖𝑖𝑑𝑑𝑑𝑑 with the energy cost 𝑐𝑐𝑒𝑒 and the 
tracking term with the temperature set-points 𝑇𝑇𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖  and weights 𝐶𝐶𝑖𝑖. The control objective is to keep the temperatures 
at the top of the storages above 35°C and 55°C respectively with as little imported electrical energy as possible. 
Electrical power  used in the system, e.g. for operating heat pumps is counted positive, electric power which is 
produced by the PV/T has a negative sign. Only the positive part of 𝐸𝐸𝑒𝑒𝑙𝑙𝑖𝑖  is considered in (eq. 3), i.e. exporting 
electricity is cost neutral.  

Tab. 2: The MPC (high-level controller) has the following variables. States x, control inputs u, and disturbance. 

Variable Description  Range/Unit 
x1, x2, x3, x4 Temperature of the RhSt °C 
x5, x6, x7, x8 Temperature of the DwSt °C 
x9 Temperature of the PV/T °C 
uHP1  HP 1 On/Off °C 
uHP1Tem HP 1 supply temperature {0,1} 
uHP1b Decision, loading RhSt or DwSt °C 
uHP1 HP 2 On/Off {0,1} 
uHP2Tem HP 2 supply temperature °C 
ddist Internal gains (unkown)  W/m2 
dTAmb Ambient temperature °C 
dsolar 

 

Solar radiation  W/m2 
 

𝑞𝑞𝑤𝑤(𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘 , 𝑏𝑏𝑘𝑘,𝑑𝑑𝑘𝑘) =  𝑐𝑐𝑒𝑒 ⋅ max��  𝐸𝐸𝑒𝑒𝑙𝑙𝑖𝑖
𝑖𝑖

(𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘, 𝑏𝑏𝑘𝑘 ,𝑑𝑑𝑘𝑘), 0�
�������������������������

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ �  𝐶𝐶𝑖𝑖 ⋅  (max(𝑇𝑇𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖 − 𝑥𝑥𝑖𝑖  , 0))
𝑖𝑖�������������������

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 
(eq. 3) 

 

3.2 State and parameter estimation with an Unscented Kalman Filter 
The accuracy of the model is fundamental for the performance of the MPC. Since each building and heating system 
is unique, a new model parameter set needs to be identified to represent its behavior. When retrofitting existing 
buildings, in most cases no Building Energy Model (BEM) will be available, and simulation based parameter tuning 
is therefore not possible.  

Adaptive MPC schemes for building control in which both the unknown parameters and unmeasured states are 
estimated during operation, using EKF and UKF were proposed in (Fux, 2013), (Maasoumy et al., 2014) and 
(Radecki and Hencey, 2015). Simulations using these schemes the estimates of the unknown building parameters 
typically converge after a couple of weeks of operation. The initialization of a Kalman filter’s parameters is still 
delicate and has an impact on the rate of convergence. In order to obtain the best initial parameter value, Maasoumy 
(Maasoumy et al., 2014) first performed an offline parameter identification based on historical data.  

The convergence of EKF/UKF depends on careful choice of design matrices, in particular the initial covariance 𝑃𝑃0, 
process noise covariance 𝑅𝑅𝑘𝑘

𝑣𝑣 and measurement noise covariance 𝑅𝑅𝑘𝑘
𝑛𝑛. These matrices are often chosen arbitrarily 

(Schneider and Georgakis, 2013). We propose to use a time-dependent covariance 𝑅𝑅𝑘𝑘
𝑣𝑣 (eq. 5). This reduces the 

number of parameters to be initialized, since we may set 𝑅𝑅0𝑣𝑣 = (θ−1 − 1)𝑃𝑃0, where 𝑅𝑅0𝑣𝑣 and 𝑃𝑃0 are matrices and θ is 
a number (Haykin, 2001). For a consistent choice for the initial state covariance 𝑃𝑃0 and initial state 𝑥𝑥�0, we follow the 
procedure proposed in (Schneider and Georgakis, 2013).  

The UKF was introduced in 1995 (Julier et al., 1995). A refinement for dual state/parameter estimation and for joint 
state/parameter estimation is given in (Wan and Merwe, 2000). We use the joint UKF framework to simultaneously 
identify states and parameters, where the signal-state 𝑥𝑥𝑘𝑘 and parameter 𝑤𝑤𝑘𝑘 vectors are concatenated into a single, 
joint state vector 𝑥𝑥�𝑘𝑘 = (𝑥𝑥𝑘𝑘 𝑤𝑤𝑘𝑘)𝑇𝑇which is propagated according to (eq. 4) with control inputs 𝑢𝑢𝑘𝑘, process noise 𝑣𝑣𝑘𝑘, 
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measurement noise 𝑛𝑛𝑘𝑘, lumped parameter model 𝐹𝐹(𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘 ,𝑤𝑤𝑘𝑘) and the measurement function 𝐻𝐻(𝑥𝑥𝑘𝑘), which is trivial 
in our case, since we can directly measure the temperatures. 

𝑥𝑥�𝑘𝑘+1 = �
𝑥𝑥𝑘𝑘+1
𝑤𝑤𝑘𝑘+1� = �𝐹𝐹(𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘 ,𝑤𝑤𝑘𝑘)

𝑤𝑤𝑘𝑘
� + 𝑣𝑣𝑘𝑘    

𝑦𝑦𝑘𝑘 = 𝐻𝐻(𝑥𝑥𝑘𝑘) + 𝑛𝑛𝑘𝑘 = (𝑥𝑥𝑘𝑘) + 𝑛𝑛𝑘𝑘 
(eq. 4) 

Mean and standard deviation of the process noise 𝑣𝑣𝑘𝑘 and measurement noise 𝑛𝑛𝑘𝑘 can be time varying. The 
measurement noise covariance 𝑅𝑅𝑘𝑘

𝑛𝑛 = 𝐸𝐸[𝑛𝑛𝑘𝑘𝑛𝑛𝑘𝑘
𝑇𝑇] can be set to a constant diagonal matrix (e.g. 𝑅𝑅𝑘𝑘

𝑛𝑛 = 𝐼𝐼). The process 
noise covariance 𝑅𝑅𝑘𝑘

𝑣𝑣 = 𝐸𝐸[𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘
𝑇𝑇] needs more attention, as it has a key influence in the tracking performance of the 

algorithm (Haykin, 2001). We set  

𝑅𝑅𝑘𝑘𝑣𝑣 = (θ−1 − 1)𝑃𝑃𝑘𝑘 
 

𝑃𝑃𝑘𝑘 = 𝐸𝐸 ���
𝑥𝑥𝑘𝑘
𝑤𝑤𝑘𝑘� − �𝑥𝑥�𝑘𝑘𝑤𝑤�𝑘𝑘

�� ��
𝑥𝑥𝑘𝑘
𝑤𝑤𝑘𝑘� − �𝑥𝑥�𝑘𝑘𝑤𝑤�𝑘𝑘

��
𝑇𝑇
� 

(eq. 5) 

 

with �𝑥𝑥�𝑘𝑘𝑤𝑤�𝑘𝑘
� = 𝐸𝐸 ��

𝑥𝑥𝑘𝑘
𝑤𝑤𝑘𝑘�� and a forgetting factor θ ∈ [0,1]. This provides an exponentially decaying weighting on past 

data (Haykin, 2001).  

The function 𝐹𝐹(𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘,𝑤𝑤𝑘𝑘) can be nonlinear. The UKF propagates the probability distribution of 𝑥𝑥�𝑘𝑘 through 
𝐹𝐹(𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘,𝑤𝑤𝑘𝑘). To do so, a set 𝜒𝜒 of 2𝐿𝐿 + 1 sample points with = dim( 𝑥𝑥�) , called sigma points are chosen, propagated 
via  𝜒𝜒𝑘𝑘+1 = 𝐹𝐹(𝜒𝜒𝑘𝑘 ,𝑢𝑢𝑘𝑘) and the mean and covariance of 𝑥𝑥�𝑘𝑘+1 is calculated. (eq. 6) describes the calculation of sigma 

points. ��(𝐿𝐿 + 𝜆𝜆)𝑃𝑃𝑥𝑥��𝑖𝑖 is the 𝑖𝑖th column of the matrix square root. 

Sigma points calculation (eq. 6) 

 

 

The setup for the Unscented Transformation (UT) (eq. 7) is shown below  

UT Setup (eq. 7) 

 

 

λ is the scaling parameter, which depends on  α, κ and 𝐿𝐿 . The constant α determines the spread of sigma points 
about the mean 𝑥𝑥�𝑘𝑘. The constant κ is a secondary scaling parameter, which we set to 3 − 𝐿𝐿. β is used to incorporate 
prior knowledge of the distribution. β = 2 is optimal for Gaussian distributions (Haykin, 2001). 

Below the UKF Algorithm (eq. 8) is shown, which includes the following main steps: 

• Prediction of the model outputs  𝑦𝑦�𝑘𝑘−, based on the model with the current parameters. 

• Obtain the measurements 𝑦𝑦𝑘𝑘  from sensors 

• Update the prediction of the states, based on the errors (measurements-model prediction, 𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘−) 
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UKF Algorithm (eq. 8) 

 

 

 

3.3 Simulation results for parameter estimation 
Tab. 4 lists the identified state variables and parameters. Parameter identification is done for RhSt, DhwSt, PV/T, 
and for the building model parameters of the SFH100. It is performed during the normal building operation. 

Tab. 3: Simulations settings 

Parameter Value 
Measurement interval for identification 0.5h 
Spread of sigma points α 1e-3 
Forgetting factor Θ  1e-4…1e-3 
Optimization interval (MPC) 1h 
Prediction horizon (MPC) 8h 
Identification duration  2…50 days 
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Tab. 4: Measurement y, identified parameters, disturbance d and inputs u of the model. 

Variable Description  Range/Unit 
y1, y2, y3, y4 temperatures of the RhSt (4 layers) °C 
y5, y6, y7, y8 temperatures of the DwSt (4 layers) °C 
y9 

 

 

temperature of the PVT  °C 
ycon 

 

temperature of the concrete °C 
yroom temperature of the room °C 
Cm1 SFH100  thermal mass J/K 
Cm2 SFH100 thermal mass J/K 
1/R1 SFH100 thermal conduction to the ambient  W/K 
1/R2 SFH100 thermal conduction between thermal masses  W/K 
1/R3 SFH100 thermal conduction to soil W/K 
K1 SFH100 solar factor m2 
CmST1  thermal mass of the storage J/K 
CmST2 thermal mass of the storage J/K 
1/CmPVT 

 

thermal mass (inverse) K/J 
P1 lumped parameter (K m2)/J 
P2 lumped parameter 1/s 
ddist internal gains (unkown) W/m2 
dTAmb ambient temperature °C 
dsolar 

 

solar radiation  W/m2 
upump HP1, upump HP2 control input pumps {0, 1} 
uT sup ST1, uT ret ST1, uT sup ST2, uT ret ST2 

 

 

 

supply and return temperature heat ST °C 
uT sup PVT, uT ret PVT  

 

 

 

supply and return temperature PVT °C 
uT sup SFH100 , uT ret SFH100 supply and return temperature SFH °C 

 

For the identification of the building model, we presuppose very little knowledge of the actual parameter values. 
Twelve simulation runs are executed with randomly chosen initial values. Identification of the building model 
parameters (SFH 100) for randomly chosen initial conditions is shown in Fig. 4. Within ca. 20 days all parameter 
estimates - with one exception - converge. The estimated parameters are lumped parameters, thus only indirect 
verification of the estimation is possible. Fig. 3 shows the error for room and concrete temperatures for one of the 
runs. 

 

 
Fig. 3: Error between estimation and measured room and concrete temperature using UKF. The temperatures depend on the 

estimated parameters and can be measured directly. 
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Fig. 4: Identification of the building model parameters (SFH 100) with different initial conditions during ordinary operation of the 

heating system. Several simulation runs with different initial guesses are shown. Within ca. 20 days all parameters converge, except in 
one of the runs (blue line) which failed to converge. The parameters are lumped parameters, thus they cannot be compared to “exact” 

values. 

 
The identification of the heating system parameters (RhSt, DhwSt, PV/T) is shown in Fig. 5 and Fig. 6. Convergence 
is faster, than for the parameters in Fig. 4, because a good initial estimate is usually available.  

 

 
 

Fig. 5: Identification for the parameters. Compared to the identification of DhwSt and RhSt it takes a bit longer to reach a 
stable set of parameters. This is because the identification only can run when some excitation (irradiation sun) is active. 

 

 
 

 

Fig. 6: Identification for the thermal mass of DhwSt and RhSt. Within ca. 0.5 days, the parameters converge with a relative 
error of 0.14 and 0.22 respectively. 
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4. Results for overall performance 
All presented results refer to annual simulation with synthetic weather data (averaged over several years) for Zurich, 
Switzerland, as provided by METEONORM 7 (Meteotest, 2013). We compare MPC to a Rule Based Controller 
(RBC) in terms of performance coefficient, self-consumption and self-sufficiency. 

4.1 Performance coefficient, self-consumption and self-sufficiency  
The performance coefficient is by definition 

 

𝐽𝐽 ≔ ∫ 𝑄̇𝑄𝑡𝑡ℎ
𝐸̇𝐸𝑒𝑒𝑒𝑒𝑒𝑒

 𝑑𝑑𝑑𝑑  (eq. 9) 

 

where 𝑄̇𝑄𝑡𝑡ℎ is the total useable thermal energy supplied for hot water supply and heating and 𝐸̇𝐸𝑒𝑒𝑒𝑒𝑒𝑒 is the imported 
electrical energy. We calculate the annual 𝐽𝐽 and monthly 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑙𝑙𝑙𝑙  performance coefficient.  

The system has a performance factor of 𝐽𝐽 = 6.85 for the MPC and 𝐽𝐽 = 4.24 for the RBC (Tab. 5). During the heating 
season the MPC achieves for the coldest months, January and December, a performance factor  𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑙𝑙𝑙𝑙 = 4.9 and 5, 
while RBC reaches 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑙𝑙𝑙𝑙 = 3.8 and 4.0 (Fig. 7). 

 
Fig. 7: Monthly performance factors Jmonthly for RBC and MPC resulting from a realistic simulation with Zurich weather data. 

Tab. 5: Result overview. RBC and MPC deliver roughly the same amount of heat and produce the same amount of energy, but MPC 
can use a much larger share of the produced energy on site. 

 Unit RBC  MPC 
heating circuit    

heating energy kWh 17119 17250 
energy DHW kWh 2065 2065 
thermal energy out (no cooling) kWh 19184 19316 
cooling kWh 1371 1370 

electricity    
produced PV kWh 9508 9641 
consumed WPs & pumps kWh 5530 6466 
exported kWh 8505 5994 
imported kWh 4527 2819 
Performance coefficient J - 4.24 6.85 

 
For self-consumption (eq. 10) and self-sufficiency (eq. 11) we use the terms as described by (Luthander et al., 2015). 
The meaning of the variables are self-consumption ratio 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐 (-), self-sufficiency ratio 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠 (-), self-consumption of 
on-site PV electricity 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (kWh), electricity consumption 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 (kWh), electricity import form the grid 𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  (kWh) 
and on-site PV electricity produced 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (kWh). 
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𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 = 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐−𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

   (eq. 10) 

 

𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐

 = 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐−𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐

= 1 − 𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐

   (eq. 11) 

 

With MPC, the system consumes Rcon=56% of the generated PVT electrical energy in the course of one year and 
reaches a self sufficiency Rsuf =38% (Fig. 8, Fig. 9). With RBC, the self-consumption ratio is approximately 10% 
based only on coincidence and the self-sufficiency is 18%. During the heating season from October to April the MPC 
achieves a PV self-consumption between 47% and 69%. The worst month with respect to self-consumption is April 
and the best month is December. 

 

 
Fig. 8: Monthly self-consumption. 

 
Fig. 9: Monthly self-sufficiency. 

4.2 Discussion 
There are two main reasons for optimizing the self-consumption. First, there is an economical reward for the 
consumer in case of low feed-in prices and high purchase prices. With variable electricity prices, the potential is even 
greater (Zogg et al., 2016). Second, grid-connected PV power plants may cause unwanted disturbances to the 
electricity grid. 

Maximizing self-consumption and efficient operation of the HP are contradictory: maximizing the self-consumption 
implies heating up the storage while on-site PV electricity is available. The consequence are higher temperature lifts 
and thus a decreased efficiency of the HP. The HP still operates with maximum efficiency while there is no PV/T 
electricity generation.  

Other common seasonal performance figures, such as the Seasonal Performance Factor (SPF+) define the overall 
energy efficiency of the system as the quotient of overall useful energy output and the overall driving final energy 
input (Malenkovic et al., 2013) without distinction between imported and locally produced electrical energy. 
However if self-consumption should play a role in the optimization, this distinction is reasonable. 
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In our setup, we find values of SPF+= 3.2 for MPC and SPF+= 3.7 for RBC.   

5. Conclusion and Outlook  
In an annual simulation run with Zurich weather data, and two consumers (one SFH45 and one SFH100), a 
performance factor of J=6.85 was reached. Economically this is a very competitive value (i.e. running costs are 
competitive).  Similar systems like (Daniel Philippen, 2015) reach a ratio up to 7 for SFH45 and up to 3.5 for SFH100. 
Commissioning and maintenance costs are kept low by the continuous parameter identification, which ensures, that 
the model remains accurate over time, even in the presence of varying system parameters. Even with automatic 
adaptation of system parameters, the required modelling effort remains considerable. Model free, possibly heuristic 
or self-learning, optimal control concepts are therefore a very interesting future research objective. 
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